ARM: OMAP2+: gpmc: update nand register helper
[deliverable/linux.git] / arch / arm / mach-omap2 / gpmc.c
1 /*
2 * GPMC support functions
3 *
4 * Copyright (C) 2005-2006 Nokia Corporation
5 *
6 * Author: Juha Yrjola
7 *
8 * Copyright (C) 2009 Texas Instruments
9 * Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 */
15 #undef DEBUG
16
17 #include <linux/irq.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/ioport.h>
23 #include <linux/spinlock.h>
24 #include <linux/io.h>
25 #include <linux/module.h>
26 #include <linux/interrupt.h>
27
28 #include <asm/mach-types.h>
29 #include <plat/gpmc.h>
30
31 #include <plat/sdrc.h>
32
33 /* GPMC register offsets */
34 #define GPMC_REVISION 0x00
35 #define GPMC_SYSCONFIG 0x10
36 #define GPMC_SYSSTATUS 0x14
37 #define GPMC_IRQSTATUS 0x18
38 #define GPMC_IRQENABLE 0x1c
39 #define GPMC_TIMEOUT_CONTROL 0x40
40 #define GPMC_ERR_ADDRESS 0x44
41 #define GPMC_ERR_TYPE 0x48
42 #define GPMC_CONFIG 0x50
43 #define GPMC_STATUS 0x54
44 #define GPMC_PREFETCH_CONFIG1 0x1e0
45 #define GPMC_PREFETCH_CONFIG2 0x1e4
46 #define GPMC_PREFETCH_CONTROL 0x1ec
47 #define GPMC_PREFETCH_STATUS 0x1f0
48 #define GPMC_ECC_CONFIG 0x1f4
49 #define GPMC_ECC_CONTROL 0x1f8
50 #define GPMC_ECC_SIZE_CONFIG 0x1fc
51 #define GPMC_ECC1_RESULT 0x200
52 #define GPMC_ECC_BCH_RESULT_0 0x240 /* not available on OMAP2 */
53
54 /* GPMC ECC control settings */
55 #define GPMC_ECC_CTRL_ECCCLEAR 0x100
56 #define GPMC_ECC_CTRL_ECCDISABLE 0x000
57 #define GPMC_ECC_CTRL_ECCREG1 0x001
58 #define GPMC_ECC_CTRL_ECCREG2 0x002
59 #define GPMC_ECC_CTRL_ECCREG3 0x003
60 #define GPMC_ECC_CTRL_ECCREG4 0x004
61 #define GPMC_ECC_CTRL_ECCREG5 0x005
62 #define GPMC_ECC_CTRL_ECCREG6 0x006
63 #define GPMC_ECC_CTRL_ECCREG7 0x007
64 #define GPMC_ECC_CTRL_ECCREG8 0x008
65 #define GPMC_ECC_CTRL_ECCREG9 0x009
66
67 #define GPMC_CS0_OFFSET 0x60
68 #define GPMC_CS_SIZE 0x30
69
70 #define GPMC_MEM_START 0x00000000
71 #define GPMC_MEM_END 0x3FFFFFFF
72 #define BOOT_ROM_SPACE 0x100000 /* 1MB */
73
74 #define GPMC_CHUNK_SHIFT 24 /* 16 MB */
75 #define GPMC_SECTION_SHIFT 28 /* 128 MB */
76
77 #define CS_NUM_SHIFT 24
78 #define ENABLE_PREFETCH (0x1 << 7)
79 #define DMA_MPU_MODE 2
80
81 /* Structure to save gpmc cs context */
82 struct gpmc_cs_config {
83 u32 config1;
84 u32 config2;
85 u32 config3;
86 u32 config4;
87 u32 config5;
88 u32 config6;
89 u32 config7;
90 int is_valid;
91 };
92
93 /*
94 * Structure to save/restore gpmc context
95 * to support core off on OMAP3
96 */
97 struct omap3_gpmc_regs {
98 u32 sysconfig;
99 u32 irqenable;
100 u32 timeout_ctrl;
101 u32 config;
102 u32 prefetch_config1;
103 u32 prefetch_config2;
104 u32 prefetch_control;
105 struct gpmc_cs_config cs_context[GPMC_CS_NUM];
106 };
107
108 static struct resource gpmc_mem_root;
109 static struct resource gpmc_cs_mem[GPMC_CS_NUM];
110 static DEFINE_SPINLOCK(gpmc_mem_lock);
111 static unsigned int gpmc_cs_map; /* flag for cs which are initialized */
112 static int gpmc_ecc_used = -EINVAL; /* cs using ecc engine */
113
114 static void __iomem *gpmc_base;
115
116 static struct clk *gpmc_l3_clk;
117
118 static irqreturn_t gpmc_handle_irq(int irq, void *dev);
119
120 static void gpmc_write_reg(int idx, u32 val)
121 {
122 __raw_writel(val, gpmc_base + idx);
123 }
124
125 static u32 gpmc_read_reg(int idx)
126 {
127 return __raw_readl(gpmc_base + idx);
128 }
129
130 static void gpmc_cs_write_byte(int cs, int idx, u8 val)
131 {
132 void __iomem *reg_addr;
133
134 reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
135 __raw_writeb(val, reg_addr);
136 }
137
138 static u8 gpmc_cs_read_byte(int cs, int idx)
139 {
140 void __iomem *reg_addr;
141
142 reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
143 return __raw_readb(reg_addr);
144 }
145
146 void gpmc_cs_write_reg(int cs, int idx, u32 val)
147 {
148 void __iomem *reg_addr;
149
150 reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
151 __raw_writel(val, reg_addr);
152 }
153
154 u32 gpmc_cs_read_reg(int cs, int idx)
155 {
156 void __iomem *reg_addr;
157
158 reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
159 return __raw_readl(reg_addr);
160 }
161
162 /* TODO: Add support for gpmc_fck to clock framework and use it */
