Merge branch 'x86-xsave-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / arch / arm / mm / dma-mapping.c
1 /*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/gfp.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dma-contiguous.h>
22 #include <linux/highmem.h>
23 #include <linux/memblock.h>
24 #include <linux/slab.h>
25 #include <linux/iommu.h>
26 #include <linux/io.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sizes.h>
29 #include <linux/cma.h>
30
31 #include <asm/memory.h>
32 #include <asm/highmem.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlbflush.h>
35 #include <asm/mach/arch.h>
36 #include <asm/dma-iommu.h>
37 #include <asm/mach/map.h>
38 #include <asm/system_info.h>
39 #include <asm/dma-contiguous.h>
40
41 #include "mm.h"
42
43 /*
44 * The DMA API is built upon the notion of "buffer ownership". A buffer
45 * is either exclusively owned by the CPU (and therefore may be accessed
46 * by it) or exclusively owned by the DMA device. These helper functions
47 * represent the transitions between these two ownership states.
48 *
49 * Note, however, that on later ARMs, this notion does not work due to
50 * speculative prefetches. We model our approach on the assumption that
51 * the CPU does do speculative prefetches, which means we clean caches
52 * before transfers and delay cache invalidation until transfer completion.
53 *
54 */
55 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
56 size_t, enum dma_data_direction);
57 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
58 size_t, enum dma_data_direction);
59
60 /**
61 * arm_dma_map_page - map a portion of a page for streaming DMA
62 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
63 * @page: page that buffer resides in
64 * @offset: offset into page for start of buffer
65 * @size: size of buffer to map
66 * @dir: DMA transfer direction
67 *
68 * Ensure that any data held in the cache is appropriately discarded
69 * or written back.
70 *
71 * The device owns this memory once this call has completed. The CPU
72 * can regain ownership by calling dma_unmap_page().
73 */
74 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
75 unsigned long offset, size_t size, enum dma_data_direction dir,
76 struct dma_attrs *attrs)
77 {
78 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
79 __dma_page_cpu_to_dev(page, offset, size, dir);
80 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
81 }
82
83 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
84 unsigned long offset, size_t size, enum dma_data_direction dir,
85 struct dma_attrs *attrs)
86 {
87 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
88 }
89
90 /**
91 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
92 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
93 * @handle: DMA address of buffer
94 * @size: size of buffer (same as passed to dma_map_page)
95 * @dir: DMA transfer direction (same as passed to dma_map_page)
96 *
97 * Unmap a page streaming mode DMA translation. The handle and size
98 * must match what was provided in the previous dma_map_page() call.
99 * All other usages are undefined.
100 *
101 * After this call, reads by the CPU to the buffer are guaranteed to see
102 * whatever the device wrote there.
103 */
104 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
105 size_t size, enum dma_data_direction dir,
106 struct dma_attrs *attrs)
107 {
108 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
109 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
110 handle & ~PAGE_MASK, size, dir);
111 }
112
113 static void arm_dma_sync_single_for_cpu(struct device *dev,
114 dma_addr_t handle, size_t size, enum dma_data_direction dir)
115 {
116 unsigned int offset = handle & (PAGE_SIZE - 1);
117 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
118 __dma_page_dev_to_cpu(page, offset, size, dir);
119 }
120
121 static void arm_dma_sync_single_for_device(struct device *dev,
122 dma_addr_t handle, size_t size, enum dma_data_direction dir)
123 {
124 unsigned int offset = handle & (PAGE_SIZE - 1);
125 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
126 __dma_page_cpu_to_dev(page, offset, size, dir);
127 }
128
129 struct dma_map_ops arm_dma_ops = {
130 .alloc = arm_dma_alloc,
131 .free = arm_dma_free,
132 .mmap = arm_dma_mmap,
133 .get_sgtable = arm_dma_get_sgtable,
134 .map_page = arm_dma_map_page,
135 .unmap_page = arm_dma_unmap_page,
136 .map_sg = arm_dma_map_sg,
137 .unmap_sg = arm_dma_unmap_sg,
138 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
139 .sync_single_for_device = arm_dma_sync_single_for_device,
140 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
141 .sync_sg_for_device = arm_dma_sync_sg_for_device,
142 .set_dma_mask = arm_dma_set_mask,
143 };
144 EXPORT_SYMBOL(arm_dma_ops);
145
146 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
147 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
148 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
149 dma_addr_t handle, struct dma_attrs *attrs);
150
151 struct dma_map_ops arm_coherent_dma_ops = {
152 .alloc = arm_coherent_dma_alloc,
153 .free = arm_coherent_dma_free,
154 .mmap = arm_dma_mmap,
155 .get_sgtable = arm_dma_get_sgtable,
156 .map_page = arm_coherent_dma_map_page,
157 .map_sg = arm_dma_map_sg,
158 .set_dma_mask = arm_dma_set_mask,
159 };
160 EXPORT_SYMBOL(arm_coherent_dma_ops);
161
162 static int __dma_supported(struct device *dev, u64 mask, bool warn)
163 {
164 unsigned long max_dma_pfn;
165
166 /*
167 * If the mask allows for more memory than we can address,
168 * and we actually have that much memory, then we must
169 * indicate that DMA to this device is not supported.
170 */
171 if (sizeof(mask) != sizeof(dma_addr_t) &&
172 mask > (dma_addr_t)~0 &&
173 dma_to_pfn(dev, ~0) < max_pfn) {
174 if (warn) {
175 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
176 mask);
177 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
178 }
179 return 0;
180 }
181
182 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
183
184 /*
185 * Translate the device's DMA mask to a PFN limit. This
186 * PFN number includes the page which we can DMA to.
187 */
188 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
189 if (warn)
190 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
191 mask,
192 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
193 max_dma_pfn + 1);
194 return 0;
195 }
196
197 return 1;
198 }
199
200 static u64 get_coherent_dma_mask(struct device *dev)
201 {
202 u64 mask = (u64)DMA_BIT_MASK(32);
203
204 if (dev) {
205 mask = dev->coherent_dma_mask;
206
207 /*
208 * Sanity check the DMA mask - it must be non-zero, and
209 * must be able to be satisfied by a DMA allocation.
210 */
211 if (mask == 0) {
212 dev_warn(dev, "coherent DMA mask is unset\n");
213 return 0;
214 }
215
216 if (!__dma_supported(dev, mask, true))
217 return 0;
218 }
219
220 return mask;
221 }
222
223 static void __dma_clear_buffer(struct page *page, size_t size)
224 {
225 /*
226 * Ensure that the allocated pages are zeroed, and that any data
227 * lurking in the kernel direct-mapped region is invalidated.
228 */
229 if (PageHighMem(page)) {
230 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
231 phys_addr_t end = base + size;
232 while (size > 0) {
233 void *ptr = kmap_atomic(page);
234 memset(ptr, 0, PAGE_SIZE);
235 dmac_flush_range(ptr, ptr + PAGE_SIZE);
236 kunmap_atomic(ptr);
237 page++;
238 size -= PAGE_SIZE;
239 }
240 outer_flush_range(base, end);
241 } else {
242 void *ptr = page_address(page);
243 memset(ptr, 0, size);
244 dmac_flush_range(ptr, ptr + size);
245 outer_flush_range(__pa(ptr), __pa(ptr) + size);
246 }
247 }
248
249 /*
250 * Allocate a DMA buffer for 'dev' of size 'size' using the
251 * specified gfp mask. Note that 'size' must be page aligned.
