Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / arch / arm / mm / dma-mapping.c
1 /*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
25 #include <linux/io.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
28
29 #include <asm/memory.h>
30 #include <asm/highmem.h>
31 #include <asm/cacheflush.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mach/arch.h>
34 #include <asm/dma-iommu.h>
35 #include <asm/mach/map.h>
36 #include <asm/system_info.h>
37 #include <asm/dma-contiguous.h>
38
39 #include "mm.h"
40
41 /*
42 * The DMA API is built upon the notion of "buffer ownership". A buffer
43 * is either exclusively owned by the CPU (and therefore may be accessed
44 * by it) or exclusively owned by the DMA device. These helper functions
45 * represent the transitions between these two ownership states.
46 *
47 * Note, however, that on later ARMs, this notion does not work due to
48 * speculative prefetches. We model our approach on the assumption that
49 * the CPU does do speculative prefetches, which means we clean caches
50 * before transfers and delay cache invalidation until transfer completion.
51 *
52 */
53 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
54 size_t, enum dma_data_direction);
55 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
56 size_t, enum dma_data_direction);
57
58 /**
59 * arm_dma_map_page - map a portion of a page for streaming DMA
60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
61 * @page: page that buffer resides in
62 * @offset: offset into page for start of buffer
63 * @size: size of buffer to map
64 * @dir: DMA transfer direction
65 *
66 * Ensure that any data held in the cache is appropriately discarded
67 * or written back.
68 *
69 * The device owns this memory once this call has completed. The CPU
70 * can regain ownership by calling dma_unmap_page().
71 */
72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
73 unsigned long offset, size_t size, enum dma_data_direction dir,
74 struct dma_attrs *attrs)
75 {
76 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
77 __dma_page_cpu_to_dev(page, offset, size, dir);
78 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
79 }
80
81 /**
82 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
83 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
84 * @handle: DMA address of buffer
85 * @size: size of buffer (same as passed to dma_map_page)
86 * @dir: DMA transfer direction (same as passed to dma_map_page)
87 *
88 * Unmap a page streaming mode DMA translation. The handle and size
89 * must match what was provided in the previous dma_map_page() call.
90 * All other usages are undefined.
91 *
92 * After this call, reads by the CPU to the buffer are guaranteed to see
93 * whatever the device wrote there.
94 */
95 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
96 size_t size, enum dma_data_direction dir,
97 struct dma_attrs *attrs)
98 {
99 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
100 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
101 handle & ~PAGE_MASK, size, dir);
102 }
103
104 static void arm_dma_sync_single_for_cpu(struct device *dev,
105 dma_addr_t handle, size_t size, enum dma_data_direction dir)
106 {
107 unsigned int offset = handle & (PAGE_SIZE - 1);
108 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
109 if (!arch_is_coherent())
110 __dma_page_dev_to_cpu(page, offset, size, dir);
111 }
112
113 static void arm_dma_sync_single_for_device(struct device *dev,
114 dma_addr_t handle, size_t size, enum dma_data_direction dir)
115 {
116 unsigned int offset = handle & (PAGE_SIZE - 1);
117 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
118 if (!arch_is_coherent())
119 __dma_page_cpu_to_dev(page, offset, size, dir);
120 }
121
122 static int arm_dma_set_mask(struct device *dev, u64 dma_mask);
123
124 struct dma_map_ops arm_dma_ops = {
125 .alloc = arm_dma_alloc,
126 .free = arm_dma_free,
127 .mmap = arm_dma_mmap,
128 .get_sgtable = arm_dma_get_sgtable,
129 .map_page = arm_dma_map_page,
130 .unmap_page = arm_dma_unmap_page,
131 .map_sg = arm_dma_map_sg,
132 .unmap_sg = arm_dma_unmap_sg,
133 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
134 .sync_single_for_device = arm_dma_sync_single_for_device,
135 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
136 .sync_sg_for_device = arm_dma_sync_sg_for_device,
137 .set_dma_mask = arm_dma_set_mask,
138 };
139 EXPORT_SYMBOL(arm_dma_ops);
140
141 static u64 get_coherent_dma_mask(struct device *dev)
142 {
143 u64 mask = (u64)arm_dma_limit;
144
145 if (dev) {
146 mask = dev->coherent_dma_mask;
147
148 /*
149 * Sanity check the DMA mask - it must be non-zero, and
150 * must be able to be satisfied by a DMA allocation.
151 */
152 if (mask == 0) {
153 dev_warn(dev, "coherent DMA mask is unset\n");
154 return 0;
155 }
156
157 if ((~mask) & (u64)arm_dma_limit) {
158 dev_warn(dev, "coherent DMA mask %#llx is smaller "
159 "than system GFP_DMA mask %#llx\n",
160 mask, (u64)arm_dma_limit);
161 return 0;
162 }
163 }
164
165 return mask;
166 }
167
168 static void __dma_clear_buffer(struct page *page, size_t size)
169 {
170 void *ptr;
171 /*
172 * Ensure that the allocated pages are zeroed, and that any data
173 * lurking in the kernel direct-mapped region is invalidated.
174 */
175 ptr = page_address(page);
176 if (ptr) {
177 memset(ptr, 0, size);
178 dmac_flush_range(ptr, ptr + size);
179 outer_flush_range(__pa(ptr), __pa(ptr) + size);
180 }
181 }
182
183 /*
184 * Allocate a DMA buffer for 'dev' of size 'size' using the
185 * specified gfp mask. Note that 'size' must be page aligned.
