Merge branch 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / arch / arm / mm / alignment.c
1 /*
2 * linux/arch/arm/mm/alignment.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Modifications for ARM processor (c) 1995-2001 Russell King
6 * Thumb alignment fault fixups (c) 2004 MontaVista Software, Inc.
7 * - Adapted from gdb/sim/arm/thumbemu.c -- Thumb instruction emulation.
8 * Copyright (C) 1996, Cygnus Software Technologies Ltd.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14 #include <linux/moduleparam.h>
15 #include <linux/compiler.h>
16 #include <linux/kernel.h>
17 #include <linux/errno.h>
18 #include <linux/string.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24
25 #include <asm/cp15.h>
26 #include <asm/system_info.h>
27 #include <asm/unaligned.h>
28 #include <asm/opcodes.h>
29
30 #include "fault.h"
31 #include "mm.h"
32
33 /*
34 * 32-bit misaligned trap handler (c) 1998 San Mehat (CCC) -July 1998
35 * /proc/sys/debug/alignment, modified and integrated into
36 * Linux 2.1 by Russell King
37 *
38 * Speed optimisations and better fault handling by Russell King.
39 *
40 * *** NOTE ***
41 * This code is not portable to processors with late data abort handling.
42 */
43 #define CODING_BITS(i) (i & 0x0e000000)
44
45 #define LDST_I_BIT(i) (i & (1 << 26)) /* Immediate constant */
46 #define LDST_P_BIT(i) (i & (1 << 24)) /* Preindex */
47 #define LDST_U_BIT(i) (i & (1 << 23)) /* Add offset */
48 #define LDST_W_BIT(i) (i & (1 << 21)) /* Writeback */
49 #define LDST_L_BIT(i) (i & (1 << 20)) /* Load */
50
51 #define LDST_P_EQ_U(i) ((((i) ^ ((i) >> 1)) & (1 << 23)) == 0)
52
53 #define LDSTHD_I_BIT(i) (i & (1 << 22)) /* double/half-word immed */
54 #define LDM_S_BIT(i) (i & (1 << 22)) /* write CPSR from SPSR */
55
56 #define RN_BITS(i) ((i >> 16) & 15) /* Rn */
57 #define RD_BITS(i) ((i >> 12) & 15) /* Rd */
58 #define RM_BITS(i) (i & 15) /* Rm */
59
60 #define REGMASK_BITS(i) (i & 0xffff)
61 #define OFFSET_BITS(i) (i & 0x0fff)
62
63 #define IS_SHIFT(i) (i & 0x0ff0)
64 #define SHIFT_BITS(i) ((i >> 7) & 0x1f)
65 #define SHIFT_TYPE(i) (i & 0x60)
66 #define SHIFT_LSL 0x00
67 #define SHIFT_LSR 0x20
68 #define SHIFT_ASR 0x40
69 #define SHIFT_RORRRX 0x60
70
71 #define BAD_INSTR 0xdeadc0de
72
73 /* Thumb-2 32 bit format per ARMv7 DDI0406A A6.3, either f800h,e800h,f800h */
74 #define IS_T32(hi16) \
75 (((hi16) & 0xe000) == 0xe000 && ((hi16) & 0x1800))
76
77 static unsigned long ai_user;
78 static unsigned long ai_sys;
79 static void *ai_sys_last_pc;
80 static unsigned long ai_skipped;
81 static unsigned long ai_half;
82 static unsigned long ai_word;
83 static unsigned long ai_dword;
84 static unsigned long ai_multi;
85 static int ai_usermode;
86 static unsigned long cr_no_alignment;
87
88 core_param(alignment, ai_usermode, int, 0600);
89
90 #define UM_WARN (1 << 0)
91 #define UM_FIXUP (1 << 1)
92 #define UM_SIGNAL (1 << 2)
93
94 /* Return true if and only if the ARMv6 unaligned access model is in use. */
95 static bool cpu_is_v6_unaligned(void)
96 {
97 return cpu_architecture() >= CPU_ARCH_ARMv6 && get_cr() & CR_U;
98 }
99
100 static int safe_usermode(int new_usermode, bool warn)
101 {
102 /*
103 * ARMv6 and later CPUs can perform unaligned accesses for
104 * most single load and store instructions up to word size.
105 * LDM, STM, LDRD and STRD still need to be handled.
106 *
107 * Ignoring the alignment fault is not an option on these
108 * CPUs since we spin re-faulting the instruction without
109 * making any progress.