252 */
253 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
254 {
255 unsigned long order = get_order(size);
256 struct page *page, *p, *e;
257
258 page = alloc_pages(gfp, order);
259 if (!page)
260 return NULL;
261
262 /*
263 * Now split the huge page and free the excess pages
264 */
265 split_page(page, order);
266 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
267 __free_page(p);
268
269 __dma_clear_buffer(page, size);
270
271 return page;
272 }
273
274 /*
275 * Free a DMA buffer. 'size' must be page aligned.
276 */
277 static void __dma_free_buffer(struct page *page, size_t size)
278 {
279 struct page *e = page + (size >> PAGE_SHIFT);
280
281 while (page < e) {
282 __free_page(page);
283 page++;
284 }
285 }
286
287 #ifdef CONFIG_MMU
288
289 static void *__alloc_from_contiguous(struct device *dev, size_t size,
290 pgprot_t prot, struct page **ret_page,
291 const void *caller);
292
293 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
294 pgprot_t prot, struct page **ret_page,
295 const void *caller);
296
297 static void *
298 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
299 const void *caller)
300 {
301 struct vm_struct *area;
302 unsigned long addr;
303
304 /*
305 * DMA allocation can be mapped to user space, so lets
306 * set VM_USERMAP flags too.
307 */
308 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
309 caller);
310 if (!area)
311 return NULL;
312 addr = (unsigned long)area->addr;
313 area->phys_addr = __pfn_to_phys(page_to_pfn(page));
314
315 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
316 vunmap((void *)addr);
317 return NULL;
318 }
319 return (void *)addr;
320 }
321
322 static void __dma_free_remap(void *cpu_addr, size_t size)
323 {
324 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
325 struct vm_struct *area = find_vm_area(cpu_addr);
326 if (!area || (area->flags & flags) != flags) {
327 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
328 return;
329 }
330 unmap_kernel_range((unsigned long)cpu_addr, size);
331 vunmap(cpu_addr);
332 }
333
334 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
335
336 struct dma_pool {
337 size_t size;
338 spinlock_t lock;
339 unsigned long *bitmap;
340 unsigned long nr_pages;
341 void *vaddr;
342 struct page **pages;
343 };
344
345 static struct dma_pool atomic_pool = {
346 .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
347 };
348
349 static int __init early_coherent_pool(char *p)
350 {
351 atomic_pool.size = memparse(p, &p);
352 return 0;
353 }
354 early_param("coherent_pool", early_coherent_pool);
355
356 void __init init_dma_coherent_pool_size(unsigned long size)
357 {
358 /*
359 * Catch any attempt to set the pool size too late.
360 */
361 BUG_ON(atomic_pool.vaddr);
362
363 /*
364 * Set architecture specific coherent pool size only if
365 * it has not been changed by kernel command line parameter.
366 */
367 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
368 atomic_pool.size = size;
369 }
370
371 /*
372 * Initialise the coherent pool for atomic allocations.
373 */
374 static int __init atomic_pool_init(void)
375 {
376 struct dma_pool *pool = &atomic_pool;
377 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
378 gfp_t gfp = GFP_KERNEL | GFP_DMA;
379 unsigned long nr_pages = pool->size >> PAGE_SHIFT;
380 unsigned long *bitmap;
381 struct page *page;
382 struct page **pages;
383 void *ptr;
384 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
385
386 bitmap = kzalloc(bitmap_size, GFP_KERNEL);
387 if (!bitmap)
388 goto no_bitmap;
389
390 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
391 if (!pages)
392 goto no_pages;
393
394 if (dev_get_cma_area(NULL))
395 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
396 atomic_pool_init);
397 else
398 ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
399 atomic_pool_init);
400 if (ptr) {
401 int i;
402
403 for (i = 0; i < nr_pages; i++)
404 pages[i] = page + i;
405
406 spin_lock_init(&pool->lock);
407 pool->vaddr = ptr;
408 pool->pages = pages;
409 pool->bitmap = bitmap;
410 pool->nr_pages = nr_pages;
411 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
412 (unsigned)pool->size / 1024);
413 return 0;
414 }
415
416 kfree(pages);
417 no_pages:
418 kfree(bitmap);
419 no_bitmap:
420 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
421 (unsigned)pool->size / 1024);
422 return -ENOMEM;
423 }
424 /*
425 * CMA is activated by core_initcall, so we must be called after it.
426 */
427 postcore_initcall(atomic_pool_init);
428
429 struct dma_contig_early_reserve {
430 phys_addr_t base;
431 unsigned long size;
432 };
433
434 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
435
436 static int dma_mmu_remap_num __initdata;
437
438 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
439 {
440 dma_mmu_remap[dma_mmu_remap_num].base = base;
441 dma_mmu_remap[dma_mmu_remap_num].size = size;
442 dma_mmu_remap_num++;
443 }
444
445 void __init dma_contiguous_remap(void)
446 {
447 int i;
448 for (i = 0; i < dma_mmu_remap_num; i++) {
449 phys_addr_t start = dma_mmu_remap[i].base;
450 phys_addr_t end = start + dma_mmu_remap[i].size;
451 struct map_desc map;
452 unsigned long addr;
453
454 if (end > arm_lowmem_limit)
455 end = arm_lowmem_limit;
456 if (start >= end)
457 continue;
458
459 map.pfn = __phys_to_pfn(start);
460 map.virtual = __phys_to_virt(start);
461 map.length = end - start;
462 map.type = MT_MEMORY_DMA_READY;
463
464 /*
465 * Clear previous low-memory mapping to ensure that the
466 * TLB does not see any conflicting entries, then flush
467 * the TLB of the old entries before creating new mappings.
468 *
469 * This ensures that any speculatively loaded TLB entries
470 * (even though they may be rare) can not cause any problems,
471 * and ensures that this code is architecturally compliant.
472 */
473 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
474 addr += PMD_SIZE)
475 pmd_clear(pmd_off_k(addr));
476
477 flush_tlb_kernel_range(__phys_to_virt(start),
478 __phys_to_virt(end));
479
480 iotable_init(&map, 1);
481 }
482 }
483
484 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
485 void *data)
486 {
487 struct page *page = virt_to_page(addr);
488 pgprot_t prot = *(pgprot_t *)data;
489
490 set_pte_ext(pte, mk_pte(page, prot), 0);
491 return 0;
492 }
493
494 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
495 {
496 unsigned long start = (unsigned long) page_address(page);
497 unsigned end = start + size;
498
499 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
500 flush_tlb_kernel_range(start, end);
501 }
502
503 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
504 pgprot_t prot, struct page **ret_page,
505 const void *caller)
506 {
507 struct page *page;
508 void *ptr;
509 page = __dma_alloc_buffer(dev, size, gfp);
510 if (!page)
511 return NULL;
512
513 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
514 if (!ptr) {
515 __dma_free_buffer(page, size);
516 return NULL;
517 }
518
519 *ret_page = page;
520 return ptr;
521 }
522
523 static void *__alloc_from_pool(size_t size, struct page **ret_page)
524 {
525 struct dma_pool *pool = &atomic_pool;
526 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
527 unsigned int pageno;
528 unsigned long flags;
529 void *ptr = NULL;
530 unsigned long align_mask;
531
532 if (!pool->vaddr) {
533 WARN(1, "coherent pool not initialised!\n");
534 return NULL;
535 }
536
537 /*
538 * Align the region allocation - allocations from pool are rather
539 * small, so align them to their order in pages, minimum is a page
540 * size. This helps reduce fragmentation of the DMA space.