186 */
187 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
188 {
189 unsigned long order = get_order(size);
190 struct page *page, *p, *e;
191
192 page = alloc_pages(gfp, order);
193 if (!page)
194 return NULL;
195
196 /*
197 * Now split the huge page and free the excess pages
198 */
199 split_page(page, order);
200 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
201 __free_page(p);
202
203 __dma_clear_buffer(page, size);
204
205 return page;
206 }
207
208 /*
209 * Free a DMA buffer. 'size' must be page aligned.
210 */
211 static void __dma_free_buffer(struct page *page, size_t size)
212 {
213 struct page *e = page + (size >> PAGE_SHIFT);
214
215 while (page < e) {
216 __free_page(page);
217 page++;
218 }
219 }
220
221 #ifdef CONFIG_MMU
222 #ifdef CONFIG_HUGETLB_PAGE
223 #error ARM Coherent DMA allocator does not (yet) support huge TLB
224 #endif
225
226 static void *__alloc_from_contiguous(struct device *dev, size_t size,
227 pgprot_t prot, struct page **ret_page);
228
229 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
230 pgprot_t prot, struct page **ret_page,
231 const void *caller);
232
233 static void *
234 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
235 const void *caller)
236 {
237 struct vm_struct *area;
238 unsigned long addr;
239
240 /*
241 * DMA allocation can be mapped to user space, so lets
242 * set VM_USERMAP flags too.
243 */
244 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
245 caller);
246 if (!area)
247 return NULL;
248 addr = (unsigned long)area->addr;
249 area->phys_addr = __pfn_to_phys(page_to_pfn(page));
250
251 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
252 vunmap((void *)addr);
253 return NULL;
254 }
255 return (void *)addr;
256 }
257
258 static void __dma_free_remap(void *cpu_addr, size_t size)
259 {
260 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
261 struct vm_struct *area = find_vm_area(cpu_addr);
262 if (!area || (area->flags & flags) != flags) {
263 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
264 return;
265 }
266 unmap_kernel_range((unsigned long)cpu_addr, size);
267 vunmap(cpu_addr);
268 }
269
270 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
271
272 struct dma_pool {
273 size_t size;
274 spinlock_t lock;
275 unsigned long *bitmap;
276 unsigned long nr_pages;
277 void *vaddr;
278 struct page **pages;
279 };
280
281 static struct dma_pool atomic_pool = {
282 .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
283 };
284
285 static int __init early_coherent_pool(char *p)
286 {
287 atomic_pool.size = memparse(p, &p);
288 return 0;
289 }
290 early_param("coherent_pool", early_coherent_pool);
291
292 void __init init_dma_coherent_pool_size(unsigned long size)
293 {
294 /*
295 * Catch any attempt to set the pool size too late.
296 */
297 BUG_ON(atomic_pool.vaddr);
298
299 /*
300 * Set architecture specific coherent pool size only if
301 * it has not been changed by kernel command line parameter.
302 */
303 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
304 atomic_pool.size = size;
305 }
306
307 /*
308 * Initialise the coherent pool for atomic allocations.
309 */
310 static int __init atomic_pool_init(void)
311 {
312 struct dma_pool *pool = &atomic_pool;
313 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
314 unsigned long nr_pages = pool->size >> PAGE_SHIFT;
315 unsigned long *bitmap;
316 struct page *page;
317 struct page **pages;
318 void *ptr;
319 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
320
321 bitmap = kzalloc(bitmap_size, GFP_KERNEL);
322 if (!bitmap)
323 goto no_bitmap;
324
325 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
326 if (!pages)
327 goto no_pages;
328
329 if (IS_ENABLED(CONFIG_CMA))
330 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page);
331 else
332 ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot,
333 &page, NULL);
334 if (ptr) {
335 int i;
336
337 for (i = 0; i < nr_pages; i++)
338 pages[i] = page + i;
339
340 spin_lock_init(&pool->lock);
341 pool->vaddr = ptr;
342 pool->pages = pages;
343 pool->bitmap = bitmap;
344 pool->nr_pages = nr_pages;
345 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
346 (unsigned)pool->size / 1024);
347 return 0;
348 }
349 no_pages:
350 kfree(bitmap);
351 no_bitmap:
352 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
353 (unsigned)pool->size / 1024);
354 return -ENOMEM;
355 }
356 /*
357 * CMA is activated by core_initcall, so we must be called after it.