110 */
111 if (cpu_is_v6_unaligned() && !(new_usermode & (UM_FIXUP | UM_SIGNAL))) {
112 new_usermode |= UM_FIXUP;
113
114 if (warn)
115 printk(KERN_WARNING "alignment: ignoring faults is unsafe on this CPU. Defaulting to fixup mode.\n");
116 }
117
118 return new_usermode;
119 }
120
121 #ifdef CONFIG_PROC_FS
122 static const char *usermode_action[] = {
123 "ignored",
124 "warn",
125 "fixup",
126 "fixup+warn",
127 "signal",
128 "signal+warn"
129 };
130
131 static int alignment_proc_show(struct seq_file *m, void *v)
132 {
133 seq_printf(m, "User:\t\t%lu\n", ai_user);
134 seq_printf(m, "System:\t\t%lu (%pF)\n", ai_sys, ai_sys_last_pc);
135 seq_printf(m, "Skipped:\t%lu\n", ai_skipped);
136 seq_printf(m, "Half:\t\t%lu\n", ai_half);
137 seq_printf(m, "Word:\t\t%lu\n", ai_word);
138 if (cpu_architecture() >= CPU_ARCH_ARMv5TE)
139 seq_printf(m, "DWord:\t\t%lu\n", ai_dword);
140 seq_printf(m, "Multi:\t\t%lu\n", ai_multi);
141 seq_printf(m, "User faults:\t%i (%s)\n", ai_usermode,
142 usermode_action[ai_usermode]);
143
144 return 0;
145 }
146
147 static int alignment_proc_open(struct inode *inode, struct file *file)
148 {
149 return single_open(file, alignment_proc_show, NULL);
150 }
151
152 static ssize_t alignment_proc_write(struct file *file, const char __user *buffer,
153 size_t count, loff_t *pos)
154 {
155 char mode;
156
157 if (count > 0) {
158 if (get_user(mode, buffer))
159 return -EFAULT;
160 if (mode >= '0' && mode <= '5')
161 ai_usermode = safe_usermode(mode - '0', true);
162 }
163 return count;
164 }
165
166 static const struct file_operations alignment_proc_fops = {
167 .open = alignment_proc_open,
168 .read = seq_read,
169 .llseek = seq_lseek,
170 .release = single_release,
171 .write = alignment_proc_write,
172 };
173 #endif /* CONFIG_PROC_FS */
174
175 union offset_union {
176 unsigned long un;
177 signed long sn;
178 };
179
180 #define TYPE_ERROR 0
181 #define TYPE_FAULT 1
182 #define TYPE_LDST 2
183 #define TYPE_DONE 3
184
185 #ifdef __ARMEB__
186 #define BE 1
187 #define FIRST_BYTE_16 "mov %1, %1, ror #8\n"
188 #define FIRST_BYTE_32 "mov %1, %1, ror #24\n"
189 #define NEXT_BYTE "ror #24"
190 #else
191 #define BE 0
192 #define FIRST_BYTE_16
193 #define FIRST_BYTE_32
194 #define NEXT_BYTE "lsr #8"
195 #endif
196
197 #define __get8_unaligned_check(ins,val,addr,err) \
198 __asm__( \
199 ARM( "1: "ins" %1, [%2], #1\n" ) \
200 THUMB( "1: "ins" %1, [%2]\n" ) \
201 THUMB( " add %2, %2, #1\n" ) \
202 "2:\n" \
203 " .pushsection .fixup,\"ax\"\n" \
204 " .align 2\n" \
205 "3: mov %0, #1\n" \
206 " b 2b\n" \
207 " .popsection\n" \
208 " .pushsection __ex_table,\"a\"\n" \
209 " .align 3\n" \
210 " .long 1b, 3b\n" \
211 " .popsection\n" \
212 : "=r" (err), "=&r" (val), "=r" (addr) \
213 : "0" (err), "2" (addr))
214
215 #define __get16_unaligned_check(ins,val,addr) \
216 do { \
217 unsigned int err = 0, v, a = addr; \
218 __get8_unaligned_check(ins,v,a,err); \
219 val = v << ((BE) ? 8 : 0); \
220 __get8_unaligned_check(ins,v,a,err); \
221 val |= v << ((BE) ? 0 : 8); \
222 if (err) \
223 goto fault; \
224 } while (0)
225
226 #define get16_unaligned_check(val,addr) \
227 __get16_unaligned_check("ldrb",val,addr)
228
229 #define get16t_unaligned_check(val,addr) \
230 __get16_unaligned_check("ldrbt",val,addr)
231
232 #define __get32_unaligned_check(ins,val,addr) \
233 do { \
234 unsigned int err = 0, v, a = addr; \
235 __get8_unaligned_check(ins,v,a,err); \
236 val = v << ((BE) ? 24 : 0); \
237 __get8_unaligned_check(ins,v,a,err); \
238 val |= v << ((BE) ? 16 : 8); \