541 */
542 align_mask = (1 << get_order(size)) - 1;
543
544 spin_lock_irqsave(&pool->lock, flags);
545 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
546 0, count, align_mask);
547 if (pageno < pool->nr_pages) {
548 bitmap_set(pool->bitmap, pageno, count);
549 ptr = pool->vaddr + PAGE_SIZE * pageno;
550 *ret_page = pool->pages[pageno];
551 } else {
552 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
553 "Please increase it with coherent_pool= kernel parameter!\n",
554 (unsigned)pool->size / 1024);
555 }
556 spin_unlock_irqrestore(&pool->lock, flags);
557
558 return ptr;
559 }
560
561 static bool __in_atomic_pool(void *start, size_t size)
562 {
563 struct dma_pool *pool = &atomic_pool;
564 void *end = start + size;
565 void *pool_start = pool->vaddr;
566 void *pool_end = pool->vaddr + pool->size;
567
568 if (start < pool_start || start >= pool_end)
569 return false;
570
571 if (end <= pool_end)
572 return true;
573
574 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
575 start, end - 1, pool_start, pool_end - 1);
576
577 return false;
578 }
579
580 static int __free_from_pool(void *start, size_t size)
581 {
582 struct dma_pool *pool = &atomic_pool;
583 unsigned long pageno, count;
584 unsigned long flags;
585
586 if (!__in_atomic_pool(start, size))
587 return 0;
588
589 pageno = (start - pool->vaddr) >> PAGE_SHIFT;
590 count = size >> PAGE_SHIFT;
591
592 spin_lock_irqsave(&pool->lock, flags);
593 bitmap_clear(pool->bitmap, pageno, count);
594 spin_unlock_irqrestore(&pool->lock, flags);
595
596 return 1;
597 }
598
599 static void *__alloc_from_contiguous(struct device *dev, size_t size,
600 pgprot_t prot, struct page **ret_page,
601 const void *caller)
602 {
603 unsigned long order = get_order(size);
604 size_t count = size >> PAGE_SHIFT;
605 struct page *page;
606 void *ptr;
607
608 page = dma_alloc_from_contiguous(dev, count, order);
609 if (!page)
610 return NULL;
611
612 __dma_clear_buffer(page, size);
613
614 if (PageHighMem(page)) {
615 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
616 if (!ptr) {
617 dma_release_from_contiguous(dev, page, count);
618 return NULL;
619 }
620 } else {
621 __dma_remap(page, size, prot);
622 ptr = page_address(page);
623 }
624 *ret_page = page;
625 return ptr;
626 }
627
628 static void __free_from_contiguous(struct device *dev, struct page *page,
629 void *cpu_addr, size_t size)
630 {
631 if (PageHighMem(page))
632 __dma_free_remap(cpu_addr, size);
633 else
634 __dma_remap(page, size, PAGE_KERNEL);
635 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
636 }
637
638 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
639 {
640 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
641 pgprot_writecombine(prot) :
642 pgprot_dmacoherent(prot);
643 return prot;
644 }
645
646 #define nommu() 0
647
648 #else /* !CONFIG_MMU */
649
650 #define nommu() 1
651
652 #define __get_dma_pgprot(attrs, prot) __pgprot(0)
653 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
654 #define __alloc_from_pool(size, ret_page) NULL
655 #define __alloc_from_contiguous(dev, size, prot, ret, c) NULL
656 #define __free_from_pool(cpu_addr, size) 0
657 #define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0)
658 #define __dma_free_remap(cpu_addr, size) do { } while (0)
659
660 #endif /* CONFIG_MMU */
661
662 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
663 struct page **ret_page)
664 {
665 struct page *page;
666 page = __dma_alloc_buffer(dev, size, gfp);
667 if (!page)
668 return NULL;
669
670 *ret_page = page;
671 return page_address(page);
672 }
673
674
675
676 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
677 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
678 {
679 u64 mask = get_coherent_dma_mask(dev);
680 struct page *page = NULL;
681 void *addr;
682
683 #ifdef CONFIG_DMA_API_DEBUG
684 u64 limit = (mask + 1) & ~mask;
685 if (limit && size >= limit) {
686 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
687 size, mask);
688 return NULL;
689 }
690 #endif
691
692 if (!mask)
693 return NULL;
694
695 if (mask < 0xffffffffULL)
696 gfp |= GFP_DMA;
697
698 /*
699 * Following is a work-around (a.k.a. hack) to prevent pages
700 * with __GFP_COMP being passed to split_page() which cannot
701 * handle them. The real problem is that this flag probably
702 * should be 0 on ARM as it is not supported on this
703 * platform; see CONFIG_HUGETLBFS.
704 */
705 gfp &= ~(__GFP_COMP);
706
707 *handle = DMA_ERROR_CODE;
708 size = PAGE_ALIGN(size);
709
710 if (is_coherent || nommu())
711 addr = __alloc_simple_buffer(dev, size, gfp, &page);
712 else if (!(gfp & __GFP_WAIT))
713 addr = __alloc_from_pool(size, &page);
714 else if (!dev_get_cma_area(dev))
715 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
716 else
717 addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
718
719 if (addr)
720 *handle = pfn_to_dma(dev, page_to_pfn(page));
721
722 return addr;
723 }
724
725 /*
726 * Allocate DMA-coherent memory space and return both the kernel remapped
727 * virtual and bus address for that space.
728 */
729 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
730 gfp_t gfp, struct dma_attrs *attrs)
731 {
732 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
733 void *memory;
734
735 if (dma_alloc_from_coherent(dev, size, handle, &memory))
736 return memory;
737
738 return __dma_alloc(dev, size, handle, gfp, prot, false,
739 __builtin_return_address(0));
740 }
741
742 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
743 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
744 {
745 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
746 void *memory;
747
748 if (dma_alloc_from_coherent(dev, size, handle, &memory))
749 return memory;
750
751 return __dma_alloc(dev, size, handle, gfp, prot, true,
752 __builtin_return_address(0));
753 }
754
755 /*
756 * Create userspace mapping for the DMA-coherent memory.
757 */
758 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
759 void *cpu_addr, dma_addr_t dma_addr, size_t size,
760 struct dma_attrs *attrs)
761 {
762 int ret = -ENXIO;
763 #ifdef CONFIG_MMU
764 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
765 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
766 unsigned long pfn = dma_to_pfn(dev, dma_addr);
767 unsigned long off = vma->vm_pgoff;
768
769 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
770
771 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
772 return ret;
773
774 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
775 ret = remap_pfn_range(vma, vma->vm_start,
776 pfn + off,
777 vma->vm_end - vma->vm_start,
778 vma->vm_page_prot);
779 }
780 #endif /* CONFIG_MMU */
781
782 return ret;
783 }
784
785 /*
786 * Free a buffer as defined by the above mapping.