358 */
359 postcore_initcall(atomic_pool_init);
360
361 struct dma_contig_early_reserve {
362 phys_addr_t base;
363 unsigned long size;
364 };
365
366 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
367
368 static int dma_mmu_remap_num __initdata;
369
370 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
371 {
372 dma_mmu_remap[dma_mmu_remap_num].base = base;
373 dma_mmu_remap[dma_mmu_remap_num].size = size;
374 dma_mmu_remap_num++;
375 }
376
377 void __init dma_contiguous_remap(void)
378 {
379 int i;
380 for (i = 0; i < dma_mmu_remap_num; i++) {
381 phys_addr_t start = dma_mmu_remap[i].base;
382 phys_addr_t end = start + dma_mmu_remap[i].size;
383 struct map_desc map;
384 unsigned long addr;
385
386 if (end > arm_lowmem_limit)
387 end = arm_lowmem_limit;
388 if (start >= end)
389 continue;
390
391 map.pfn = __phys_to_pfn(start);
392 map.virtual = __phys_to_virt(start);
393 map.length = end - start;
394 map.type = MT_MEMORY_DMA_READY;
395
396 /*
397 * Clear previous low-memory mapping
398 */
399 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
400 addr += PMD_SIZE)
401 pmd_clear(pmd_off_k(addr));
402
403 iotable_init(&map, 1);
404 }
405 }
406
407 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
408 void *data)
409 {
410 struct page *page = virt_to_page(addr);
411 pgprot_t prot = *(pgprot_t *)data;
412
413 set_pte_ext(pte, mk_pte(page, prot), 0);
414 return 0;
415 }
416
417 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
418 {
419 unsigned long start = (unsigned long) page_address(page);
420 unsigned end = start + size;
421
422 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
423 dsb();
424 flush_tlb_kernel_range(start, end);
425 }
426
427 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
428 pgprot_t prot, struct page **ret_page,
429 const void *caller)
430 {
431 struct page *page;
432 void *ptr;
433 page = __dma_alloc_buffer(dev, size, gfp);
434 if (!page)
435 return NULL;
436
437 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
438 if (!ptr) {
439 __dma_free_buffer(page, size);
440 return NULL;
441 }
442
443 *ret_page = page;
444 return ptr;
445 }
446
447 static void *__alloc_from_pool(size_t size, struct page **ret_page)
448 {
449 struct dma_pool *pool = &atomic_pool;
450 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
451 unsigned int pageno;
452 unsigned long flags;
453 void *ptr = NULL;
454 unsigned long align_mask;
455
456 if (!pool->vaddr) {
457 WARN(1, "coherent pool not initialised!\n");
458 return NULL;
459 }
460
461 /*
462 * Align the region allocation - allocations from pool are rather
463 * small, so align them to their order in pages, minimum is a page
464 * size. This helps reduce fragmentation of the DMA space.
465 */
466 align_mask = (1 << get_order(size)) - 1;
467
468 spin_lock_irqsave(&pool->lock, flags);
469 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
470 0, count, align_mask);
471 if (pageno < pool->nr_pages) {
472 bitmap_set(pool->bitmap, pageno, count);
473 ptr = pool->vaddr + PAGE_SIZE * pageno;
474 *ret_page = pool->pages[pageno];
475 } else {
476 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
477 "Please increase it with coherent_pool= kernel parameter!\n",
478 (unsigned)pool->size / 1024);
479 }
480 spin_unlock_irqrestore(&pool->lock, flags);
481
482 return ptr;
483 }
484
485 static bool __in_atomic_pool(void *start, size_t size)
486 {
487 struct dma_pool *pool = &atomic_pool;
488 void *end = start + size;
489 void *pool_start = pool->vaddr;
490 void *pool_end = pool->vaddr + pool->size;
491
492 if (start < pool_start || start >= pool_end)
493 return false;
494
495 if (end <= pool_end)
496 return true;
497
498 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
499 start, end - 1, pool_start, pool_end - 1);
500
501 return false;
502 }
503
504 static int __free_from_pool(void *start, size_t size)
505 {
506 struct dma_pool *pool = &atomic_pool;
507 unsigned long pageno, count;
508 unsigned long flags;
509
510 if (!__in_atomic_pool(start, size))
511 return 0;
512
513 pageno = (start - pool->vaddr) >> PAGE_SHIFT;
514 count = size >> PAGE_SHIFT;
515
516 spin_lock_irqsave(&pool->lock, flags);
517 bitmap_clear(pool->bitmap, pageno, count);
518 spin_unlock_irqrestore(&pool->lock, flags);
519
520 return 1;
521 }
522
523 static void *__alloc_from_contiguous(struct device *dev, size_t size,
524 pgprot_t prot, struct page **ret_page)
525 {
526 unsigned long order = get_order(size);
527 size_t count = size >> PAGE_SHIFT;
528 struct page *page;
529
530 page = dma_alloc_from_contiguous(dev, count, order);
531 if (!page)
532 return NULL;
533
534 __dma_clear_buffer(page, size);
535 __dma_remap(page, size, prot);
536
537 *ret_page = page;
538 return page_address(page);
539 }
540
541 static void __free_from_contiguous(struct device *dev, struct page *page,
542 size_t size)
543 {
544 __dma_remap(page, size, pgprot_kernel);
545 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
546 }
547
548 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
549 {
550 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
551 pgprot_writecombine(prot) :
552 pgprot_dmacoherent(prot);
553 return prot;
554 }
555
556 #define nommu() 0
557
558 #else /* !CONFIG_MMU */
559
560 #define nommu() 1
561
562 #define __get_dma_pgprot(attrs, prot) __pgprot(0)
563 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
564 #define __alloc_from_pool(size, ret_page) NULL
565 #define __alloc_from_contiguous(dev, size, prot, ret) NULL
566 #define __free_from_pool(cpu_addr, size) 0
567 #define __free_from_contiguous(dev, page, size) do { } while (0)
568 #define __dma_free_remap(cpu_addr, size) do { } while (0)
569
570 #endif /* CONFIG_MMU */
571
572 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
573 struct page **ret_page)
574 {
575 struct page *page;
576 page = __dma_alloc_buffer(dev, size, gfp);
577 if (!page)
578 return NULL;
579
580 *ret_page = page;
581 return page_address(page);
582 }
583
584
585
586 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
587 gfp_t gfp, pgprot_t prot, const void *caller)
588 {
589 u64 mask = get_coherent_dma_mask(dev);
590 struct page *page;
591 void *addr;
592
593 #ifdef CONFIG_DMA_API_DEBUG
594 u64 limit = (mask + 1) & ~mask;
595 if (limit && size >= limit) {
596 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
597 size, mask);
598 return NULL;
599 }
600 #endif
601
602 if (!mask)
603 return NULL;
604
605 if (mask < 0xffffffffULL)
606 gfp |= GFP_DMA;
607
608 /*
609 * Following is a work-around (a.k.a. hack) to prevent pages
610 * with __GFP_COMP being passed to split_page() which cannot
611 * handle them. The real problem is that this flag probably
612 * should be 0 on ARM as it is not supported on this
613 * platform; see CONFIG_HUGETLBFS.