163 unsigned long gpmc_get_fclk_period(void)
164 {
165 unsigned long rate = clk_get_rate(gpmc_l3_clk);
166
167 if (rate == 0) {
168 printk(KERN_WARNING "gpmc_l3_clk not enabled\n");
169 return 0;
170 }
171
172 rate /= 1000;
173 rate = 1000000000 / rate; /* In picoseconds */
174
175 return rate;
176 }
177
178 unsigned int gpmc_ns_to_ticks(unsigned int time_ns)
179 {
180 unsigned long tick_ps;
181
182 /* Calculate in picosecs to yield more exact results */
183 tick_ps = gpmc_get_fclk_period();
184
185 return (time_ns * 1000 + tick_ps - 1) / tick_ps;
186 }
187
188 unsigned int gpmc_ps_to_ticks(unsigned int time_ps)
189 {
190 unsigned long tick_ps;
191
192 /* Calculate in picosecs to yield more exact results */
193 tick_ps = gpmc_get_fclk_period();
194
195 return (time_ps + tick_ps - 1) / tick_ps;
196 }
197
198 unsigned int gpmc_ticks_to_ns(unsigned int ticks)
199 {
200 return ticks * gpmc_get_fclk_period() / 1000;
201 }
202
203 unsigned int gpmc_round_ns_to_ticks(unsigned int time_ns)
204 {
205 unsigned long ticks = gpmc_ns_to_ticks(time_ns);
206
207 return ticks * gpmc_get_fclk_period() / 1000;
208 }
209
210 #ifdef DEBUG
211 static int set_gpmc_timing_reg(int cs, int reg, int st_bit, int end_bit,
212 int time, const char *name)
213 #else
214 static int set_gpmc_timing_reg(int cs, int reg, int st_bit, int end_bit,
215 int time)
216 #endif
217 {
218 u32 l;
219 int ticks, mask, nr_bits;
220
221 if (time == 0)
222 ticks = 0;
223 else
224 ticks = gpmc_ns_to_ticks(time);
225 nr_bits = end_bit - st_bit + 1;
226 if (ticks >= 1 << nr_bits) {
227 #ifdef DEBUG
228 printk(KERN_INFO "GPMC CS%d: %-10s* %3d ns, %3d ticks >= %d\n",
229 cs, name, time, ticks, 1 << nr_bits);
230 #endif
231 return -1;
232 }
233
234 mask = (1 << nr_bits) - 1;
235 l = gpmc_cs_read_reg(cs, reg);
236 #ifdef DEBUG
237 printk(KERN_INFO
238 "GPMC CS%d: %-10s: %3d ticks, %3lu ns (was %3i ticks) %3d ns\n",
239 cs, name, ticks, gpmc_get_fclk_period() * ticks / 1000,
240 (l >> st_bit) & mask, time);
241 #endif
242 l &= ~(mask << st_bit);
243 l |= ticks << st_bit;
244 gpmc_cs_write_reg(cs, reg, l);
245
246 return 0;
247 }
248
249 #ifdef DEBUG
250 #define GPMC_SET_ONE(reg, st, end, field) \
251 if (set_gpmc_timing_reg(cs, (reg), (st), (end), \
252 t->field, #field) < 0) \
253 return -1
254 #else
255 #define GPMC_SET_ONE(reg, st, end, field) \
256 if (set_gpmc_timing_reg(cs, (reg), (st), (end), t->field) < 0) \
257 return -1
258 #endif
259
260 int gpmc_cs_calc_divider(int cs, unsigned int sync_clk)
261 {
262 int div;
263 u32 l;
264
265 l = sync_clk + (gpmc_get_fclk_period() - 1);
266 div = l / gpmc_get_fclk_period();
267 if (div > 4)
268 return -1;
269 if (div <= 0)
270 div = 1;
271
272 return div;
273 }
274
275 int gpmc_cs_set_timings(int cs, const struct gpmc_timings *t)
276 {
277 int div;
278 u32 l;
279
280 div = gpmc_cs_calc_divider(cs, t->sync_clk);
281 if (div < 0)
282 return -1;
283
284 GPMC_SET_ONE(GPMC_CS_CONFIG2, 0, 3, cs_on);
285 GPMC_SET_ONE(GPMC_CS_CONFIG2, 8, 12, cs_rd_off);
286 GPMC_SET_ONE(GPMC_CS_CONFIG2, 16, 20, cs_wr_off);
287
288 GPMC_SET_ONE(GPMC_CS_CONFIG3, 0, 3, adv_on);
289 GPMC_SET_ONE(GPMC_CS_CONFIG3, 8, 12, adv_rd_off);
290 GPMC_SET_ONE(GPMC_CS_CONFIG3, 16, 20, adv_wr_off);
291
292 GPMC_SET_ONE(GPMC_CS_CONFIG4, 0, 3, oe_on);
293 GPMC_SET_ONE(GPMC_CS_CONFIG4, 8, 12, oe_off);
294 GPMC_SET_ONE(GPMC_CS_CONFIG4, 16, 19, we_on);
295 GPMC_SET_ONE(GPMC_CS_CONFIG4, 24, 28, we_off);
296
297 GPMC_SET_ONE(GPMC_CS_CONFIG5, 0, 4, rd_cycle);
298 GPMC_SET_ONE(GPMC_CS_CONFIG5, 8, 12, wr_cycle);
299 GPMC_SET_ONE(GPMC_CS_CONFIG5, 16, 20, access);
300
301 GPMC_SET_ONE(GPMC_CS_CONFIG5, 24, 27, page_burst_access);
302
303 if (cpu_is_omap34xx()) {
304 GPMC_SET_ONE(GPMC_CS_CONFIG6, 16, 19, wr_data_mux_bus);
305 GPMC_SET_ONE(GPMC_CS_CONFIG6, 24, 28, wr_access);
306 }
307
308 /* caller is expected to have initialized CONFIG1 to cover
309 * at least sync vs async
310 */
311 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
312 if (l & (GPMC_CONFIG1_READTYPE_SYNC | GPMC_CONFIG1_WRITETYPE_SYNC)) {
313 #ifdef DEBUG
314 printk(KERN_INFO "GPMC CS%d CLK period is %lu ns (div %d)\n",
315 cs, (div * gpmc_get_fclk_period()) / 1000, div);