787 */
788 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
789 dma_addr_t handle, struct dma_attrs *attrs,
790 bool is_coherent)
791 {
792 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
793
794 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
795 return;
796
797 size = PAGE_ALIGN(size);
798
799 if (is_coherent || nommu()) {
800 __dma_free_buffer(page, size);
801 } else if (__free_from_pool(cpu_addr, size)) {
802 return;
803 } else if (!dev_get_cma_area(dev)) {
804 __dma_free_remap(cpu_addr, size);
805 __dma_free_buffer(page, size);
806 } else {
807 /*
808 * Non-atomic allocations cannot be freed with IRQs disabled
809 */
810 WARN_ON(irqs_disabled());
811 __free_from_contiguous(dev, page, cpu_addr, size);
812 }
813 }
814
815 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
816 dma_addr_t handle, struct dma_attrs *attrs)
817 {
818 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
819 }
820
821 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
822 dma_addr_t handle, struct dma_attrs *attrs)
823 {
824 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
825 }
826
827 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
828 void *cpu_addr, dma_addr_t handle, size_t size,
829 struct dma_attrs *attrs)
830 {
831 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
832 int ret;
833
834 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
835 if (unlikely(ret))
836 return ret;
837
838 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
839 return 0;
840 }
841
842 static void dma_cache_maint_page(struct page *page, unsigned long offset,
843 size_t size, enum dma_data_direction dir,
844 void (*op)(const void *, size_t, int))
845 {
846 unsigned long pfn;
847 size_t left = size;
848
849 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
850 offset %= PAGE_SIZE;
851
852 /*
853 * A single sg entry may refer to multiple physically contiguous
854 * pages. But we still need to process highmem pages individually.
855 * If highmem is not configured then the bulk of this loop gets
856 * optimized out.
857 */
858 do {
859 size_t len = left;
860 void *vaddr;
861
862 page = pfn_to_page(pfn);
863
864 if (PageHighMem(page)) {
865 if (len + offset > PAGE_SIZE)
866 len = PAGE_SIZE - offset;
867
868 if (cache_is_vipt_nonaliasing()) {
869 vaddr = kmap_atomic(page);
870 op(vaddr + offset, len, dir);
871 kunmap_atomic(vaddr);
872 } else {
873 vaddr = kmap_high_get(page);
874 if (vaddr) {
875 op(vaddr + offset, len, dir);
876 kunmap_high(page);
877 }
878 }
879 } else {
880 vaddr = page_address(page) + offset;
881 op(vaddr, len, dir);
882 }
883 offset = 0;
884 pfn++;
885 left -= len;
886 } while (left);
887 }
888
889 /*
890 * Make an area consistent for devices.
891 * Note: Drivers should NOT use this function directly, as it will break
892 * platforms with CONFIG_DMABOUNCE.
893 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
894 */
895 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
896 size_t size, enum dma_data_direction dir)
897 {
898 phys_addr_t paddr;
899
900 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
901
902 paddr = page_to_phys(page) + off;
903 if (dir == DMA_FROM_DEVICE) {
904 outer_inv_range(paddr, paddr + size);
905 } else {
906 outer_clean_range(paddr, paddr + size);
907 }
908 /* FIXME: non-speculating: flush on bidirectional mappings? */
909 }
910
911 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
912 size_t size, enum dma_data_direction dir)
913 {
914 phys_addr_t paddr = page_to_phys(page) + off;
915
916 /* FIXME: non-speculating: not required */
917 /* in any case, don't bother invalidating if DMA to device */
918 if (dir != DMA_TO_DEVICE) {
919 outer_inv_range(paddr, paddr + size);
920
921 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
922 }
923
924 /*
925 * Mark the D-cache clean for these pages to avoid extra flushing.
926 */
927 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
928 unsigned long pfn;
929 size_t left = size;
930
931 pfn = page_to_pfn(page) + off / PAGE_SIZE;
932 off %= PAGE_SIZE;
933 if (off) {
934 pfn++;
935 left -= PAGE_SIZE - off;
936 }
937 while (left >= PAGE_SIZE) {
938 page = pfn_to_page(pfn++);
939 set_bit(PG_dcache_clean, &page->flags);
940 left -= PAGE_SIZE;
941 }
942 }
943 }
944
945 /**
946 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
947 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
948 * @sg: list of buffers
949 * @nents: number of buffers to map
950 * @dir: DMA transfer direction
951 *
952 * Map a set of buffers described by scatterlist in streaming mode for DMA.
953 * This is the scatter-gather version of the dma_map_single interface.
954 * Here the scatter gather list elements are each tagged with the
955 * appropriate dma address and length. They are obtained via
956 * sg_dma_{address,length}.
957 *
958 * Device ownership issues as mentioned for dma_map_single are the same
959 * here.
960 */
961 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
962 enum dma_data_direction dir, struct dma_attrs *attrs)
963 {
964 struct dma_map_ops *ops = get_dma_ops(dev);
965 struct scatterlist *s;
966 int i, j;
967
968 for_each_sg(sg, s, nents, i) {
969 #ifdef CONFIG_NEED_SG_DMA_LENGTH
970 s->dma_length = s->length;
971 #endif
972 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
973 s->length, dir, attrs);
974 if (dma_mapping_error(dev, s->dma_address))
975 goto bad_mapping;
976 }
977 return nents;
978
979 bad_mapping:
980 for_each_sg(sg, s, i, j)
981 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
982 return 0;
983 }
984
985 /**
986 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
987 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
988 * @sg: list of buffers
989 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
990 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
991 *
992 * Unmap a set of streaming mode DMA translations. Again, CPU access
993 * rules concerning calls here are the same as for dma_unmap_single().
994 */
995 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
996 enum dma_data_direction dir, struct dma_attrs *attrs)
997 {
998 struct dma_map_ops *ops = get_dma_ops(dev);
999 struct scatterlist *s;
1000
1001 int i;
1002
1003 for_each_sg(sg, s, nents, i)
1004 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1005 }
1006
1007 /**
1008 * arm_dma_sync_sg_for_cpu
1009 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1010 * @sg: list of buffers
1011 * @nents: number of buffers to map (returned from dma_map_sg)
1012 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1013 */
1014 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1015 int nents, enum dma_data_direction dir)
1016 {
1017 struct dma_map_ops *ops = get_dma_ops(dev);
1018 struct scatterlist *s;
1019 int i;
1020
1021 for_each_sg(sg, s, nents, i)
1022 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1023 dir);
1024 }
1025
1026 /**
1027 * arm_dma_sync_sg_for_device
1028 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1029 * @sg: list of buffers
1030 * @nents: number of buffers to map (returned from dma_map_sg)
1031 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1032 */
1033 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1034 int nents, enum dma_data_direction dir)
1035 {
1036 struct dma_map_ops *ops = get_dma_ops(dev);
1037 struct scatterlist *s;
1038 int i;
1039
1040 for_each_sg(sg, s, nents, i)
1041 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1042 dir);
1043 }
1044
1045 /*
1046 * Return whether the given device DMA address mask can be supported
1047 * properly. For example, if your device can only drive the low 24-bits
1048 * during bus mastering, then you would pass 0x00ffffff as the mask
1049 * to this function.