614 */
615 gfp &= ~(__GFP_COMP);
616
617 *handle = DMA_ERROR_CODE;
618 size = PAGE_ALIGN(size);
619
620 if (arch_is_coherent() || nommu())
621 addr = __alloc_simple_buffer(dev, size, gfp, &page);
622 else if (gfp & GFP_ATOMIC)
623 addr = __alloc_from_pool(size, &page);
624 else if (!IS_ENABLED(CONFIG_CMA))
625 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
626 else
627 addr = __alloc_from_contiguous(dev, size, prot, &page);
628
629 if (addr)
630 *handle = pfn_to_dma(dev, page_to_pfn(page));
631
632 return addr;
633 }
634
635 /*
636 * Allocate DMA-coherent memory space and return both the kernel remapped
637 * virtual and bus address for that space.
638 */
639 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
640 gfp_t gfp, struct dma_attrs *attrs)
641 {
642 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
643 void *memory;
644
645 if (dma_alloc_from_coherent(dev, size, handle, &memory))
646 return memory;
647
648 return __dma_alloc(dev, size, handle, gfp, prot,
649 __builtin_return_address(0));
650 }
651
652 /*
653 * Create userspace mapping for the DMA-coherent memory.
654 */
655 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
656 void *cpu_addr, dma_addr_t dma_addr, size_t size,
657 struct dma_attrs *attrs)
658 {
659 int ret = -ENXIO;
660 #ifdef CONFIG_MMU
661 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
662 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
663 unsigned long pfn = dma_to_pfn(dev, dma_addr);
664 unsigned long off = vma->vm_pgoff;
665
666 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
667
668 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
669 return ret;
670
671 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
672 ret = remap_pfn_range(vma, vma->vm_start,
673 pfn + off,
674 vma->vm_end - vma->vm_start,
675 vma->vm_page_prot);
676 }
677 #endif /* CONFIG_MMU */
678
679 return ret;
680 }
681
682 /*
683 * Free a buffer as defined by the above mapping.
684 */
685 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
686 dma_addr_t handle, struct dma_attrs *attrs)
687 {
688 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
689
690 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
691 return;
692
693 size = PAGE_ALIGN(size);
694
695 if (arch_is_coherent() || nommu()) {
696 __dma_free_buffer(page, size);
697 } else if (__free_from_pool(cpu_addr, size)) {
698 return;
699 } else if (!IS_ENABLED(CONFIG_CMA)) {
700 __dma_free_remap(cpu_addr, size);
701 __dma_free_buffer(page, size);
702 } else {
703 /*
704 * Non-atomic allocations cannot be freed with IRQs disabled
705 */
706 WARN_ON(irqs_disabled());
707 __free_from_contiguous(dev, page, size);
708 }
709 }
710
711 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
712 void *cpu_addr, dma_addr_t handle, size_t size,
713 struct dma_attrs *attrs)
714 {
715 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
716 int ret;
717
718 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
719 if (unlikely(ret))
720 return ret;
721
722 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
723 return 0;
724 }
725
726 static void dma_cache_maint_page(struct page *page, unsigned long offset,
727 size_t size, enum dma_data_direction dir,
728 void (*op)(const void *, size_t, int))
729 {
730 /*
731 * A single sg entry may refer to multiple physically contiguous
732 * pages. But we still need to process highmem pages individually.
733 * If highmem is not configured then the bulk of this loop gets
734 * optimized out.
735 */
736 size_t left = size;
737 do {
738 size_t len = left;
739 void *vaddr;
740
741 if (PageHighMem(page)) {
742 if (len + offset > PAGE_SIZE) {
743 if (offset >= PAGE_SIZE) {
744 page += offset / PAGE_SIZE;
745 offset %= PAGE_SIZE;
746 }
747 len = PAGE_SIZE - offset;
748 }
749 vaddr = kmap_high_get(page);
750 if (vaddr) {
751 vaddr += offset;
752 op(vaddr, len, dir);
753 kunmap_high(page);
754 } else if (cache_is_vipt()) {
755 /* unmapped pages might still be cached */
756 vaddr = kmap_atomic(page);
757 op(vaddr + offset, len, dir);
758 kunmap_atomic(vaddr);
759 }
760 } else {
761 vaddr = page_address(page) + offset;
762 op(vaddr, len, dir);
763 }
764 offset = 0;
765 page++;
766 left -= len;
767 } while (left);
768 }
769
770 /*
771 * Make an area consistent for devices.