316 #endif
317 l &= ~0x03;
318 l |= (div - 1);
319 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, l);
320 }
321
322 return 0;
323 }
324
325 static void gpmc_cs_enable_mem(int cs, u32 base, u32 size)
326 {
327 u32 l;
328 u32 mask;
329
330 mask = (1 << GPMC_SECTION_SHIFT) - size;
331 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
332 l &= ~0x3f;
333 l = (base >> GPMC_CHUNK_SHIFT) & 0x3f;
334 l &= ~(0x0f << 8);
335 l |= ((mask >> GPMC_CHUNK_SHIFT) & 0x0f) << 8;
336 l |= GPMC_CONFIG7_CSVALID;
337 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
338 }
339
340 static void gpmc_cs_disable_mem(int cs)
341 {
342 u32 l;
343
344 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
345 l &= ~GPMC_CONFIG7_CSVALID;
346 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
347 }
348
349 static void gpmc_cs_get_memconf(int cs, u32 *base, u32 *size)
350 {
351 u32 l;
352 u32 mask;
353
354 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
355 *base = (l & 0x3f) << GPMC_CHUNK_SHIFT;
356 mask = (l >> 8) & 0x0f;
357 *size = (1 << GPMC_SECTION_SHIFT) - (mask << GPMC_CHUNK_SHIFT);
358 }
359
360 static int gpmc_cs_mem_enabled(int cs)
361 {
362 u32 l;
363
364 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
365 return l & GPMC_CONFIG7_CSVALID;
366 }
367
368 int gpmc_cs_set_reserved(int cs, int reserved)
369 {
370 if (cs > GPMC_CS_NUM)
371 return -ENODEV;
372
373 gpmc_cs_map &= ~(1 << cs);
374 gpmc_cs_map |= (reserved ? 1 : 0) << cs;
375
376 return 0;
377 }
378
379 int gpmc_cs_reserved(int cs)
380 {
381 if (cs > GPMC_CS_NUM)
382 return -ENODEV;
383
384 return gpmc_cs_map & (1 << cs);
385 }
386
387 static unsigned long gpmc_mem_align(unsigned long size)
388 {
389 int order;
390
391 size = (size - 1) >> (GPMC_CHUNK_SHIFT - 1);
392 order = GPMC_CHUNK_SHIFT - 1;
393 do {
394 size >>= 1;
395 order++;
396 } while (size);
397 size = 1 << order;
398 return size;
399 }
400
401 static int gpmc_cs_insert_mem(int cs, unsigned long base, unsigned long size)
402 {
403 struct resource *res = &gpmc_cs_mem[cs];
404 int r;
405
406 size = gpmc_mem_align(size);
407 spin_lock(&gpmc_mem_lock);
408 res->start = base;
409 res->end = base + size - 1;
410 r = request_resource(&gpmc_mem_root, res);
411 spin_unlock(&gpmc_mem_lock);
412
413 return r;
414 }
415
416 int gpmc_cs_request(int cs, unsigned long size, unsigned long *base)
417 {
418 struct resource *res = &gpmc_cs_mem[cs];
419 int r = -1;
420
421 if (cs > GPMC_CS_NUM)
422 return -ENODEV;
423
424 size = gpmc_mem_align(size);
425 if (size > (1 << GPMC_SECTION_SHIFT))
426 return -ENOMEM;
427
428 spin_lock(&gpmc_mem_lock);
429 if (gpmc_cs_reserved(cs)) {
430 r = -EBUSY;
431 goto out;
432 }
433 if (gpmc_cs_mem_enabled(cs))
434 r = adjust_resource(res, res->start & ~(size - 1), size);
435 if (r < 0)
436 r = allocate_resource(&gpmc_mem_root, res, size, 0, ~0,
437 size, NULL, NULL);
438 if (r < 0)
439 goto out;
440
441 gpmc_cs_enable_mem(cs, res->start, resource_size(res));
442 *base = res->start;
443 gpmc_cs_set_reserved(cs, 1);
444 out:
445 spin_unlock(&gpmc_mem_lock);
446 return r;
447 }
448 EXPORT_SYMBOL(gpmc_cs_request);
449
450 void gpmc_cs_free(int cs)
451 {
452 spin_lock(&gpmc_mem_lock);
453 if (cs >= GPMC_CS_NUM || cs < 0 || !gpmc_cs_reserved(cs)) {
454 printk(KERN_ERR "Trying to free non-reserved GPMC CS%d\n", cs);
455 BUG();
456 spin_unlock(&gpmc_mem_lock);
457 return;
458 }
459 gpmc_cs_disable_mem(cs);
460 release_resource(&gpmc_cs_mem[cs]);
461 gpmc_cs_set_reserved(cs, 0);
462 spin_unlock(&gpmc_mem_lock);
463 }
464 EXPORT_SYMBOL(gpmc_cs_free);
465
466 /**
467 * gpmc_read_status - read access request to get the different gpmc status
468 * @cmd: command type
469 * @return status
470 */
471 int gpmc_read_status(int cmd)
472 {
473 int status = -EINVAL;
474 u32 regval = 0;
475
476 switch (cmd) {
477 case GPMC_GET_IRQ_STATUS:
478 status = gpmc_read_reg(GPMC_IRQSTATUS);
479 break;
480
481 case GPMC_PREFETCH_FIFO_CNT:
482 regval = gpmc_read_reg(GPMC_PREFETCH_STATUS);
483 status = GPMC_PREFETCH_STATUS_FIFO_CNT(regval);
484 break;
485
486 case GPMC_PREFETCH_COUNT:
487 regval = gpmc_read_reg(GPMC_PREFETCH_STATUS);
488 status = GPMC_PREFETCH_STATUS_COUNT(regval);