1050 */
1051 int dma_supported(struct device *dev, u64 mask)
1052 {
1053 return __dma_supported(dev, mask, false);
1054 }
1055 EXPORT_SYMBOL(dma_supported);
1056
1057 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1058 {
1059 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1060 return -EIO;
1061
1062 *dev->dma_mask = dma_mask;
1063
1064 return 0;
1065 }
1066
1067 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
1068
1069 static int __init dma_debug_do_init(void)
1070 {
1071 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1072 return 0;
1073 }
1074 fs_initcall(dma_debug_do_init);
1075
1076 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1077
1078 /* IOMMU */
1079
1080 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1081
1082 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1083 size_t size)
1084 {
1085 unsigned int order = get_order(size);
1086 unsigned int align = 0;
1087 unsigned int count, start;
1088 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1089 unsigned long flags;
1090 dma_addr_t iova;
1091 int i;
1092
1093 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1094 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1095
1096 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1097 align = (1 << order) - 1;
1098
1099 spin_lock_irqsave(&mapping->lock, flags);
1100 for (i = 0; i < mapping->nr_bitmaps; i++) {
1101 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1102 mapping->bits, 0, count, align);
1103
1104 if (start > mapping->bits)
1105 continue;
1106
1107 bitmap_set(mapping->bitmaps[i], start, count);
1108 break;
1109 }
1110
1111 /*
1112 * No unused range found. Try to extend the existing mapping
1113 * and perform a second attempt to reserve an IO virtual
1114 * address range of size bytes.
1115 */
1116 if (i == mapping->nr_bitmaps) {
1117 if (extend_iommu_mapping(mapping)) {
1118 spin_unlock_irqrestore(&mapping->lock, flags);
1119 return DMA_ERROR_CODE;
1120 }
1121
1122 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1123 mapping->bits, 0, count, align);
1124
1125 if (start > mapping->bits) {
1126 spin_unlock_irqrestore(&mapping->lock, flags);
1127 return DMA_ERROR_CODE;
1128 }
1129
1130 bitmap_set(mapping->bitmaps[i], start, count);
1131 }
1132 spin_unlock_irqrestore(&mapping->lock, flags);
1133
1134 iova = mapping->base + (mapping_size * i);
1135 iova += start << PAGE_SHIFT;
1136
1137 return iova;
1138 }
1139
1140 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1141 dma_addr_t addr, size_t size)
1142 {
1143 unsigned int start, count;
1144 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1145 unsigned long flags;
1146 dma_addr_t bitmap_base;
1147 u32 bitmap_index;
1148
1149 if (!size)
1150 return;
1151
1152 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1153 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1154
1155 bitmap_base = mapping->base + mapping_size * bitmap_index;
1156
1157 start = (addr - bitmap_base) >> PAGE_SHIFT;
1158
1159 if (addr + size > bitmap_base + mapping_size) {
1160 /*
1161 * The address range to be freed reaches into the iova
1162 * range of the next bitmap. This should not happen as
1163 * we don't allow this in __alloc_iova (at the
1164 * moment).
1165 */
1166 BUG();
1167 } else
1168 count = size >> PAGE_SHIFT;
1169
1170 spin_lock_irqsave(&mapping->lock, flags);
1171 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1172 spin_unlock_irqrestore(&mapping->lock, flags);
1173 }
1174
1175 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1176 gfp_t gfp, struct dma_attrs *attrs)
1177 {
1178 struct page **pages;
1179 int count = size >> PAGE_SHIFT;
1180 int array_size = count * sizeof(struct page *);
1181 int i = 0;
1182
1183 if (array_size <= PAGE_SIZE)
1184 pages = kzalloc(array_size, gfp);
1185 else
1186 pages = vzalloc(array_size);
1187 if (!pages)
1188 return NULL;
1189
1190 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1191 {
1192 unsigned long order = get_order(size);
1193 struct page *page;
1194
1195 page = dma_alloc_from_contiguous(dev, count, order);
1196 if (!page)
1197 goto error;
1198
1199 __dma_clear_buffer(page, size);
1200
1201 for (i = 0; i < count; i++)
1202 pages[i] = page + i;
1203
1204 return pages;
1205 }
1206
1207 /*
1208 * IOMMU can map any pages, so himem can also be used here
1209 */
1210 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1211
1212 while (count) {
1213 int j, order = __fls(count);
1214
1215 pages[i] = alloc_pages(gfp, order);
1216 while (!pages[i] && order)
1217 pages[i] = alloc_pages(gfp, --order);
1218 if (!pages[i])
1219 goto error;
1220
1221 if (order) {
1222 split_page(pages[i], order);
1223 j = 1 << order;
1224 while (--j)
1225 pages[i + j] = pages[i] + j;
1226 }
1227
1228 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1229 i += 1 << order;
1230 count -= 1 << order;
1231 }
1232
1233 return pages;
1234 error:
1235 while (i--)
1236 if (pages[i])
1237 __free_pages(pages[i], 0);
1238 if (array_size <= PAGE_SIZE)
1239 kfree(pages);
1240 else
1241 vfree(pages);
1242 return NULL;
1243 }
1244
1245 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1246 size_t size, struct dma_attrs *attrs)
1247 {
1248 int count = size >> PAGE_SHIFT;
1249 int array_size = count * sizeof(struct page *);
1250 int i;
1251
1252 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1253 dma_release_from_contiguous(dev, pages[0], count);
1254 } else {
1255 for (i = 0; i < count; i++)
1256 if (pages[i])
1257 __free_pages(pages[i], 0);
1258 }
1259
1260 if (array_size <= PAGE_SIZE)
1261 kfree(pages);
1262 else
1263 vfree(pages);
1264 return 0;
1265 }
1266
1267 /*
1268 * Create a CPU mapping for a specified pages
1269 */
1270 static void *
1271 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1272 const void *caller)
1273 {
1274 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1275 struct vm_struct *area;
1276 unsigned long p;
1277
1278 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1279 caller);
1280 if (!area)
1281 return NULL;
1282
1283 area->pages = pages;
1284 area->nr_pages = nr_pages;
1285 p = (unsigned long)area->addr;
1286
1287 for (i = 0; i < nr_pages; i++) {
1288 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1289 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1290 goto err;
1291 p += PAGE_SIZE;
1292 }
1293 return area->addr;
1294 err:
1295 unmap_kernel_range((unsigned long)area->addr, size);
1296 vunmap(area->addr);
1297 return NULL;
1298 }
1299
1300 /*
1301 * Create a mapping in device IO address space for specified pages
1302 */
1303 static dma_addr_t
1304 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1305 {
1306 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1307 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1308 dma_addr_t dma_addr, iova;
1309 int i, ret = DMA_ERROR_CODE;
1310
1311 dma_addr = __alloc_iova(mapping, size);
1312 if (dma_addr == DMA_ERROR_CODE)
1313 return dma_addr;
1314
1315 iova = dma_addr;
1316 for (i = 0; i < count; ) {
1317 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1318 phys_addr_t phys = page_to_phys(pages[i]);
1319 unsigned int len, j;
1320
1321 for (j = i + 1; j < count; j++, next_pfn++)
1322 if (page_to_pfn(pages[j]) != next_pfn)
1323 break;
1324
1325 len = (j - i) << PAGE_SHIFT;
1326 ret = iommu_map(mapping->domain, iova, phys, len,
1327 IOMMU_READ|IOMMU_WRITE);
1328 if (ret < 0)
1329 goto fail;
1330 iova += len;
1331 i = j;
1332 }
1333 return dma_addr;
1334 fail:
1335 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1336 __free_iova(mapping, dma_addr, size);
1337 return DMA_ERROR_CODE;
1338 }
1339
1340 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1341 {
1342 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1343
1344 /*
1345 * add optional in-page offset from iova to size and align
1346 * result to page size
1347 */
1348 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1349 iova &= PAGE_MASK;
1350
1351 iommu_unmap(mapping->domain, iova, size);
1352 __free_iova(mapping, iova, size);
1353 return 0;
1354 }
1355