772 * Note: Drivers should NOT use this function directly, as it will break
773 * platforms with CONFIG_DMABOUNCE.
774 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
775 */
776 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
777 size_t size, enum dma_data_direction dir)
778 {
779 unsigned long paddr;
780
781 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
782
783 paddr = page_to_phys(page) + off;
784 if (dir == DMA_FROM_DEVICE) {
785 outer_inv_range(paddr, paddr + size);
786 } else {
787 outer_clean_range(paddr, paddr + size);
788 }
789 /* FIXME: non-speculating: flush on bidirectional mappings? */
790 }
791
792 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
793 size_t size, enum dma_data_direction dir)
794 {
795 unsigned long paddr = page_to_phys(page) + off;
796
797 /* FIXME: non-speculating: not required */
798 /* don't bother invalidating if DMA to device */
799 if (dir != DMA_TO_DEVICE)
800 outer_inv_range(paddr, paddr + size);
801
802 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
803
804 /*
805 * Mark the D-cache clean for this page to avoid extra flushing.
806 */
807 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
808 set_bit(PG_dcache_clean, &page->flags);
809 }
810
811 /**
812 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
813 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
814 * @sg: list of buffers
815 * @nents: number of buffers to map
816 * @dir: DMA transfer direction
817 *
818 * Map a set of buffers described by scatterlist in streaming mode for DMA.
819 * This is the scatter-gather version of the dma_map_single interface.
820 * Here the scatter gather list elements are each tagged with the
821 * appropriate dma address and length. They are obtained via
822 * sg_dma_{address,length}.
823 *
824 * Device ownership issues as mentioned for dma_map_single are the same
825 * here.
826 */
827 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
828 enum dma_data_direction dir, struct dma_attrs *attrs)
829 {
830 struct dma_map_ops *ops = get_dma_ops(dev);
831 struct scatterlist *s;
832 int i, j;
833
834 for_each_sg(sg, s, nents, i) {
835 #ifdef CONFIG_NEED_SG_DMA_LENGTH
836 s->dma_length = s->length;
837 #endif
838 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
839 s->length, dir, attrs);
840 if (dma_mapping_error(dev, s->dma_address))
841 goto bad_mapping;
842 }
843 return nents;
844
845 bad_mapping:
846 for_each_sg(sg, s, i, j)
847 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
848 return 0;
849 }
850
851 /**
852 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
853 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
854 * @sg: list of buffers
855 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
856 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
857 *
858 * Unmap a set of streaming mode DMA translations. Again, CPU access
859 * rules concerning calls here are the same as for dma_unmap_single().
860 */
861 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
862 enum dma_data_direction dir, struct dma_attrs *attrs)
863 {
864 struct dma_map_ops *ops = get_dma_ops(dev);
865 struct scatterlist *s;
866
867 int i;
868
869 for_each_sg(sg, s, nents, i)
870 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
871 }
872
873 /**
874 * arm_dma_sync_sg_for_cpu
875 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
876 * @sg: list of buffers
877 * @nents: number of buffers to map (returned from dma_map_sg)
878 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
879 */
880 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
881 int nents, enum dma_data_direction dir)
882 {
883 struct dma_map_ops *ops = get_dma_ops(dev);
884 struct scatterlist *s;
885 int i;
886
887 for_each_sg(sg, s, nents, i)
888 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
889 dir);
890 }
891
892 /**
893 * arm_dma_sync_sg_for_device
894 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
895 * @sg: list of buffers
896 * @nents: number of buffers to map (returned from dma_map_sg)
897 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
898 */
899 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
900 int nents, enum dma_data_direction dir)
901 {
902 struct dma_map_ops *ops = get_dma_ops(dev);
903 struct scatterlist *s;
904 int i;
905
906 for_each_sg(sg, s, nents, i)
907 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
908 dir);
909 }
910
911 /*
912 * Return whether the given device DMA address mask can be supported
913 * properly. For example, if your device can only drive the low 24-bits
914 * during bus mastering, then you would pass 0x00ffffff as the mask
915 * to this function.