489 break;
490
491 case GPMC_STATUS_BUFFER:
492 regval = gpmc_read_reg(GPMC_STATUS);
493 /* 1 : buffer is available to write */
494 status = regval & GPMC_STATUS_BUFF_EMPTY;
495 break;
496
497 default:
498 printk(KERN_ERR "gpmc_read_status: Not supported\n");
499 }
500 return status;
501 }
502 EXPORT_SYMBOL(gpmc_read_status);
503
504 /**
505 * gpmc_cs_configure - write request to configure gpmc
506 * @cs: chip select number
507 * @cmd: command type
508 * @wval: value to write
509 * @return status of the operation
510 */
511 int gpmc_cs_configure(int cs, int cmd, int wval)
512 {
513 int err = 0;
514 u32 regval = 0;
515
516 switch (cmd) {
517 case GPMC_ENABLE_IRQ:
518 gpmc_write_reg(GPMC_IRQENABLE, wval);
519 break;
520
521 case GPMC_SET_IRQ_STATUS:
522 gpmc_write_reg(GPMC_IRQSTATUS, wval);
523 break;
524
525 case GPMC_CONFIG_WP:
526 regval = gpmc_read_reg(GPMC_CONFIG);
527 if (wval)
528 regval &= ~GPMC_CONFIG_WRITEPROTECT; /* WP is ON */
529 else
530 regval |= GPMC_CONFIG_WRITEPROTECT; /* WP is OFF */
531 gpmc_write_reg(GPMC_CONFIG, regval);
532 break;
533
534 case GPMC_CONFIG_RDY_BSY:
535 regval = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
536 if (wval)
537 regval |= WR_RD_PIN_MONITORING;
538 else
539 regval &= ~WR_RD_PIN_MONITORING;
540 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, regval);
541 break;
542
543 case GPMC_CONFIG_DEV_SIZE:
544 regval = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
545
546 /* clear 2 target bits */
547 regval &= ~GPMC_CONFIG1_DEVICESIZE(3);
548
549 /* set the proper value */
550 regval |= GPMC_CONFIG1_DEVICESIZE(wval);
551
552 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, regval);
553 break;
554
555 case GPMC_CONFIG_DEV_TYPE:
556 regval = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
557 regval |= GPMC_CONFIG1_DEVICETYPE(wval);
558 if (wval == GPMC_DEVICETYPE_NOR)
559 regval |= GPMC_CONFIG1_MUXADDDATA;
560 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, regval);
561 break;
562
563 default:
564 printk(KERN_ERR "gpmc_configure_cs: Not supported\n");
565 err = -EINVAL;
566 }
567
568 return err;
569 }
570 EXPORT_SYMBOL(gpmc_cs_configure);
571
572 /**
573 * gpmc_nand_read - nand specific read access request
574 * @cs: chip select number
575 * @cmd: command type
576 */
577 int gpmc_nand_read(int cs, int cmd)
578 {
579 int rval = -EINVAL;
580
581 switch (cmd) {
582 case GPMC_NAND_DATA:
583 rval = gpmc_cs_read_byte(cs, GPMC_CS_NAND_DATA);
584 break;
585
586 default:
587 printk(KERN_ERR "gpmc_read_nand_ctrl: Not supported\n");
588 }
589 return rval;
590 }
591 EXPORT_SYMBOL(gpmc_nand_read);
592
593 /**
594 * gpmc_nand_write - nand specific write request
595 * @cs: chip select number
596 * @cmd: command type
597 * @wval: value to write
598 */
599 int gpmc_nand_write(int cs, int cmd, int wval)
600 {
601 int err = 0;
602
603 switch (cmd) {
604 case GPMC_NAND_COMMAND:
605 gpmc_cs_write_byte(cs, GPMC_CS_NAND_COMMAND, wval);
606 break;
607
608 case GPMC_NAND_ADDRESS:
609 gpmc_cs_write_byte(cs, GPMC_CS_NAND_ADDRESS, wval);
610 break;
611
612 case GPMC_NAND_DATA:
613 gpmc_cs_write_byte(cs, GPMC_CS_NAND_DATA, wval);
614
615 default:
616 printk(KERN_ERR "gpmc_write_nand_ctrl: Not supported\n");
617 err = -EINVAL;
618 }
619 return err;
620 }
621 EXPORT_SYMBOL(gpmc_nand_write);
622
623
624
625 /**
626 * gpmc_prefetch_enable - configures and starts prefetch transfer
627 * @cs: cs (chip select) number
628 * @fifo_th: fifo threshold to be used for read/ write
629 * @dma_mode: dma mode enable (1) or disable (0)
630 * @u32_count: number of bytes to be transferred
631 * @is_write: prefetch read(0) or write post(1) mode
632 */
633 int gpmc_prefetch_enable(int cs, int fifo_th, int dma_mode,
634 unsigned int u32_count, int is_write)
635 {
636
637 if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX) {
638 pr_err("gpmc: fifo threshold is not supported\n");
639 return -1;
640 } else if (!(gpmc_read_reg(GPMC_PREFETCH_CONTROL))) {
641 /* Set the amount of bytes to be prefetched */
642 gpmc_write_reg(GPMC_PREFETCH_CONFIG2, u32_count);
643
644 /* Set dma/mpu mode, the prefetch read / post write and
645 * enable the engine. Set which cs is has requested for.
