ARM: OMAP4+: PM: Restore CPU power state to ON with clockdomain force wakeup method
[deliverable/linux.git] / arch / arm / mach-omap2 / omap-smp.c
1 /*
2 * OMAP4 SMP source file. It contains platform specific fucntions
3 * needed for the linux smp kernel.
4 *
5 * Copyright (C) 2009 Texas Instruments, Inc.
6 *
7 * Author:
8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
9 *
10 * Platform file needed for the OMAP4 SMP. This file is based on arm
11 * realview smp platform.
12 * * Copyright (c) 2002 ARM Limited.
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/smp.h>
21 #include <linux/io.h>
22 #include <linux/irqchip/arm-gic.h>
23
24 #include <asm/smp_scu.h>
25
26 #include "omap-secure.h"
27 #include "omap-wakeupgen.h"
28 #include <asm/cputype.h>
29
30 #include "soc.h"
31 #include "iomap.h"
32 #include "common.h"
33 #include "clockdomain.h"
34 #include "pm.h"
35
36 #define CPU_MASK 0xff0ffff0
37 #define CPU_CORTEX_A9 0x410FC090
38 #define CPU_CORTEX_A15 0x410FC0F0
39
40 #define OMAP5_CORE_COUNT 0x2
41
42 u16 pm44xx_errata;
43
44 /* SCU base address */
45 static void __iomem *scu_base;
46
47 static DEFINE_SPINLOCK(boot_lock);
48
49 void __iomem *omap4_get_scu_base(void)
50 {
51 return scu_base;
52 }
53
54 static void __cpuinit omap4_secondary_init(unsigned int cpu)
55 {
56 /*
57 * Configure ACTRL and enable NS SMP bit access on CPU1 on HS device.
58 * OMAP44XX EMU/HS devices - CPU0 SMP bit access is enabled in PPA
59 * init and for CPU1, a secure PPA API provided. CPU0 must be ON
60 * while executing NS_SMP API on CPU1 and PPA version must be 1.4.0+.
61 * OMAP443X GP devices- SMP bit isn't accessible.
62 * OMAP446X GP devices - SMP bit access is enabled on both CPUs.
63 */
64 if (cpu_is_omap443x() && (omap_type() != OMAP2_DEVICE_TYPE_GP))
65 omap_secure_dispatcher(OMAP4_PPA_CPU_ACTRL_SMP_INDEX,
66 4, 0, 0, 0, 0, 0);
67
68 /*
69 * If any interrupts are already enabled for the primary
70 * core (e.g. timer irq), then they will not have been enabled
71 * for us: do so
72 */
73 gic_secondary_init(0);
74
75 /*
76 * Synchronise with the boot thread.
77 */
78 spin_lock(&boot_lock);
79 spin_unlock(&boot_lock);
80 }
81
82 static int __cpuinit omap4_boot_secondary(unsigned int cpu, struct task_struct *idle)
83 {
84 static struct clockdomain *cpu1_clkdm;
85 static bool booted;
86 static struct powerdomain *cpu1_pwrdm;
87 void __iomem *base = omap_get_wakeupgen_base();
88
89 /*
90 * Set synchronisation state between this boot processor
91 * and the secondary one
92 */
93 spin_lock(&boot_lock);
94
95 /*
96 * Update the AuxCoreBoot0 with boot state for secondary core.
97 * omap_secondary_startup() routine will hold the secondary core till
98 * the AuxCoreBoot1 register is updated with cpu state
99 * A barrier is added to ensure that write buffer is drained
100 */
101 if (omap_secure_apis_support())
102 omap_modify_auxcoreboot0(0x200, 0xfffffdff);
103 else
104 __raw_writel(0x20, base + OMAP_AUX_CORE_BOOT_0);
105
106 if (!cpu1_clkdm && !cpu1_pwrdm) {
107 cpu1_clkdm = clkdm_lookup("mpu1_clkdm");
108 cpu1_pwrdm = pwrdm_lookup("cpu1_pwrdm");
109 }
110
111 /*
112 * The SGI(Software Generated Interrupts) are not wakeup capable
113 * from low power states. This is known limitation on OMAP4 and
114 * needs to be worked around by using software forced clockdomain
115 * wake-up. To wakeup CPU1, CPU0 forces the CPU1 clockdomain to
116 * software force wakeup. The clockdomain is then put back to
117 * hardware supervised mode.