916 */
917 int dma_supported(struct device *dev, u64 mask)
918 {
919 if (mask < (u64)arm_dma_limit)
920 return 0;
921 return 1;
922 }
923 EXPORT_SYMBOL(dma_supported);
924
925 static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
926 {
927 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
928 return -EIO;
929
930 *dev->dma_mask = dma_mask;
931
932 return 0;
933 }
934
935 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
936
937 static int __init dma_debug_do_init(void)
938 {
939 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
940 return 0;
941 }
942 fs_initcall(dma_debug_do_init);
943
944 #ifdef CONFIG_ARM_DMA_USE_IOMMU
945
946 /* IOMMU */
947
948 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
949 size_t size)
950 {
951 unsigned int order = get_order(size);
952 unsigned int align = 0;
953 unsigned int count, start;
954 unsigned long flags;
955
956 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
957 (1 << mapping->order) - 1) >> mapping->order;
958
959 if (order > mapping->order)
960 align = (1 << (order - mapping->order)) - 1;
961
962 spin_lock_irqsave(&mapping->lock, flags);
963 start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
964 count, align);
965 if (start > mapping->bits) {
966 spin_unlock_irqrestore(&mapping->lock, flags);
967 return DMA_ERROR_CODE;
968 }
969
970 bitmap_set(mapping->bitmap, start, count);
971 spin_unlock_irqrestore(&mapping->lock, flags);
972
973 return mapping->base + (start << (mapping->order + PAGE_SHIFT));
974 }
975
976 static inline void __free_iova(struct dma_iommu_mapping *mapping,
977 dma_addr_t addr, size_t size)
978 {
979 unsigned int start = (addr - mapping->base) >>
980 (mapping->order + PAGE_SHIFT);
981 unsigned int count = ((size >> PAGE_SHIFT) +
982 (1 << mapping->order) - 1) >> mapping->order;
983 unsigned long flags;
984
985 spin_lock_irqsave(&mapping->lock, flags);
986 bitmap_clear(mapping->bitmap, start, count);
987 spin_unlock_irqrestore(&mapping->lock, flags);
988 }
989
990 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
991 {
992 struct page **pages;
993 int count = size >> PAGE_SHIFT;
994 int array_size = count * sizeof(struct page *);
995 int i = 0;
996
997 if (array_size <= PAGE_SIZE)
998 pages = kzalloc(array_size, gfp);
999 else
1000 pages = vzalloc(array_size);
1001 if (!pages)
1002 return NULL;
1003
1004 while (count) {
1005 int j, order = __fls(count);
1006
1007 pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
1008 while (!pages[i] && order)
1009 pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
1010 if (!pages[i])
1011 goto error;
1012
1013 if (order)
1014 split_page(pages[i], order);
1015 j = 1 << order;
1016 while (--j)
1017 pages[i + j] = pages[i] + j;
1018
1019 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1020 i += 1 << order;
1021 count -= 1 << order;
1022 }
1023
1024 return pages;
1025 error:
1026 while (i--)
1027 if (pages[i])
1028 __free_pages(pages[i], 0);
1029 if (array_size <= PAGE_SIZE)
1030 kfree(pages);
1031 else
1032 vfree(pages);
1033 return NULL;
1034 }
1035
1036 static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size)
1037 {
1038 int count = size >> PAGE_SHIFT;
1039 int array_size = count * sizeof(struct page *);
1040 int i;
1041 for (i = 0; i < count; i++)
1042 if (pages[i])
1043 __free_pages(pages[i], 0);
1044 if (array_size <= PAGE_SIZE)
1045 kfree(pages);
1046 else
1047 vfree(pages);
1048 return 0;
1049 }
1050
1051 /*
1052 * Create a CPU mapping for a specified pages
1053 */
1054 static void *
1055 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1056 const void *caller)
1057 {
1058 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1059 struct vm_struct *area;
1060 unsigned long p;
1061
1062 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1063 caller);
1064 if (!area)
1065 return NULL;
1066
1067 area->pages = pages;
1068 area->nr_pages = nr_pages;
1069 p = (unsigned long)area->addr;
1070
1071 for (i = 0; i < nr_pages; i++) {
1072 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1073 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1074 goto err;
1075 p += PAGE_SIZE;
1076 }
1077 return area->addr;
1078 err:
1079 unmap_kernel_range((unsigned long)area->addr, size);
1080 vunmap(area->addr);
1081 return NULL;
1082 }
1083
1084 /*
1085 * Create a mapping in device IO address space for specified pages
1086 */
1087 static dma_addr_t
1088 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1089 {
1090 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1091 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1092 dma_addr_t dma_addr, iova;
1093 int i, ret = DMA_ERROR_CODE;
1094
1095 dma_addr = __alloc_iova(mapping, size);
1096 if (dma_addr == DMA_ERROR_CODE)
1097 return dma_addr;
1098
1099 iova = dma_addr;
1100 for (i = 0; i < count; ) {
1101 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1102 phys_addr_t phys = page_to_phys(pages[i]);
1103 unsigned int len, j;
1104
1105 for (j = i + 1; j < count; j++, next_pfn++)
1106 if (page_to_pfn(pages[j]) != next_pfn)
1107 break;
1108
1109 len = (j - i) << PAGE_SHIFT;
1110 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1111 if (ret < 0)
1112 goto fail;
1113 iova += len;
1114 i = j;
1115 }
1116 return dma_addr;
1117 fail:
1118 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1119 __free_iova(mapping, dma_addr, size);
1120 return DMA_ERROR_CODE;
1121 }
1122
1123 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1124 {
1125 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1126
1127 /*
1128 * add optional in-page offset from iova to size and align
1129 * result to page size
1130 */
1131 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1132 iova &= PAGE_MASK;
1133
1134 iommu_unmap(mapping->domain, iova, size);
1135 __free_iova(mapping, iova, size);
1136 return 0;
1137 }
1138
1139 static struct page **__atomic_get_pages(void *addr)
1140 {