239 __get8_unaligned_check(ins,v,a,err); \
240 val |= v << ((BE) ? 8 : 16); \
241 __get8_unaligned_check(ins,v,a,err); \
242 val |= v << ((BE) ? 0 : 24); \
243 if (err) \
244 goto fault; \
245 } while (0)
246
247 #define get32_unaligned_check(val,addr) \
248 __get32_unaligned_check("ldrb",val,addr)
249
250 #define get32t_unaligned_check(val,addr) \
251 __get32_unaligned_check("ldrbt",val,addr)
252
253 #define __put16_unaligned_check(ins,val,addr) \
254 do { \
255 unsigned int err = 0, v = val, a = addr; \
256 __asm__( FIRST_BYTE_16 \
257 ARM( "1: "ins" %1, [%2], #1\n" ) \
258 THUMB( "1: "ins" %1, [%2]\n" ) \
259 THUMB( " add %2, %2, #1\n" ) \
260 " mov %1, %1, "NEXT_BYTE"\n" \
261 "2: "ins" %1, [%2]\n" \
262 "3:\n" \
263 " .pushsection .fixup,\"ax\"\n" \
264 " .align 2\n" \
265 "4: mov %0, #1\n" \
266 " b 3b\n" \
267 " .popsection\n" \
268 " .pushsection __ex_table,\"a\"\n" \
269 " .align 3\n" \
270 " .long 1b, 4b\n" \
271 " .long 2b, 4b\n" \
272 " .popsection\n" \
273 : "=r" (err), "=&r" (v), "=&r" (a) \
274 : "0" (err), "1" (v), "2" (a)); \
275 if (err) \
276 goto fault; \
277 } while (0)
278
279 #define put16_unaligned_check(val,addr) \
280 __put16_unaligned_check("strb",val,addr)
281
282 #define put16t_unaligned_check(val,addr) \
283 __put16_unaligned_check("strbt",val,addr)
284
285 #define __put32_unaligned_check(ins,val,addr) \
286 do { \
287 unsigned int err = 0, v = val, a = addr; \
288 __asm__( FIRST_BYTE_32 \
289 ARM( "1: "ins" %1, [%2], #1\n" ) \
290 THUMB( "1: "ins" %1, [%2]\n" ) \
291 THUMB( " add %2, %2, #1\n" ) \
292 " mov %1, %1, "NEXT_BYTE"\n" \
293 ARM( "2: "ins" %1, [%2], #1\n" ) \
294 THUMB( "2: "ins" %1, [%2]\n" ) \
295 THUMB( " add %2, %2, #1\n" ) \
296 " mov %1, %1, "NEXT_BYTE"\n" \
297 ARM( "3: "ins" %1, [%2], #1\n" ) \
298 THUMB( "3: "ins" %1, [%2]\n" ) \
299 THUMB( " add %2, %2, #1\n" ) \
300 " mov %1, %1, "NEXT_BYTE"\n" \
301 "4: "ins" %1, [%2]\n" \
302 "5:\n" \
303 " .pushsection .fixup,\"ax\"\n" \
304 " .align 2\n" \
305 "6: mov %0, #1\n" \
306 " b 5b\n" \
307 " .popsection\n" \
308 " .pushsection __ex_table,\"a\"\n" \
309 " .align 3\n" \
310 " .long 1b, 6b\n" \
311 " .long 2b, 6b\n" \
312 " .long 3b, 6b\n" \
313 " .long 4b, 6b\n" \
314 " .popsection\n" \
315 : "=r" (err), "=&r" (v), "=&r" (a) \
316 : "0" (err), "1" (v), "2" (a)); \
317 if (err) \
318 goto fault; \
319 } while (0)
320
321 #define put32_unaligned_check(val,addr) \
322 __put32_unaligned_check("strb", val, addr)
323
324 #define put32t_unaligned_check(val,addr) \
325 __put32_unaligned_check("strbt", val, addr)
326
327 static void
328 do_alignment_finish_ldst(unsigned long addr, unsigned long instr, struct pt_regs *regs, union offset_union offset)
329 {
330 if (!LDST_U_BIT(instr))
331 offset.un = -offset.un;
332
333 if (!LDST_P_BIT(instr))
334 addr += offset.un;
335
336 if (!LDST_P_BIT(instr) || LDST_W_BIT(instr))
337 regs->uregs[RN_BITS(instr)] = addr;
338 }
339
340 static int
341 do_alignment_ldrhstrh(unsigned long addr, unsigned long instr, struct pt_regs *regs)
342 {
343 unsigned int rd = RD_BITS(instr);
344
345 ai_half += 1;
346
347 if (user_mode(regs))
348 goto user;
349
350 if (LDST_L_BIT(instr)) {
351 unsigned long val;
352 get16_unaligned_check(val, addr);
353
354 /* signed half-word? */
355 if (instr & 0x40)
356 val = (signed long)((signed short) val);
357
358 regs->uregs[rd] = val;
359 } else
360 put16_unaligned_check(regs->uregs[rd], addr);
361
362 return TYPE_LDST;
363
364 user:
365 if (LDST_L_BIT(instr)) {
366 unsigned long val;
367 get16t_unaligned_check(val, addr);
368