1356 static struct page **__atomic_get_pages(void *addr)
1357 {
1358 struct dma_pool *pool = &atomic_pool;
1359 struct page **pages = pool->pages;
1360 int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1361
1362 return pages + offs;
1363 }
1364
1365 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1366 {
1367 struct vm_struct *area;
1368
1369 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1370 return __atomic_get_pages(cpu_addr);
1371
1372 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1373 return cpu_addr;
1374
1375 area = find_vm_area(cpu_addr);
1376 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1377 return area->pages;
1378 return NULL;
1379 }
1380
1381 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1382 dma_addr_t *handle)
1383 {
1384 struct page *page;
1385 void *addr;
1386
1387 addr = __alloc_from_pool(size, &page);
1388 if (!addr)
1389 return NULL;
1390
1391 *handle = __iommu_create_mapping(dev, &page, size);
1392 if (*handle == DMA_ERROR_CODE)
1393 goto err_mapping;
1394
1395 return addr;
1396
1397 err_mapping:
1398 __free_from_pool(addr, size);
1399 return NULL;
1400 }
1401
1402 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1403 dma_addr_t handle, size_t size)
1404 {
1405 __iommu_remove_mapping(dev, handle, size);
1406 __free_from_pool(cpu_addr, size);
1407 }
1408
1409 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1410 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1411 {
1412 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1413 struct page **pages;
1414 void *addr = NULL;
1415
1416 *handle = DMA_ERROR_CODE;
1417 size = PAGE_ALIGN(size);
1418
1419 if (!(gfp & __GFP_WAIT))
1420 return __iommu_alloc_atomic(dev, size, handle);
1421
1422 /*
1423 * Following is a work-around (a.k.a. hack) to prevent pages
1424 * with __GFP_COMP being passed to split_page() which cannot
1425 * handle them. The real problem is that this flag probably
1426 * should be 0 on ARM as it is not supported on this
1427 * platform; see CONFIG_HUGETLBFS.
1428 */
1429 gfp &= ~(__GFP_COMP);
1430
1431 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1432 if (!pages)
1433 return NULL;
1434
1435 *handle = __iommu_create_mapping(dev, pages, size);
1436 if (*handle == DMA_ERROR_CODE)
1437 goto err_buffer;
1438
1439 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1440 return pages;
1441
1442 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1443 __builtin_return_address(0));
1444 if (!addr)
1445 goto err_mapping;
1446
1447 return addr;
1448
1449 err_mapping:
1450 __iommu_remove_mapping(dev, *handle, size);
1451 err_buffer:
1452 __iommu_free_buffer(dev, pages, size, attrs);
1453 return NULL;
1454 }
1455
1456 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1457 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1458 struct dma_attrs *attrs)
1459 {
1460 unsigned long uaddr = vma->vm_start;
1461 unsigned long usize = vma->vm_end - vma->vm_start;
1462 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1463
1464 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1465
1466 if (!pages)
1467 return -ENXIO;
1468
1469 do {
1470 int ret = vm_insert_page(vma, uaddr, *pages++);
1471 if (ret) {
1472 pr_err("Remapping memory failed: %d\n", ret);
1473 return ret;
1474 }
1475 uaddr += PAGE_SIZE;
1476 usize -= PAGE_SIZE;
1477 } while (usize > 0);
1478
1479 return 0;
1480 }
1481
1482 /*
1483 * free a page as defined by the above mapping.
1484 * Must not be called with IRQs disabled.
1485 */
1486 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1487 dma_addr_t handle, struct dma_attrs *attrs)
1488 {
1489 struct page **pages;
1490 size = PAGE_ALIGN(size);
1491
1492 if (__in_atomic_pool(cpu_addr, size)) {
1493 __iommu_free_atomic(dev, cpu_addr, handle, size);
1494 return;
1495 }
1496
1497 pages = __iommu_get_pages(cpu_addr, attrs);
1498 if (!pages) {
1499 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1500 return;
1501 }
1502
1503 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1504 unmap_kernel_range((unsigned long)cpu_addr, size);
1505 vunmap(cpu_addr);
1506 }
1507
1508 __iommu_remove_mapping(dev, handle, size);
1509 __iommu_free_buffer(dev, pages, size, attrs);
1510 }
1511
1512 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1513 void *cpu_addr, dma_addr_t dma_addr,
1514 size_t size, struct dma_attrs *attrs)
1515 {
1516 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1517 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1518
1519 if (!pages)
1520 return -ENXIO;
1521
1522 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1523 GFP_KERNEL);
1524 }
1525
1526 static int __dma_direction_to_prot(enum dma_data_direction dir)
1527 {
1528 int prot;
1529
1530 switch (dir) {
1531 case DMA_BIDIRECTIONAL:
1532 prot = IOMMU_READ | IOMMU_WRITE;
1533 break;
1534 case DMA_TO_DEVICE:
1535 prot = IOMMU_READ;
1536 break;
1537 case DMA_FROM_DEVICE:
1538 prot = IOMMU_WRITE;
1539 break;
1540 default:
1541 prot = 0;
1542 }
1543
1544 return prot;
1545 }
1546
1547 /*
1548 * Map a part of the scatter-gather list into contiguous io address space
1549 */
1550 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1551 size_t size, dma_addr_t *handle,
1552 enum dma_data_direction dir, struct dma_attrs *attrs,
1553 bool is_coherent)
1554 {
1555 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1556 dma_addr_t iova, iova_base;
1557 int ret = 0;
1558 unsigned int count;
1559 struct scatterlist *s;
1560 int prot;
1561
1562 size = PAGE_ALIGN(size);
1563 *handle = DMA_ERROR_CODE;
1564
1565 iova_base = iova = __alloc_iova(mapping, size);
1566 if (iova == DMA_ERROR_CODE)
1567 return -ENOMEM;
1568
1569 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1570 phys_addr_t phys = page_to_phys(sg_page(s));
1571 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1572
1573 if (!is_coherent &&
1574 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1575 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1576
1577 prot = __dma_direction_to_prot(dir);
1578
1579 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1580 if (ret < 0)
1581 goto fail;
1582 count += len >> PAGE_SHIFT;
1583 iova += len;
1584 }
1585 *handle = iova_base;
1586
1587 return 0;
1588 fail:
1589 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1590 __free_iova(mapping, iova_base, size);
1591 return ret;
1592 }
1593
1594 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1595 enum dma_data_direction dir, struct dma_attrs *attrs,
1596 bool is_coherent)
1597 {
1598 struct scatterlist *s = sg, *dma = sg, *start = sg;
1599 int i, count = 0;
1600 unsigned int offset = s->offset;
1601 unsigned int size = s->offset + s->length;
1602 unsigned int max = dma_get_max_seg_size(dev);
1603
1604 for (i = 1; i < nents; i++) {
1605 s = sg_next(s);
1606
1607 s->dma_address = DMA_ERROR_CODE;
1608 s->dma_length = 0;
1609
1610 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1611 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1612 dir, attrs, is_coherent) < 0)
1613 goto bad_mapping;
1614
1615 dma->dma_address += offset;
1616 dma->dma_length = size - offset;
1617
1618 size = offset = s->offset;
1619 start = s;
1620 dma = sg_next(dma);
1621 count += 1;
1622 }
1623 size += s->length;
1624 }
1625 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1626 is_coherent) < 0)
1627 goto bad_mapping;
1628
1629 dma->dma_address += offset;
1630 dma->dma_length = size - offset;
1631
1632 return count+1;
1633
1634 bad_mapping:
1635 for_each_sg(sg, s, count, i)
1636 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1637 return 0;
1638 }
1639
1640 /**
1641 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1642 * @dev: valid struct device pointer
1643 * @sg: list of buffers
1644 * @nents: number of buffers to map
1645 * @dir: DMA transfer direction
1646 *
1647 * Map a set of i/o coherent buffers described by scatterlist in streaming
1648 * mode for DMA. The scatter gather list elements are merged together (if
1649 * possible) and tagged with the appropriate dma address and length. They are
1650 * obtained via sg_dma_{address,length}.