1141 struct dma_pool *pool = &atomic_pool;
1142 struct page **pages = pool->pages;
1143 int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1144
1145 return pages + offs;
1146 }
1147
1148 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1149 {
1150 struct vm_struct *area;
1151
1152 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1153 return __atomic_get_pages(cpu_addr);
1154
1155 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1156 return cpu_addr;
1157
1158 area = find_vm_area(cpu_addr);
1159 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1160 return area->pages;
1161 return NULL;
1162 }
1163
1164 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1165 dma_addr_t *handle)
1166 {
1167 struct page *page;
1168 void *addr;
1169
1170 addr = __alloc_from_pool(size, &page);
1171 if (!addr)
1172 return NULL;
1173
1174 *handle = __iommu_create_mapping(dev, &page, size);
1175 if (*handle == DMA_ERROR_CODE)
1176 goto err_mapping;
1177
1178 return addr;
1179
1180 err_mapping:
1181 __free_from_pool(addr, size);
1182 return NULL;
1183 }
1184
1185 static void __iommu_free_atomic(struct device *dev, struct page **pages,
1186 dma_addr_t handle, size_t size)
1187 {
1188 __iommu_remove_mapping(dev, handle, size);
1189 __free_from_pool(page_address(pages[0]), size);
1190 }
1191
1192 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1193 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1194 {
1195 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1196 struct page **pages;
1197 void *addr = NULL;
1198
1199 *handle = DMA_ERROR_CODE;
1200 size = PAGE_ALIGN(size);
1201
1202 if (gfp & GFP_ATOMIC)
1203 return __iommu_alloc_atomic(dev, size, handle);
1204
1205 pages = __iommu_alloc_buffer(dev, size, gfp);
1206 if (!pages)
1207 return NULL;
1208
1209 *handle = __iommu_create_mapping(dev, pages, size);
1210 if (*handle == DMA_ERROR_CODE)
1211 goto err_buffer;
1212
1213 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1214 return pages;
1215
1216 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1217 __builtin_return_address(0));
1218 if (!addr)
1219 goto err_mapping;
1220
1221 return addr;
1222
1223 err_mapping:
1224 __iommu_remove_mapping(dev, *handle, size);
1225 err_buffer:
1226 __iommu_free_buffer(dev, pages, size);
1227 return NULL;
1228 }
1229
1230 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1231 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1232 struct dma_attrs *attrs)
1233 {
1234 unsigned long uaddr = vma->vm_start;
1235 unsigned long usize = vma->vm_end - vma->vm_start;
1236 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1237
1238 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1239
1240 if (!pages)
1241 return -ENXIO;
1242
1243 do {
1244 int ret = vm_insert_page(vma, uaddr, *pages++);
1245 if (ret) {
1246 pr_err("Remapping memory failed: %d\n", ret);
1247 return ret;
1248 }
1249 uaddr += PAGE_SIZE;
1250 usize -= PAGE_SIZE;
1251 } while (usize > 0);
1252
1253 return 0;
1254 }
1255
1256 /*
1257 * free a page as defined by the above mapping.
1258 * Must not be called with IRQs disabled.
1259 */
1260 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1261 dma_addr_t handle, struct dma_attrs *attrs)
1262 {
1263 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1264 size = PAGE_ALIGN(size);
1265
1266 if (!pages) {
1267 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1268 return;
1269 }
1270
1271 if (__in_atomic_pool(cpu_addr, size)) {
1272 __iommu_free_atomic(dev, pages, handle, size);
1273 return;
1274 }
1275
1276 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1277 unmap_kernel_range((unsigned long)cpu_addr, size);
1278 vunmap(cpu_addr);
1279 }
1280
1281 __iommu_remove_mapping(dev, handle, size);
1282 __iommu_free_buffer(dev, pages, size);
1283 }
1284
1285 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1286 void *cpu_addr, dma_addr_t dma_addr,
1287 size_t size, struct dma_attrs *attrs)
1288 {
1289 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1290 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1291
1292 if (!pages)
1293 return -ENXIO;
1294
1295 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1296 GFP_KERNEL);
1297 }
1298
1299 /*
1300 * Map a part of the scatter-gather list into contiguous io address space
1301 */
1302 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1303 size_t size, dma_addr_t *handle,
1304 enum dma_data_direction dir, struct dma_attrs *attrs)
1305 {
1306 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1307 dma_addr_t iova, iova_base;
1308 int ret = 0;
1309 unsigned int count;
1310 struct scatterlist *s;
1311
1312 size = PAGE_ALIGN(size);
1313 *handle = DMA_ERROR_CODE;
1314
1315 iova_base = iova = __alloc_iova(mapping, size);
1316 if (iova == DMA_ERROR_CODE)
1317 return -ENOMEM;
1318
1319 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1320 phys_addr_t phys = page_to_phys(sg_page(s));
1321 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1322
1323 if (!arch_is_coherent() &&
1324 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1325 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1326
1327 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1328 if (ret < 0)
1329 goto fail;
1330 count += len >> PAGE_SHIFT;
1331 iova += len;
1332 }
1333 *handle = iova_base;
1334
1335 return 0;
1336 fail:
1337 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1338 __free_iova(mapping, iova_base, size);
1339 return ret;
1340 }
1341
1342 /**
1343 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1344 * @dev: valid struct device pointer
1345 * @sg: list of buffers
1346 * @nents: number of buffers to map
1347 * @dir: DMA transfer direction
1348 *
1349 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1350 * The scatter gather list elements are merged together (if possible) and
1351 * tagged with the appropriate dma address and length. They are obtained via
1352 * sg_dma_{address,length}.