369 /* signed half-word? */
370 if (instr & 0x40)
371 val = (signed long)((signed short) val);
372
373 regs->uregs[rd] = val;
374 } else
375 put16t_unaligned_check(regs->uregs[rd], addr);
376
377 return TYPE_LDST;
378
379 fault:
380 return TYPE_FAULT;
381 }
382
383 static int
384 do_alignment_ldrdstrd(unsigned long addr, unsigned long instr,
385 struct pt_regs *regs)
386 {
387 unsigned int rd = RD_BITS(instr);
388 unsigned int rd2;
389 int load;
390
391 if ((instr & 0xfe000000) == 0xe8000000) {
392 /* ARMv7 Thumb-2 32-bit LDRD/STRD */
393 rd2 = (instr >> 8) & 0xf;
394 load = !!(LDST_L_BIT(instr));
395 } else if (((rd & 1) == 1) || (rd == 14))
396 goto bad;
397 else {
398 load = ((instr & 0xf0) == 0xd0);
399 rd2 = rd + 1;
400 }
401
402 ai_dword += 1;
403
404 if (user_mode(regs))
405 goto user;
406
407 if (load) {
408 unsigned long val;
409 get32_unaligned_check(val, addr);
410 regs->uregs[rd] = val;
411 get32_unaligned_check(val, addr + 4);
412 regs->uregs[rd2] = val;
413 } else {
414 put32_unaligned_check(regs->uregs[rd], addr);
415 put32_unaligned_check(regs->uregs[rd2], addr + 4);
416 }
417
418 return TYPE_LDST;
419
420 user:
421 if (load) {
422 unsigned long val;
423 get32t_unaligned_check(val, addr);
424 regs->uregs[rd] = val;
425 get32t_unaligned_check(val, addr + 4);
426 regs->uregs[rd2] = val;
427 } else {
428 put32t_unaligned_check(regs->uregs[rd], addr);
429 put32t_unaligned_check(regs->uregs[rd2], addr + 4);
430 }
431
432 return TYPE_LDST;
433 bad:
434 return TYPE_ERROR;
435 fault:
436 return TYPE_FAULT;
437 }
438
439 static int
440 do_alignment_ldrstr(unsigned long addr, unsigned long instr, struct pt_regs *regs)
441 {
442 unsigned int rd = RD_BITS(instr);
443
444 ai_word += 1;
445
446 if ((!LDST_P_BIT(instr) && LDST_W_BIT(instr)) || user_mode(regs))
447 goto trans;
448
449 if (LDST_L_BIT(instr)) {
450 unsigned int val;
451 get32_unaligned_check(val, addr);
452 regs->uregs[rd] = val;
453 } else
454 put32_unaligned_check(regs->uregs[rd], addr);
455 return TYPE_LDST;
456
457 trans:
458 if (LDST_L_BIT(instr)) {
459 unsigned int val;
460 get32t_unaligned_check(val, addr);
461 regs->uregs[rd] = val;
462 } else
463 put32t_unaligned_check(regs->uregs[rd], addr);
464 return TYPE_LDST;
465
466 fault:
467 return TYPE_FAULT;
468 }
469
470 /*
471 * LDM/STM alignment handler.
472 *
473 * There are 4 variants of this instruction:
474 *
475 * B = rn pointer before instruction, A = rn pointer after instruction
476 * ------ increasing address ----->
477 * | | r0 | r1 | ... | rx | |
478 * PU = 01 B A
479 * PU = 11 B A
480 * PU = 00 A B
481 * PU = 10 A B
482 */
483 static int
484 do_alignment_ldmstm(unsigned long addr, unsigned long instr, struct pt_regs *regs)
485 {
486 unsigned int rd, rn, correction, nr_regs, regbits;
487 unsigned long eaddr, newaddr;
488
489 if (LDM_S_BIT(instr))
490 goto bad;
491
492 correction = 4; /* processor implementation defined */
493 regs->ARM_pc += correction;
494
495 ai_multi += 1;
496
497 /* count the number of registers in the mask to be transferred */
498 nr_regs = hweight16(REGMASK_BITS(instr)) * 4;
499
500 rn = RN_BITS(instr);
501 newaddr = eaddr = regs->uregs[rn];
502
503 if (!LDST_U_BIT(instr))
504 nr_regs = -nr_regs;
505 newaddr += nr_regs;
506 if (!LDST_U_BIT(instr))
507 eaddr = newaddr;
508
509 if (LDST_P_EQ_U(instr)) /* U = P */
510 eaddr += 4;
511
512 /*
513 * For alignment faults on the ARM922T/ARM920T the MMU makes
514 * the FSR (and hence addr) equal to the updated base address
515 * of the multiple access rather than the restored value.