646 */
647 gpmc_write_reg(GPMC_PREFETCH_CONFIG1, ((cs << CS_NUM_SHIFT) |
648 PREFETCH_FIFOTHRESHOLD(fifo_th) |
649 ENABLE_PREFETCH |
650 (dma_mode << DMA_MPU_MODE) |
651 (0x1 & is_write)));
652
653 /* Start the prefetch engine */
654 gpmc_write_reg(GPMC_PREFETCH_CONTROL, 0x1);
655 } else {
656 return -EBUSY;
657 }
658
659 return 0;
660 }
661 EXPORT_SYMBOL(gpmc_prefetch_enable);
662
663 /**
664 * gpmc_prefetch_reset - disables and stops the prefetch engine
665 */
666 int gpmc_prefetch_reset(int cs)
667 {
668 u32 config1;
669
670 /* check if the same module/cs is trying to reset */
671 config1 = gpmc_read_reg(GPMC_PREFETCH_CONFIG1);
672 if (((config1 >> CS_NUM_SHIFT) & 0x7) != cs)
673 return -EINVAL;
674
675 /* Stop the PFPW engine */
676 gpmc_write_reg(GPMC_PREFETCH_CONTROL, 0x0);
677
678 /* Reset/disable the PFPW engine */
679 gpmc_write_reg(GPMC_PREFETCH_CONFIG1, 0x0);
680
681 return 0;
682 }
683 EXPORT_SYMBOL(gpmc_prefetch_reset);
684
685 void gpmc_update_nand_reg(struct gpmc_nand_regs *reg, int cs)
686 {
687 reg->gpmc_status = gpmc_base + GPMC_STATUS;
688 reg->gpmc_nand_command = gpmc_base + GPMC_CS0_OFFSET +
689 GPMC_CS_NAND_COMMAND + GPMC_CS_SIZE * cs;
690 reg->gpmc_nand_address = gpmc_base + GPMC_CS0_OFFSET +
691 GPMC_CS_NAND_ADDRESS + GPMC_CS_SIZE * cs;
692 reg->gpmc_nand_data = gpmc_base + GPMC_CS0_OFFSET +
693 GPMC_CS_NAND_DATA + GPMC_CS_SIZE * cs;
694 reg->gpmc_prefetch_config1 = gpmc_base + GPMC_PREFETCH_CONFIG1;
695 reg->gpmc_prefetch_config2 = gpmc_base + GPMC_PREFETCH_CONFIG2;
696 reg->gpmc_prefetch_control = gpmc_base + GPMC_PREFETCH_CONTROL;
697 reg->gpmc_prefetch_status = gpmc_base + GPMC_PREFETCH_STATUS;
698 reg->gpmc_ecc_config = gpmc_base + GPMC_ECC_CONFIG;
699 reg->gpmc_ecc_control = gpmc_base + GPMC_ECC_CONTROL;
700 reg->gpmc_ecc_size_config = gpmc_base + GPMC_ECC_SIZE_CONFIG;
701 reg->gpmc_ecc1_result = gpmc_base + GPMC_ECC1_RESULT;
702 reg->gpmc_bch_result0 = gpmc_base + GPMC_ECC_BCH_RESULT_0;
703 }
704
705 static void __init gpmc_mem_init(void)
706 {
707 int cs;
708 unsigned long boot_rom_space = 0;
709
710 /* never allocate the first page, to facilitate bug detection;
711 * even if we didn't boot from ROM.
712 */
713 boot_rom_space = BOOT_ROM_SPACE;
714 /* In apollon the CS0 is mapped as 0x0000 0000 */
715 if (machine_is_omap_apollon())
716 boot_rom_space = 0;
717 gpmc_mem_root.start = GPMC_MEM_START + boot_rom_space;
718 gpmc_mem_root.end = GPMC_MEM_END;
719
720 /* Reserve all regions that has been set up by bootloader */
721 for (cs = 0; cs < GPMC_CS_NUM; cs++) {
722 u32 base, size;
723
724 if (!gpmc_cs_mem_enabled(cs))
725 continue;
726 gpmc_cs_get_memconf(cs, &base, &size);
727 if (gpmc_cs_insert_mem(cs, base, size) < 0)
728 BUG();
729 }
730 }
731
732 static int __init gpmc_init(void)
733 {
734 u32 l, irq;
735 int cs, ret = -EINVAL;
736 int gpmc_irq;
737 char *ck = NULL;
738
739 if (cpu_is_omap24xx()) {
740 ck = "core_l3_ck";
741 if (cpu_is_omap2420())
742 l = OMAP2420_GPMC_BASE;
743 else
744 l = OMAP34XX_GPMC_BASE;
745 gpmc_irq = INT_34XX_GPMC_IRQ;
746 } else if (cpu_is_omap34xx()) {
747 ck = "gpmc_fck";
748 l = OMAP34XX_GPMC_BASE;
749 gpmc_irq = INT_34XX_GPMC_IRQ;
750 } else if (cpu_is_omap44xx() || soc_is_omap54xx()) {
751 /* Base address and irq number are same for OMAP4/5 */
752 ck = "gpmc_ck";
753 l = OMAP44XX_GPMC_BASE;
754 gpmc_irq = OMAP44XX_IRQ_GPMC;
755 }
756
757 if (WARN_ON(!ck))
758 return ret;
759
760 gpmc_l3_clk = clk_get(NULL, ck);
761 if (IS_ERR(gpmc_l3_clk)) {
762 printk(KERN_ERR "Could not get GPMC clock %s\n", ck);
763 BUG();
764 }
765
766 gpmc_base = ioremap(l, SZ_4K);
767 if (!gpmc_base) {
768 clk_put(gpmc_l3_clk);
769 printk(KERN_ERR "Could not get GPMC register memory\n");
770 BUG();
771 }
772
773 clk_enable(gpmc_l3_clk);
774
775 l = gpmc_read_reg(GPMC_REVISION);
776 printk(KERN_INFO "GPMC revision %d.%d\n", (l >> 4) & 0x0f, l & 0x0f);
777 /* Set smart idle mode and automatic L3 clock gating */
778 l = gpmc_read_reg(GPMC_SYSCONFIG);
779 l &= 0x03 << 3;