118 * More details can be found in OMAP4430 TRM - Version J
119 * Section :
120 * 4.3.4.2 Power States of CPU0 and CPU1
121 */
122 if (booted && cpu1_pwrdm && cpu1_clkdm) {
123 /*
124 * GIC distributor control register has changed between
125 * CortexA9 r1pX and r2pX. The Control Register secure
126 * banked version is now composed of 2 bits:
127 * bit 0 == Secure Enable
128 * bit 1 == Non-Secure Enable
129 * The Non-Secure banked register has not changed
130 * Because the ROM Code is based on the r1pX GIC, the CPU1
131 * GIC restoration will cause a problem to CPU0 Non-Secure SW.
132 * The workaround must be:
133 * 1) Before doing the CPU1 wakeup, CPU0 must disable
134 * the GIC distributor
135 * 2) CPU1 must re-enable the GIC distributor on
136 * it's wakeup path.
137 */
138 if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD)) {
139 local_irq_disable();
140 gic_dist_disable();
141 }
142
143 /*
144 * Ensure that CPU power state is set to ON to avoid CPU
145 * powerdomain transition on wfi
146 */
147 clkdm_wakeup(cpu1_clkdm);
148 omap_set_pwrdm_state(cpu1_pwrdm, PWRDM_POWER_ON);
149 clkdm_allow_idle(cpu1_clkdm);
150
151 if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD)) {
152 while (gic_dist_disabled()) {
153 udelay(1);
154 cpu_relax();
155 }
156 gic_timer_retrigger();
157 local_irq_enable();
158 }
159 } else {
160 dsb_sev();
161 booted = true;
162 }
163
164 arch_send_wakeup_ipi_mask(cpumask_of(cpu));
165
166 /*
167 * Now the secondary core is starting up let it run its
168 * calibrations, then wait for it to finish
169 */
170 spin_unlock(&boot_lock);
171
172 return 0;
173 }
174
175 /*
176 * Initialise the CPU possible map early - this describes the CPUs
177 * which may be present or become present in the system.
178 */
179 static void __init omap4_smp_init_cpus(void)
180 {
181 unsigned int i = 0, ncores = 1, cpu_id;
182
183 /* Use ARM cpuid check here, as SoC detection will not work so early */
184 cpu_id = read_cpuid(CPUID_ID) & CPU_MASK;
185 if (cpu_id == CPU_CORTEX_A9) {
186 /*
187 * Currently we can't call ioremap here because
188 * SoC detection won't work until after init_early.
189 */
190 scu_base = OMAP2_L4_IO_ADDRESS(scu_a9_get_base());
191 BUG_ON(!scu_base);
192 ncores = scu_get_core_count(scu_base);
193 } else if (cpu_id == CPU_CORTEX_A15) {
194 ncores = OMAP5_CORE_COUNT;
195 }
196
197 /* sanity check */
198 if (ncores > nr_cpu_ids) {
199 pr_warn("SMP: %u cores greater than maximum (%u), clipping\n",
200 ncores, nr_cpu_ids);
201 ncores = nr_cpu_ids;
202 }
203
204 for (i = 0; i < ncores; i++)
205 set_cpu_possible(i, true);
206 }
207
208 static void __init omap4_smp_prepare_cpus(unsigned int max_cpus)
209 {
210 void *startup_addr = omap_secondary_startup;
211 void __iomem *base = omap_get_wakeupgen_base();
212
213 /*
214 * Initialise the SCU and wake up the secondary core using
215 * wakeup_secondary().
216 */
217 if (scu_base)
218 scu_enable(scu_base);
219
220 if (cpu_is_omap446x()) {
221 startup_addr = omap_secondary_startup_4460;
222 pm44xx_errata |= PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD;
223 }
224
225 /*
226 * Write the address of secondary startup routine into the
227 * AuxCoreBoot1 where ROM code will jump and start executing
228 * on secondary core once out of WFE
229 * A barrier is added to ensure that write buffer is drained
230 */
231 if (omap_secure_apis_support())
232 omap_auxcoreboot_addr(virt_to_phys(startup_addr));
233 else
234 __raw_writel(virt_to_phys(omap5_secondary_startup),
235 base + OMAP_AUX_CORE_BOOT_1);
236
237 }
238
239 struct smp_operations omap4_smp_ops __initdata = {
240 .smp_init_cpus = omap4_smp_init_cpus,
241 .smp_prepare_cpus = omap4_smp_prepare_cpus,
242 .smp_secondary_init = omap4_secondary_init,
243 .smp_boot_secondary = omap4_boot_secondary,
244 #ifdef CONFIG_HOTPLUG_CPU
245 .cpu_die = omap4_cpu_die,
246 #endif
247 };
This page took 0.035652 seconds and 6 git commands to generate.