516 * Switch this message off if we've got a ARM92[02], otherwise
517 * [ls]dm alignment faults are noisy!
518 */
519 #if !(defined CONFIG_CPU_ARM922T) && !(defined CONFIG_CPU_ARM920T)
520 /*
521 * This is a "hint" - we already have eaddr worked out by the
522 * processor for us.
523 */
524 if (addr != eaddr) {
525 printk(KERN_ERR "LDMSTM: PC = %08lx, instr = %08lx, "
526 "addr = %08lx, eaddr = %08lx\n",
527 instruction_pointer(regs), instr, addr, eaddr);
528 show_regs(regs);
529 }
530 #endif
531
532 if (user_mode(regs)) {
533 for (regbits = REGMASK_BITS(instr), rd = 0; regbits;
534 regbits >>= 1, rd += 1)
535 if (regbits & 1) {
536 if (LDST_L_BIT(instr)) {
537 unsigned int val;
538 get32t_unaligned_check(val, eaddr);
539 regs->uregs[rd] = val;
540 } else
541 put32t_unaligned_check(regs->uregs[rd], eaddr);
542 eaddr += 4;
543 }
544 } else {
545 for (regbits = REGMASK_BITS(instr), rd = 0; regbits;
546 regbits >>= 1, rd += 1)
547 if (regbits & 1) {
548 if (LDST_L_BIT(instr)) {
549 unsigned int val;
550 get32_unaligned_check(val, eaddr);
551 regs->uregs[rd] = val;
552 } else
553 put32_unaligned_check(regs->uregs[rd], eaddr);
554 eaddr += 4;
555 }
556 }
557
558 if (LDST_W_BIT(instr))
559 regs->uregs[rn] = newaddr;
560 if (!LDST_L_BIT(instr) || !(REGMASK_BITS(instr) & (1 << 15)))
561 regs->ARM_pc -= correction;
562 return TYPE_DONE;
563
564 fault:
565 regs->ARM_pc -= correction;
566 return TYPE_FAULT;
567
568 bad:
569 printk(KERN_ERR "Alignment trap: not handling ldm with s-bit set\n");
570 return TYPE_ERROR;
571 }
572
573 /*
574 * Convert Thumb ld/st instruction forms to equivalent ARM instructions so
575 * we can reuse ARM userland alignment fault fixups for Thumb.
576 *
577 * This implementation was initially based on the algorithm found in
578 * gdb/sim/arm/thumbemu.c. It is basically just a code reduction of same
579 * to convert only Thumb ld/st instruction forms to equivalent ARM forms.
580 *
581 * NOTES:
582 * 1. Comments below refer to ARM ARM DDI0100E Thumb Instruction sections.
583 * 2. If for some reason we're passed an non-ld/st Thumb instruction to
584 * decode, we return 0xdeadc0de. This should never happen under normal
585 * circumstances but if it does, we've got other problems to deal with
586 * elsewhere and we obviously can't fix those problems here.
587 */
588
589 static unsigned long
590 thumb2arm(u16 tinstr)
591 {
592 u32 L = (tinstr & (1<<11)) >> 11;
593
594 switch ((tinstr & 0xf800) >> 11) {
595 /* 6.5.1 Format 1: */
596 case 0x6000 >> 11: /* 7.1.52 STR(1) */
597 case 0x6800 >> 11: /* 7.1.26 LDR(1) */
598 case 0x7000 >> 11: /* 7.1.55 STRB(1) */
599 case 0x7800 >> 11: /* 7.1.30 LDRB(1) */
600 return 0xe5800000 |
601 ((tinstr & (1<<12)) << (22-12)) | /* fixup */
602 (L<<20) | /* L==1? */
603 ((tinstr & (7<<0)) << (12-0)) | /* Rd */
604 ((tinstr & (7<<3)) << (16-3)) | /* Rn */
605 ((tinstr & (31<<6)) >> /* immed_5 */
606 (6 - ((tinstr & (1<<12)) ? 0 : 2)));
607 case 0x8000 >> 11: /* 7.1.57 STRH(1) */
608 case 0x8800 >> 11: /* 7.1.32 LDRH(1) */
609 return 0xe1c000b0 |
610 (L<<20) | /* L==1? */
611 ((tinstr & (7<<0)) << (12-0)) | /* Rd */
612 ((tinstr & (7<<3)) << (16-3)) | /* Rn */
613 ((tinstr & (7<<6)) >> (6-1)) | /* immed_5[2:0] */
614 ((tinstr & (3<<9)) >> (9-8)); /* immed_5[4:3] */
615
616 /* 6.5.1 Format 2: */
617 case 0x5000 >> 11:
618 case 0x5800 >> 11:
619 {
620 static const u32 subset[8] = {
621 0xe7800000, /* 7.1.53 STR(2) */
622 0xe18000b0, /* 7.1.58 STRH(2) */
623 0xe7c00000, /* 7.1.56 STRB(2) */
624 0xe19000d0, /* 7.1.34 LDRSB */
625 0xe7900000, /* 7.1.27 LDR(2) */
626 0xe19000b0, /* 7.1.33 LDRH(2) */
627 0xe7d00000, /* 7.1.31 LDRB(2) */
628 0xe19000f0 /* 7.1.35 LDRSH */
629 };
630 return subset[(tinstr & (7<<9)) >> 9] |
631 ((tinstr & (7<<0)) << (12-0)) | /* Rd */
632 ((tinstr & (7<<3)) << (16-3)) | /* Rn */
633 ((tinstr & (7<<6)) >> (6-0)); /* Rm */
634 }
635
636 /* 6.5.1 Format 3: */
637 case 0x4800 >> 11: /* 7.1.28 LDR(3) */
638 /* NOTE: This case is not technically possible. We're
639 * loading 32-bit memory data via PC relative
640 * addressing mode. So we can and should eliminate
641 * this case. But I'll leave it here for now.