780 l |= (0x02 << 3) | (1 << 0);
781 gpmc_write_reg(GPMC_SYSCONFIG, l);
782 gpmc_mem_init();
783
784 /* initalize the irq_chained */
785 irq = OMAP_GPMC_IRQ_BASE;
786 for (cs = 0; cs < GPMC_CS_NUM; cs++) {
787 irq_set_chip_and_handler(irq, &dummy_irq_chip,
788 handle_simple_irq);
789 set_irq_flags(irq, IRQF_VALID);
790 irq++;
791 }
792
793 ret = request_irq(gpmc_irq, gpmc_handle_irq, IRQF_SHARED, "gpmc", NULL);
794 if (ret)
795 pr_err("gpmc: irq-%d could not claim: err %d\n",
796 gpmc_irq, ret);
797 return ret;
798 }
799 postcore_initcall(gpmc_init);
800
801 static irqreturn_t gpmc_handle_irq(int irq, void *dev)
802 {
803 u8 cs;
804
805 /* check cs to invoke the irq */
806 cs = ((gpmc_read_reg(GPMC_PREFETCH_CONFIG1)) >> CS_NUM_SHIFT) & 0x7;
807 if (OMAP_GPMC_IRQ_BASE+cs <= OMAP_GPMC_IRQ_END)
808 generic_handle_irq(OMAP_GPMC_IRQ_BASE+cs);
809
810 return IRQ_HANDLED;
811 }
812
813 #ifdef CONFIG_ARCH_OMAP3
814 static struct omap3_gpmc_regs gpmc_context;
815
816 void omap3_gpmc_save_context(void)
817 {
818 int i;
819
820 gpmc_context.sysconfig = gpmc_read_reg(GPMC_SYSCONFIG);
821 gpmc_context.irqenable = gpmc_read_reg(GPMC_IRQENABLE);
822 gpmc_context.timeout_ctrl = gpmc_read_reg(GPMC_TIMEOUT_CONTROL);
823 gpmc_context.config = gpmc_read_reg(GPMC_CONFIG);
824 gpmc_context.prefetch_config1 = gpmc_read_reg(GPMC_PREFETCH_CONFIG1);
825 gpmc_context.prefetch_config2 = gpmc_read_reg(GPMC_PREFETCH_CONFIG2);
826 gpmc_context.prefetch_control = gpmc_read_reg(GPMC_PREFETCH_CONTROL);
827 for (i = 0; i < GPMC_CS_NUM; i++) {
828 gpmc_context.cs_context[i].is_valid = gpmc_cs_mem_enabled(i);
829 if (gpmc_context.cs_context[i].is_valid) {
830 gpmc_context.cs_context[i].config1 =
831 gpmc_cs_read_reg(i, GPMC_CS_CONFIG1);
832 gpmc_context.cs_context[i].config2 =
833 gpmc_cs_read_reg(i, GPMC_CS_CONFIG2);
834 gpmc_context.cs_context[i].config3 =
835 gpmc_cs_read_reg(i, GPMC_CS_CONFIG3);
836 gpmc_context.cs_context[i].config4 =
837 gpmc_cs_read_reg(i, GPMC_CS_CONFIG4);
838 gpmc_context.cs_context[i].config5 =
839 gpmc_cs_read_reg(i, GPMC_CS_CONFIG5);
840 gpmc_context.cs_context[i].config6 =
841 gpmc_cs_read_reg(i, GPMC_CS_CONFIG6);
842 gpmc_context.cs_context[i].config7 =
843 gpmc_cs_read_reg(i, GPMC_CS_CONFIG7);
844 }
845 }
846 }
847
848 void omap3_gpmc_restore_context(void)
849 {
850 int i;
851
852 gpmc_write_reg(GPMC_SYSCONFIG, gpmc_context.sysconfig);
853 gpmc_write_reg(GPMC_IRQENABLE, gpmc_context.irqenable);
854 gpmc_write_reg(GPMC_TIMEOUT_CONTROL, gpmc_context.timeout_ctrl);
855 gpmc_write_reg(GPMC_CONFIG, gpmc_context.config);
856 gpmc_write_reg(GPMC_PREFETCH_CONFIG1, gpmc_context.prefetch_config1);
857 gpmc_write_reg(GPMC_PREFETCH_CONFIG2, gpmc_context.prefetch_config2);
858 gpmc_write_reg(GPMC_PREFETCH_CONTROL, gpmc_context.prefetch_control);
859 for (i = 0; i < GPMC_CS_NUM; i++) {
860 if (gpmc_context.cs_context[i].is_valid) {
861 gpmc_cs_write_reg(i, GPMC_CS_CONFIG1,
862 gpmc_context.cs_context[i].config1);
863 gpmc_cs_write_reg(i, GPMC_CS_CONFIG2,
864 gpmc_context.cs_context[i].config2);
865 gpmc_cs_write_reg(i, GPMC_CS_CONFIG3,
866 gpmc_context.cs_context[i].config3);
867 gpmc_cs_write_reg(i, GPMC_CS_CONFIG4,
868 gpmc_context.cs_context[i].config4);
869 gpmc_cs_write_reg(i, GPMC_CS_CONFIG5,
870 gpmc_context.cs_context[i].config5);
871 gpmc_cs_write_reg(i, GPMC_CS_CONFIG6,
872 gpmc_context.cs_context[i].config6);
873 gpmc_cs_write_reg(i, GPMC_CS_CONFIG7,
874 gpmc_context.cs_context[i].config7);
875 }
876 }
877 }
878 #endif /* CONFIG_ARCH_OMAP3 */
879
880 /**
881 * gpmc_enable_hwecc - enable hardware ecc functionality
882 * @cs: chip select number
883 * @mode: read/write mode
884 * @dev_width: device bus width(1 for x16, 0 for x8)
885 * @ecc_size: bytes for which ECC will be generated
886 */
887 int gpmc_enable_hwecc(int cs, int mode, int dev_width, int ecc_size)
888 {
889 unsigned int val;
890
891 /* check if ecc module is in used */
892 if (gpmc_ecc_used != -EINVAL)
893 return -EINVAL;
894
895 gpmc_ecc_used = cs;