1651 */
1652 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1653 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1654 {
1655 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1656 }
1657
1658 /**
1659 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1660 * @dev: valid struct device pointer
1661 * @sg: list of buffers
1662 * @nents: number of buffers to map
1663 * @dir: DMA transfer direction
1664 *
1665 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1666 * The scatter gather list elements are merged together (if possible) and
1667 * tagged with the appropriate dma address and length. They are obtained via
1668 * sg_dma_{address,length}.
1669 */
1670 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1671 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1672 {
1673 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1674 }
1675
1676 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1677 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1678 bool is_coherent)
1679 {
1680 struct scatterlist *s;
1681 int i;
1682
1683 for_each_sg(sg, s, nents, i) {
1684 if (sg_dma_len(s))
1685 __iommu_remove_mapping(dev, sg_dma_address(s),
1686 sg_dma_len(s));
1687 if (!is_coherent &&
1688 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1689 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1690 s->length, dir);
1691 }
1692 }
1693
1694 /**
1695 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1696 * @dev: valid struct device pointer
1697 * @sg: list of buffers
1698 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1699 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1700 *
1701 * Unmap a set of streaming mode DMA translations. Again, CPU access
1702 * rules concerning calls here are the same as for dma_unmap_single().
1703 */
1704 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1705 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1706 {
1707 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1708 }
1709
1710 /**
1711 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1712 * @dev: valid struct device pointer
1713 * @sg: list of buffers
1714 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1715 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1716 *
1717 * Unmap a set of streaming mode DMA translations. Again, CPU access
1718 * rules concerning calls here are the same as for dma_unmap_single().
1719 */
1720 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1721 enum dma_data_direction dir, struct dma_attrs *attrs)
1722 {
1723 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1724 }
1725
1726 /**
1727 * arm_iommu_sync_sg_for_cpu
1728 * @dev: valid struct device pointer
1729 * @sg: list of buffers
1730 * @nents: number of buffers to map (returned from dma_map_sg)
1731 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1732 */
1733 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1734 int nents, enum dma_data_direction dir)
1735 {
1736 struct scatterlist *s;
1737 int i;
1738
1739 for_each_sg(sg, s, nents, i)
1740 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1741
1742 }
1743
1744 /**
1745 * arm_iommu_sync_sg_for_device
1746 * @dev: valid struct device pointer
1747 * @sg: list of buffers
1748 * @nents: number of buffers to map (returned from dma_map_sg)
1749 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1750 */
1751 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1752 int nents, enum dma_data_direction dir)
1753 {
1754 struct scatterlist *s;
1755 int i;
1756
1757 for_each_sg(sg, s, nents, i)
1758 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1759 }
1760
1761
1762 /**
1763 * arm_coherent_iommu_map_page
1764 * @dev: valid struct device pointer
1765 * @page: page that buffer resides in
1766 * @offset: offset into page for start of buffer
1767 * @size: size of buffer to map
1768 * @dir: DMA transfer direction
1769 *
1770 * Coherent IOMMU aware version of arm_dma_map_page()
1771 */
1772 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1773 unsigned long offset, size_t size, enum dma_data_direction dir,
1774 struct dma_attrs *attrs)
1775 {
1776 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1777 dma_addr_t dma_addr;
1778 int ret, prot, len = PAGE_ALIGN(size + offset);
1779
1780 dma_addr = __alloc_iova(mapping, len);
1781 if (dma_addr == DMA_ERROR_CODE)
1782 return dma_addr;
1783
1784 prot = __dma_direction_to_prot(dir);
1785
1786 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1787 if (ret < 0)
1788 goto fail;
1789
1790 return dma_addr + offset;
1791 fail:
1792 __free_iova(mapping, dma_addr, len);
1793 return DMA_ERROR_CODE;
1794 }
1795
1796 /**
1797 * arm_iommu_map_page
1798 * @dev: valid struct device pointer
1799 * @page: page that buffer resides in
1800 * @offset: offset into page for start of buffer
1801 * @size: size of buffer to map
1802 * @dir: DMA transfer direction
1803 *
1804 * IOMMU aware version of arm_dma_map_page()
1805 */
1806 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1807 unsigned long offset, size_t size, enum dma_data_direction dir,
1808 struct dma_attrs *attrs)
1809 {
1810 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1811 __dma_page_cpu_to_dev(page, offset, size, dir);
1812
1813 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1814 }
1815
1816 /**
1817 * arm_coherent_iommu_unmap_page
1818 * @dev: valid struct device pointer
1819 * @handle: DMA address of buffer
1820 * @size: size of buffer (same as passed to dma_map_page)
1821 * @dir: DMA transfer direction (same as passed to dma_map_page)
1822 *
1823 * Coherent IOMMU aware version of arm_dma_unmap_page()
1824 */
1825 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1826 size_t size, enum dma_data_direction dir,
1827 struct dma_attrs *attrs)
1828 {
1829 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1830 dma_addr_t iova = handle & PAGE_MASK;
1831 int offset = handle & ~PAGE_MASK;
1832 int len = PAGE_ALIGN(size + offset);
1833
1834 if (!iova)
1835 return;
1836
1837 iommu_unmap(mapping->domain, iova, len);
1838 __free_iova(mapping, iova, len);
1839 }
1840
1841 /**
1842 * arm_iommu_unmap_page
1843 * @dev: valid struct device pointer
1844 * @handle: DMA address of buffer
1845 * @size: size of buffer (same as passed to dma_map_page)
1846 * @dir: DMA transfer direction (same as passed to dma_map_page)
1847 *
1848 * IOMMU aware version of arm_dma_unmap_page()
1849 */
1850 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1851 size_t size, enum dma_data_direction dir,
1852 struct dma_attrs *attrs)
1853 {
1854 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1855 dma_addr_t iova = handle & PAGE_MASK;
1856 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1857 int offset = handle & ~PAGE_MASK;
1858 int len = PAGE_ALIGN(size + offset);
1859
1860 if (!iova)
1861 return;
1862