642 */
643 return 0xe59f0000 |
644 ((tinstr & (7<<8)) << (12-8)) | /* Rd */
645 ((tinstr & 255) << (2-0)); /* immed_8 */
646
647 /* 6.5.1 Format 4: */
648 case 0x9000 >> 11: /* 7.1.54 STR(3) */
649 case 0x9800 >> 11: /* 7.1.29 LDR(4) */
650 return 0xe58d0000 |
651 (L<<20) | /* L==1? */
652 ((tinstr & (7<<8)) << (12-8)) | /* Rd */
653 ((tinstr & 255) << 2); /* immed_8 */
654
655 /* 6.6.1 Format 1: */
656 case 0xc000 >> 11: /* 7.1.51 STMIA */
657 case 0xc800 >> 11: /* 7.1.25 LDMIA */
658 {
659 u32 Rn = (tinstr & (7<<8)) >> 8;
660 u32 W = ((L<<Rn) & (tinstr&255)) ? 0 : 1<<21;
661
662 return 0xe8800000 | W | (L<<20) | (Rn<<16) |
663 (tinstr&255);
664 }
665
666 /* 6.6.1 Format 2: */
667 case 0xb000 >> 11: /* 7.1.48 PUSH */
668 case 0xb800 >> 11: /* 7.1.47 POP */
669 if ((tinstr & (3 << 9)) == 0x0400) {
670 static const u32 subset[4] = {
671 0xe92d0000, /* STMDB sp!,{registers} */
672 0xe92d4000, /* STMDB sp!,{registers,lr} */
673 0xe8bd0000, /* LDMIA sp!,{registers} */
674 0xe8bd8000 /* LDMIA sp!,{registers,pc} */
675 };
676 return subset[(L<<1) | ((tinstr & (1<<8)) >> 8)] |
677 (tinstr & 255); /* register_list */
678 }
679 /* Else fall through for illegal instruction case */
680
681 default:
682 return BAD_INSTR;
683 }
684 }
685
686 /*
687 * Convert Thumb-2 32 bit LDM, STM, LDRD, STRD to equivalent instruction
688 * handlable by ARM alignment handler, also find the corresponding handler,
689 * so that we can reuse ARM userland alignment fault fixups for Thumb.
690 *
691 * @pinstr: original Thumb-2 instruction; returns new handlable instruction
692 * @regs: register context.
693 * @poffset: return offset from faulted addr for later writeback
694 *
695 * NOTES:
696 * 1. Comments below refer to ARMv7 DDI0406A Thumb Instruction sections.
697 * 2. Register name Rt from ARMv7 is same as Rd from ARMv6 (Rd is Rt)
698 */
699 static void *
700 do_alignment_t32_to_handler(unsigned long *pinstr, struct pt_regs *regs,
701 union offset_union *poffset)
702 {
703 unsigned long instr = *pinstr;
704 u16 tinst1 = (instr >> 16) & 0xffff;
705 u16 tinst2 = instr & 0xffff;
706
707 switch (tinst1 & 0xffe0) {
708 /* A6.3.5 Load/Store multiple */
709 case 0xe880: /* STM/STMIA/STMEA,LDM/LDMIA, PUSH/POP T2 */
710 case 0xe8a0: /* ...above writeback version */
711 case 0xe900: /* STMDB/STMFD, LDMDB/LDMEA */
712 case 0xe920: /* ...above writeback version */
713 /* no need offset decision since handler calculates it */
714 return do_alignment_ldmstm;
715
716 case 0xf840: /* POP/PUSH T3 (single register) */
717 if (RN_BITS(instr) == 13 && (tinst2 & 0x09ff) == 0x0904) {
718 u32 L = !!(LDST_L_BIT(instr));
719 const u32 subset[2] = {
720 0xe92d0000, /* STMDB sp!,{registers} */
721 0xe8bd0000, /* LDMIA sp!,{registers} */
722 };
723 *pinstr = subset[L] | (1<<RD_BITS(instr));
724 return do_alignment_ldmstm;
725 }
726 /* Else fall through for illegal instruction case */
727 break;
728
729 /* A6.3.6 Load/store double, STRD/LDRD(immed, lit, reg) */
730 case 0xe860:
731 case 0xe960:
732 case 0xe8e0:
733 case 0xe9e0:
734 poffset->un = (tinst2 & 0xff) << 2;
735 case 0xe940:
736 case 0xe9c0:
737 return do_alignment_ldrdstrd;
738
739 /*
740 * No need to handle load/store instructions up to word size
741 * since ARMv6 and later CPUs can perform unaligned accesses.