896
897 /* clear ecc and enable bits */
898 gpmc_write_reg(GPMC_ECC_CONTROL,
899 GPMC_ECC_CTRL_ECCCLEAR |
900 GPMC_ECC_CTRL_ECCREG1);
901
902 /* program ecc and result sizes */
903 val = ((((ecc_size >> 1) - 1) << 22) | (0x0000000F));
904 gpmc_write_reg(GPMC_ECC_SIZE_CONFIG, val);
905
906 switch (mode) {
907 case GPMC_ECC_READ:
908 case GPMC_ECC_WRITE:
909 gpmc_write_reg(GPMC_ECC_CONTROL,
910 GPMC_ECC_CTRL_ECCCLEAR |
911 GPMC_ECC_CTRL_ECCREG1);
912 break;
913 case GPMC_ECC_READSYN:
914 gpmc_write_reg(GPMC_ECC_CONTROL,
915 GPMC_ECC_CTRL_ECCCLEAR |
916 GPMC_ECC_CTRL_ECCDISABLE);
917 break;
918 default:
919 printk(KERN_INFO "Error: Unrecognized Mode[%d]!\n", mode);
920 break;
921 }
922
923 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
924 val = (dev_width << 7) | (cs << 1) | (0x1);
925 gpmc_write_reg(GPMC_ECC_CONFIG, val);
926 return 0;
927 }
928 EXPORT_SYMBOL_GPL(gpmc_enable_hwecc);
929
930 /**
931 * gpmc_calculate_ecc - generate non-inverted ecc bytes
932 * @cs: chip select number
933 * @dat: data pointer over which ecc is computed
934 * @ecc_code: ecc code buffer
935 *
936 * Using non-inverted ECC is considered ugly since writing a blank
937 * page (padding) will clear the ECC bytes. This is not a problem as long
938 * no one is trying to write data on the seemingly unused page. Reading
939 * an erased page will produce an ECC mismatch between generated and read
940 * ECC bytes that has to be dealt with separately.
941 */
942 int gpmc_calculate_ecc(int cs, const u_char *dat, u_char *ecc_code)
943 {
944 unsigned int val = 0x0;
945
946 if (gpmc_ecc_used != cs)
947 return -EINVAL;
948
949 /* read ecc result */
950 val = gpmc_read_reg(GPMC_ECC1_RESULT);
951 *ecc_code++ = val; /* P128e, ..., P1e */
952 *ecc_code++ = val >> 16; /* P128o, ..., P1o */
953 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
954 *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
955
956 gpmc_ecc_used = -EINVAL;
957 return 0;
958 }
959 EXPORT_SYMBOL_GPL(gpmc_calculate_ecc);
960
961 #ifdef CONFIG_ARCH_OMAP3
962
963 /**
964 * gpmc_init_hwecc_bch - initialize hardware BCH ecc functionality
965 * @cs: chip select number
966 * @nsectors: how many 512-byte sectors to process
967 * @nerrors: how many errors to correct per sector (4 or 8)
968 *
969 * This function must be executed before any call to gpmc_enable_hwecc_bch.
970 */
971 int gpmc_init_hwecc_bch(int cs, int nsectors, int nerrors)
972 {
973 /* check if ecc module is in use */
974 if (gpmc_ecc_used != -EINVAL)
975 return -EINVAL;
976
977 /* support only OMAP3 class */
978 if (!cpu_is_omap34xx()) {
979 printk(KERN_ERR "BCH ecc is not supported on this CPU\n");
980 return -EINVAL;
981 }
982
983 /*
984 * For now, assume 4-bit mode is only supported on OMAP3630 ES1.x, x>=1.
985 * Other chips may be added if confirmed to work.
986 */
987 if ((nerrors == 4) &&
988 (!cpu_is_omap3630() || (GET_OMAP_REVISION() == 0))) {
989 printk(KERN_ERR "BCH 4-bit mode is not supported on this CPU\n");
990 return -EINVAL;
991 }
992
993 /* sanity check */
994 if (nsectors > 8) {
995 printk(KERN_ERR "BCH cannot process %d sectors (max is 8)\n",
996 nsectors);
997 return -EINVAL;
998 }
999
1000 return 0;
1001 }
1002 EXPORT_SYMBOL_GPL(gpmc_init_hwecc_bch);
1003
1004 /**
1005 * gpmc_enable_hwecc_bch - enable hardware BCH ecc functionality
1006 * @cs: chip select number
1007 * @mode: read/write mode
1008 * @dev_width: device bus width(1 for x16, 0 for x8)
1009 * @nsectors: how many 512-byte sectors to process
1010 * @nerrors: how many errors to correct per sector (4 or 8)
1011 */
1012 int gpmc_enable_hwecc_bch(int cs, int mode, int dev_width, int nsectors,
1013 int nerrors)
1014 {
1015 unsigned int val;
1016
1017 /* check if ecc module is in use */
1018 if (gpmc_ecc_used != -EINVAL)
1019 return -EINVAL;
1020
1021 gpmc_ecc_used = cs;
1022
1023 /* clear ecc and enable bits */
1024 gpmc_write_reg(GPMC_ECC_CONTROL, 0x1);
1025
1026 /*
1027 * When using BCH, sector size is hardcoded to 512 bytes.