1863 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1864 __dma_page_dev_to_cpu(page, offset, size, dir);
1865
1866 iommu_unmap(mapping->domain, iova, len);
1867 __free_iova(mapping, iova, len);
1868 }
1869
1870 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1871 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1872 {
1873 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1874 dma_addr_t iova = handle & PAGE_MASK;
1875 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1876 unsigned int offset = handle & ~PAGE_MASK;
1877
1878 if (!iova)
1879 return;
1880
1881 __dma_page_dev_to_cpu(page, offset, size, dir);
1882 }
1883
1884 static void arm_iommu_sync_single_for_device(struct device *dev,
1885 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1886 {
1887 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1888 dma_addr_t iova = handle & PAGE_MASK;
1889 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1890 unsigned int offset = handle & ~PAGE_MASK;
1891
1892 if (!iova)
1893 return;
1894
1895 __dma_page_cpu_to_dev(page, offset, size, dir);
1896 }
1897
1898 struct dma_map_ops iommu_ops = {
1899 .alloc = arm_iommu_alloc_attrs,
1900 .free = arm_iommu_free_attrs,
1901 .mmap = arm_iommu_mmap_attrs,
1902 .get_sgtable = arm_iommu_get_sgtable,
1903
1904 .map_page = arm_iommu_map_page,
1905 .unmap_page = arm_iommu_unmap_page,
1906 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1907 .sync_single_for_device = arm_iommu_sync_single_for_device,
1908
1909 .map_sg = arm_iommu_map_sg,
1910 .unmap_sg = arm_iommu_unmap_sg,
1911 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1912 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1913
1914 .set_dma_mask = arm_dma_set_mask,
1915 };
1916
1917 struct dma_map_ops iommu_coherent_ops = {
1918 .alloc = arm_iommu_alloc_attrs,
1919 .free = arm_iommu_free_attrs,
1920 .mmap = arm_iommu_mmap_attrs,
1921 .get_sgtable = arm_iommu_get_sgtable,
1922
1923 .map_page = arm_coherent_iommu_map_page,
1924 .unmap_page = arm_coherent_iommu_unmap_page,
1925
1926 .map_sg = arm_coherent_iommu_map_sg,
1927 .unmap_sg = arm_coherent_iommu_unmap_sg,
1928
1929 .set_dma_mask = arm_dma_set_mask,
1930 };
1931
1932 /**
1933 * arm_iommu_create_mapping
1934 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1935 * @base: start address of the valid IO address space
1936 * @size: maximum size of the valid IO address space
1937 *
1938 * Creates a mapping structure which holds information about used/unused
1939 * IO address ranges, which is required to perform memory allocation and
1940 * mapping with IOMMU aware functions.
1941 *
1942 * The client device need to be attached to the mapping with
1943 * arm_iommu_attach_device function.
1944 */
1945 struct dma_iommu_mapping *
1946 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
1947 {
1948 unsigned int bits = size >> PAGE_SHIFT;
1949 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1950 struct dma_iommu_mapping *mapping;
1951 int extensions = 1;
1952 int err = -ENOMEM;
1953
1954 if (!bitmap_size)
1955 return ERR_PTR(-EINVAL);
1956
1957 if (bitmap_size > PAGE_SIZE) {
1958 extensions = bitmap_size / PAGE_SIZE;
1959 bitmap_size = PAGE_SIZE;
1960 }
1961
1962 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1963 if (!mapping)
1964 goto err;
1965
1966 mapping->bitmap_size = bitmap_size;
1967 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1968 GFP_KERNEL);
1969 if (!mapping->bitmaps)
1970 goto err2;
1971
1972 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1973 if (!mapping->bitmaps[0])
1974 goto err3;
1975
1976 mapping->nr_bitmaps = 1;
1977 mapping->extensions = extensions;
1978 mapping->base = base;
1979 mapping->bits = BITS_PER_BYTE * bitmap_size;
1980
1981 spin_lock_init(&mapping->lock);
1982
1983 mapping->domain = iommu_domain_alloc(bus);
1984 if (!mapping->domain)
1985 goto err4;
1986
1987 kref_init(&mapping->kref);
1988 return mapping;
1989 err4:
1990 kfree(mapping->bitmaps[0]);
1991 err3:
1992 kfree(mapping->bitmaps);
1993 err2:
1994 kfree(mapping);
1995 err:
1996 return ERR_PTR(err);
1997 }
1998 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1999
2000 static void release_iommu_mapping(struct kref *kref)
2001 {
2002 int i;
2003 struct dma_iommu_mapping *mapping =
2004 container_of(kref, struct dma_iommu_mapping, kref);
2005
2006 iommu_domain_free(mapping->domain);
2007 for (i = 0; i < mapping->nr_bitmaps; i++)
2008 kfree(mapping->bitmaps[i]);
2009 kfree(mapping->bitmaps);
2010 kfree(mapping);
2011 }
2012
2013 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2014 {
2015 int next_bitmap;
2016
2017 if (mapping->nr_bitmaps > mapping->extensions)
2018 return -EINVAL;
2019
2020 next_bitmap = mapping->nr_bitmaps;
2021 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2022 GFP_ATOMIC);
2023 if (!mapping->bitmaps[next_bitmap])
2024 return -ENOMEM;
2025
2026 mapping->nr_bitmaps++;
2027
2028 return 0;
2029 }
2030
2031 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2032 {
2033 if (mapping)
2034 kref_put(&mapping->kref, release_iommu_mapping);
2035 }
2036 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2037
2038 /**
2039 * arm_iommu_attach_device
2040 * @dev: valid struct device pointer
2041 * @mapping: io address space mapping structure (returned from
2042 * arm_iommu_create_mapping)
2043 *
2044 * Attaches specified io address space mapping to the provided device,
2045 * this replaces the dma operations (dma_map_ops pointer) with the
2046 * IOMMU aware version. More than one client might be attached to
2047 * the same io address space mapping.
2048 */
2049 int arm_iommu_attach_device(struct device *dev,
2050 struct dma_iommu_mapping *mapping)
2051 {
2052 int err;
2053
2054 err = iommu_attach_device(mapping->domain, dev);
2055 if (err)
2056 return err;
2057
2058 kref_get(&mapping->kref);
2059 dev->archdata.mapping = mapping;
2060 set_dma_ops(dev, &iommu_ops);
2061
2062 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2063 return 0;
2064 }
2065 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2066
2067 /**
2068 * arm_iommu_detach_device
2069 * @dev: valid struct device pointer
2070 *
2071 * Detaches the provided device from a previously attached map.
2072 * This voids the dma operations (dma_map_ops pointer)
2073 */
2074 void arm_iommu_detach_device(struct device *dev)
2075 {
2076 struct dma_iommu_mapping *mapping;
2077
2078 mapping = to_dma_iommu_mapping(dev);
2079 if (!mapping) {
2080 dev_warn(dev, "Not attached\n");
2081 return;
2082 }
2083
2084 iommu_detach_device(mapping->domain, dev);
2085 kref_put(&mapping->kref, release_iommu_mapping);
2086 dev->archdata.mapping = NULL;
2087 set_dma_ops(dev, NULL);
2088
2089 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2090 }
2091 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2092
2093 #endif
This page took 0.079683 seconds and 5 git commands to generate.