742 */
743 default:
744 break;
745 }
746 return NULL;
747 }
748
749 static int
750 do_alignment(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
751 {
752 union offset_union uninitialized_var(offset);
753 unsigned long instr = 0, instrptr;
754 int (*handler)(unsigned long addr, unsigned long instr, struct pt_regs *regs);
755 unsigned int type;
756 unsigned int fault;
757 u16 tinstr = 0;
758 int isize = 4;
759 int thumb2_32b = 0;
760
761 if (interrupts_enabled(regs))
762 local_irq_enable();
763
764 instrptr = instruction_pointer(regs);
765
766 if (thumb_mode(regs)) {
767 u16 *ptr = (u16 *)(instrptr & ~1);
768 fault = probe_kernel_address(ptr, tinstr);
769 tinstr = __mem_to_opcode_thumb16(tinstr);
770 if (!fault) {
771 if (cpu_architecture() >= CPU_ARCH_ARMv7 &&
772 IS_T32(tinstr)) {
773 /* Thumb-2 32-bit */
774 u16 tinst2 = 0;
775 fault = probe_kernel_address(ptr + 1, tinst2);
776 tinst2 = __mem_to_opcode_thumb16(tinst2);
777 instr = __opcode_thumb32_compose(tinstr, tinst2);
778 thumb2_32b = 1;
779 } else {
780 isize = 2;
781 instr = thumb2arm(tinstr);
782 }
783 }
784 } else {
785 fault = probe_kernel_address(instrptr, instr);
786 instr = __mem_to_opcode_arm(instr);
787 }
788
789 if (fault) {
790 type = TYPE_FAULT;
791 goto bad_or_fault;
792 }
793
794 if (user_mode(regs))
795 goto user;
796
797 ai_sys += 1;
798 ai_sys_last_pc = (void *)instruction_pointer(regs);
799
800 fixup:
801
802 regs->ARM_pc += isize;
803
804 switch (CODING_BITS(instr)) {
805 case 0x00000000: /* 3.13.4 load/store instruction extensions */
806 if (LDSTHD_I_BIT(instr))
807 offset.un = (instr & 0xf00) >> 4 | (instr & 15);
808 else
809 offset.un = regs->uregs[RM_BITS(instr)];
810
811 if ((instr & 0x000000f0) == 0x000000b0 || /* LDRH, STRH */
812 (instr & 0x001000f0) == 0x001000f0) /* LDRSH */
813 handler = do_alignment_ldrhstrh;
814 else if ((instr & 0x001000f0) == 0x000000d0 || /* LDRD */
815 (instr & 0x001000f0) == 0x000000f0) /* STRD */
816 handler = do_alignment_ldrdstrd;
817 else if ((instr & 0x01f00ff0) == 0x01000090) /* SWP */
818 goto swp;
819 else
820 goto bad;
821 break;
822
823 case 0x04000000: /* ldr or str immediate */
824 offset.un = OFFSET_BITS(instr);
825 handler = do_alignment_ldrstr;
826 break;
827
828 case 0x06000000: /* ldr or str register */
829 offset.un = regs->uregs[RM_BITS(instr)];
830
831 if (IS_SHIFT(instr)) {
832 unsigned int shiftval = SHIFT_BITS(instr);
833
834 switch(SHIFT_TYPE(instr)) {
835 case SHIFT_LSL:
836 offset.un <<= shiftval;
837 break;
838
839 case SHIFT_LSR:
840 offset.un >>= shiftval;
841 break;
842
843 case SHIFT_ASR:
844 offset.sn >>= shiftval;
845 break;
846
847 case SHIFT_RORRRX:
848 if (shiftval == 0) {
849 offset.un >>= 1;
850 if (regs->ARM_cpsr & PSR_C_BIT)
851 offset.un |= 1 << 31;
852 } else
853 offset.un = offset.un >> shiftval |
854 offset.un << (32 - shiftval);
855 break;
856 }
857 }
858 handler = do_alignment_ldrstr;
859 break;
860
861 case 0x08000000: /* ldm or stm, or thumb-2 32bit instruction */
862 if (thumb2_32b) {
863 offset.un = 0;
864 handler = do_alignment_t32_to_handler(&instr, regs, &offset);
865 } else {
866 offset.un = 0;
867 handler = do_alignment_ldmstm;
868 }
869 break;
870
871 default:
872 goto bad;
873 }
874
875 if (!handler)
876 goto bad;
877 type = handler(addr, instr, regs);
878
879 if (type == TYPE_ERROR || type == TYPE_FAULT) {
880 regs->ARM_pc -= isize;
881 goto bad_or_fault;
882 }
883
884 if (type == TYPE_LDST)
885 do_alignment_finish_ldst(addr, instr, regs, offset);
886
887 return 0;
888
889 bad_or_fault:
890 if (type == TYPE_ERROR)
891 goto bad;
892 /*
893 * We got a fault - fix it up, or die.