1028 * Here we are using wrapping mode 6 both for reading and writing, with:
1029 * size0 = 0 (no additional protected byte in spare area)
1030 * size1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1031 */
1032 gpmc_write_reg(GPMC_ECC_SIZE_CONFIG, (32 << 22) | (0 << 12));
1033
1034 /* BCH configuration */
1035 val = ((1 << 16) | /* enable BCH */
1036 (((nerrors == 8) ? 1 : 0) << 12) | /* 8 or 4 bits */
1037 (0x06 << 8) | /* wrap mode = 6 */
1038 (dev_width << 7) | /* bus width */
1039 (((nsectors-1) & 0x7) << 4) | /* number of sectors */
1040 (cs << 1) | /* ECC CS */
1041 (0x1)); /* enable ECC */
1042
1043 gpmc_write_reg(GPMC_ECC_CONFIG, val);
1044 gpmc_write_reg(GPMC_ECC_CONTROL, 0x101);
1045 return 0;
1046 }
1047 EXPORT_SYMBOL_GPL(gpmc_enable_hwecc_bch);
1048
1049 /**
1050 * gpmc_calculate_ecc_bch4 - Generate 7 ecc bytes per sector of 512 data bytes
1051 * @cs: chip select number
1052 * @dat: The pointer to data on which ecc is computed
1053 * @ecc: The ecc output buffer
1054 */
1055 int gpmc_calculate_ecc_bch4(int cs, const u_char *dat, u_char *ecc)
1056 {
1057 int i;
1058 unsigned long nsectors, reg, val1, val2;
1059
1060 if (gpmc_ecc_used != cs)
1061 return -EINVAL;
1062
1063 nsectors = ((gpmc_read_reg(GPMC_ECC_CONFIG) >> 4) & 0x7) + 1;
1064
1065 for (i = 0; i < nsectors; i++) {
1066
1067 reg = GPMC_ECC_BCH_RESULT_0 + 16*i;
1068
1069 /* Read hw-computed remainder */
1070 val1 = gpmc_read_reg(reg + 0);
1071 val2 = gpmc_read_reg(reg + 4);
1072
1073 /*
1074 * Add constant polynomial to remainder, in order to get an ecc
1075 * sequence of 0xFFs for a buffer filled with 0xFFs; and
1076 * left-justify the resulting polynomial.
1077 */
1078 *ecc++ = 0x28 ^ ((val2 >> 12) & 0xFF);
1079 *ecc++ = 0x13 ^ ((val2 >> 4) & 0xFF);
1080 *ecc++ = 0xcc ^ (((val2 & 0xF) << 4)|((val1 >> 28) & 0xF));
1081 *ecc++ = 0x39 ^ ((val1 >> 20) & 0xFF);
1082 *ecc++ = 0x96 ^ ((val1 >> 12) & 0xFF);
1083 *ecc++ = 0xac ^ ((val1 >> 4) & 0xFF);
1084 *ecc++ = 0x7f ^ ((val1 & 0xF) << 4);
1085 }
1086
1087 gpmc_ecc_used = -EINVAL;
1088 return 0;
1089 }
1090 EXPORT_SYMBOL_GPL(gpmc_calculate_ecc_bch4);
1091
1092 /**
1093 * gpmc_calculate_ecc_bch8 - Generate 13 ecc bytes per block of 512 data bytes
1094 * @cs: chip select number
1095 * @dat: The pointer to data on which ecc is computed
1096 * @ecc: The ecc output buffer
1097 */
1098 int gpmc_calculate_ecc_bch8(int cs, const u_char *dat, u_char *ecc)
1099 {
1100 int i;
1101 unsigned long nsectors, reg, val1, val2, val3, val4;
1102
1103 if (gpmc_ecc_used != cs)
1104 return -EINVAL;
1105
1106 nsectors = ((gpmc_read_reg(GPMC_ECC_CONFIG) >> 4) & 0x7) + 1;
1107
1108 for (i = 0; i < nsectors; i++) {
1109
1110 reg = GPMC_ECC_BCH_RESULT_0 + 16*i;
1111
1112 /* Read hw-computed remainder */
1113 val1 = gpmc_read_reg(reg + 0);
1114 val2 = gpmc_read_reg(reg + 4);
1115 val3 = gpmc_read_reg(reg + 8);
1116 val4 = gpmc_read_reg(reg + 12);
1117
1118 /*
1119 * Add constant polynomial to remainder, in order to get an ecc
1120 * sequence of 0xFFs for a buffer filled with 0xFFs.
1121 */
1122 *ecc++ = 0xef ^ (val4 & 0xFF);
1123 *ecc++ = 0x51 ^ ((val3 >> 24) & 0xFF);
1124 *ecc++ = 0x2e ^ ((val3 >> 16) & 0xFF);
1125 *ecc++ = 0x09 ^ ((val3 >> 8) & 0xFF);
1126 *ecc++ = 0xed ^ (val3 & 0xFF);
1127 *ecc++ = 0x93 ^ ((val2 >> 24) & 0xFF);
1128 *ecc++ = 0x9a ^ ((val2 >> 16) & 0xFF);
1129 *ecc++ = 0xc2 ^ ((val2 >> 8) & 0xFF);
1130 *ecc++ = 0x97 ^ (val2 & 0xFF);
1131 *ecc++ = 0x79 ^ ((val1 >> 24) & 0xFF);
1132 *ecc++ = 0xe5 ^ ((val1 >> 16) & 0xFF);
1133 *ecc++ = 0x24 ^ ((val1 >> 8) & 0xFF);
1134 *ecc++ = 0xb5 ^ (val1 & 0xFF);
1135 }
1136
1137 gpmc_ecc_used = -EINVAL;
1138 return 0;
1139 }
1140 EXPORT_SYMBOL_GPL(gpmc_calculate_ecc_bch8);
1141
1142 #endif /* CONFIG_ARCH_OMAP3 */
This page took 0.16534 seconds and 5 git commands to generate.