894 */
895 do_bad_area(addr, fsr, regs);
896 return 0;
897
898 swp:
899 printk(KERN_ERR "Alignment trap: not handling swp instruction\n");
900
901 bad:
902 /*
903 * Oops, we didn't handle the instruction.
904 */
905 printk(KERN_ERR "Alignment trap: not handling instruction "
906 "%0*lx at [<%08lx>]\n",
907 isize << 1,
908 isize == 2 ? tinstr : instr, instrptr);
909 ai_skipped += 1;
910 return 1;
911
912 user:
913 ai_user += 1;
914
915 if (ai_usermode & UM_WARN)
916 printk("Alignment trap: %s (%d) PC=0x%08lx Instr=0x%0*lx "
917 "Address=0x%08lx FSR 0x%03x\n", current->comm,
918 task_pid_nr(current), instrptr,
919 isize << 1,
920 isize == 2 ? tinstr : instr,
921 addr, fsr);
922
923 if (ai_usermode & UM_FIXUP)
924 goto fixup;
925
926 if (ai_usermode & UM_SIGNAL) {
927 siginfo_t si;
928
929 si.si_signo = SIGBUS;
930 si.si_errno = 0;
931 si.si_code = BUS_ADRALN;
932 si.si_addr = (void __user *)addr;
933
934 force_sig_info(si.si_signo, &si, current);
935 } else {
936 /*
937 * We're about to disable the alignment trap and return to
938 * user space. But if an interrupt occurs before actually
939 * reaching user space, then the IRQ vector entry code will
940 * notice that we were still in kernel space and therefore
941 * the alignment trap won't be re-enabled in that case as it
942 * is presumed to be always on from kernel space.
943 * Let's prevent that race by disabling interrupts here (they
944 * are disabled on the way back to user space anyway in
945 * entry-common.S) and disable the alignment trap only if
946 * there is no work pending for this thread.
947 */
948 raw_local_irq_disable();
949 if (!(current_thread_info()->flags & _TIF_WORK_MASK))
950 set_cr(cr_no_alignment);
951 }
952
953 return 0;
954 }
955
956 static int __init noalign_setup(char *__unused)
957 {
958 set_cr(__clear_cr(CR_A));
959 return 1;
960 }
961 __setup("noalign", noalign_setup);
962
963 /*
964 * This needs to be done after sysctl_init, otherwise sys/ will be
965 * overwritten. Actually, this shouldn't be in sys/ at all since
966 * it isn't a sysctl, and it doesn't contain sysctl information.
967 * We now locate it in /proc/cpu/alignment instead.
968 */
969 static int __init alignment_init(void)
970 {
971 #ifdef CONFIG_PROC_FS
972 struct proc_dir_entry *res;
973
974 res = proc_create("cpu/alignment", S_IWUSR | S_IRUGO, NULL,
975 &alignment_proc_fops);
976 if (!res)
977 return -ENOMEM;
978 #endif
979
980 if (cpu_is_v6_unaligned()) {
981 set_cr(__clear_cr(CR_A));
982 ai_usermode = safe_usermode(ai_usermode, false);
983 }
984
985 cr_no_alignment = get_cr() & ~CR_A;
986
987 hook_fault_code(FAULT_CODE_ALIGNMENT, do_alignment, SIGBUS, BUS_ADRALN,
988 "alignment exception");
989
990 /*
991 * ARMv6K and ARMv7 use fault status 3 (0b00011) as Access Flag section
992 * fault, not as alignment error.
993 *
994 * TODO: handle ARMv6K properly. Runtime check for 'K' extension is
995 * needed.
996 */
997 if (cpu_architecture() <= CPU_ARCH_ARMv6) {
998 hook_fault_code(3, do_alignment, SIGBUS, BUS_ADRALN,
999 "alignment exception");
1000 }
1001
1002 return 0;
1003 }
1004
1005 fs_initcall(alignment_init);
This page took 0.053101 seconds and 5 git commands to generate.