1353 */
1354 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1355 enum dma_data_direction dir, struct dma_attrs *attrs)
1356 {
1357 struct scatterlist *s = sg, *dma = sg, *start = sg;
1358 int i, count = 0;
1359 unsigned int offset = s->offset;
1360 unsigned int size = s->offset + s->length;
1361 unsigned int max = dma_get_max_seg_size(dev);
1362
1363 for (i = 1; i < nents; i++) {
1364 s = sg_next(s);
1365
1366 s->dma_address = DMA_ERROR_CODE;
1367 s->dma_length = 0;
1368
1369 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1370 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1371 dir, attrs) < 0)
1372 goto bad_mapping;
1373
1374 dma->dma_address += offset;
1375 dma->dma_length = size - offset;
1376
1377 size = offset = s->offset;
1378 start = s;
1379 dma = sg_next(dma);
1380 count += 1;
1381 }
1382 size += s->length;
1383 }
1384 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs) < 0)
1385 goto bad_mapping;
1386
1387 dma->dma_address += offset;
1388 dma->dma_length = size - offset;
1389
1390 return count+1;
1391
1392 bad_mapping:
1393 for_each_sg(sg, s, count, i)
1394 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1395 return 0;
1396 }
1397
1398 /**
1399 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1400 * @dev: valid struct device pointer
1401 * @sg: list of buffers
1402 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1403 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1404 *
1405 * Unmap a set of streaming mode DMA translations. Again, CPU access
1406 * rules concerning calls here are the same as for dma_unmap_single().
1407 */
1408 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1409 enum dma_data_direction dir, struct dma_attrs *attrs)
1410 {
1411 struct scatterlist *s;
1412 int i;
1413
1414 for_each_sg(sg, s, nents, i) {
1415 if (sg_dma_len(s))
1416 __iommu_remove_mapping(dev, sg_dma_address(s),
1417 sg_dma_len(s));
1418 if (!arch_is_coherent() &&
1419 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1420 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1421 s->length, dir);
1422 }
1423 }
1424
1425 /**
1426 * arm_iommu_sync_sg_for_cpu
1427 * @dev: valid struct device pointer
1428 * @sg: list of buffers
1429 * @nents: number of buffers to map (returned from dma_map_sg)
1430 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1431 */
1432 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1433 int nents, enum dma_data_direction dir)
1434 {
1435 struct scatterlist *s;
1436 int i;
1437
1438 for_each_sg(sg, s, nents, i)
1439 if (!arch_is_coherent())
1440 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1441
1442 }
1443
1444 /**
1445 * arm_iommu_sync_sg_for_device
1446 * @dev: valid struct device pointer
1447 * @sg: list of buffers
1448 * @nents: number of buffers to map (returned from dma_map_sg)
1449 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1450 */
1451 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1452 int nents, enum dma_data_direction dir)
1453 {
1454 struct scatterlist *s;
1455 int i;
1456
1457 for_each_sg(sg, s, nents, i)
1458 if (!arch_is_coherent())
1459 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1460 }
1461
1462
1463 /**
1464 * arm_iommu_map_page
1465 * @dev: valid struct device pointer
1466 * @page: page that buffer resides in
1467 * @offset: offset into page for start of buffer
1468 * @size: size of buffer to map
1469 * @dir: DMA transfer direction
1470 *
1471 * IOMMU aware version of arm_dma_map_page()
1472 */
1473 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1474 unsigned long offset, size_t size, enum dma_data_direction dir,
1475 struct dma_attrs *attrs)
1476 {
1477 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1478 dma_addr_t dma_addr;
1479 int ret, len = PAGE_ALIGN(size + offset);
1480
1481 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1482 __dma_page_cpu_to_dev(page, offset, size, dir);
1483
1484 dma_addr = __alloc_iova(mapping, len);
1485 if (dma_addr == DMA_ERROR_CODE)
1486 return dma_addr;
1487
1488 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
1489 if (ret < 0)
1490 goto fail;
1491
1492 return dma_addr + offset;
1493 fail:
1494 __free_iova(mapping, dma_addr, len);
1495 return DMA_ERROR_CODE;
1496 }
1497
1498 /**
1499 * arm_iommu_unmap_page
1500 * @dev: valid struct device pointer
1501 * @handle: DMA address of buffer
1502 * @size: size of buffer (same as passed to dma_map_page)
1503 * @dir: DMA transfer direction (same as passed to dma_map_page)
1504 *
1505 * IOMMU aware version of arm_dma_unmap_page()
1506 */
1507 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1508 size_t size, enum dma_data_direction dir,
1509 struct dma_attrs *attrs)
1510 {
1511 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1512 dma_addr_t iova = handle & PAGE_MASK;
1513 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1514 int offset = handle & ~PAGE_MASK;
1515 int len = PAGE_ALIGN(size + offset);
1516
1517 if (!iova)
1518 return;
1519
1520 if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1521 __dma_page_dev_to_cpu(page, offset, size, dir);
1522
1523 iommu_unmap(mapping->domain, iova, len);
1524 __free_iova(mapping, iova, len);
1525 }
1526
1527 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1528 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1529 {
1530 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1531 dma_addr_t iova = handle & PAGE_MASK;
1532 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1533 unsigned int offset = handle & ~PAGE_MASK;
1534
1535 if (!iova)
1536 return;
1537
1538 if (!arch_is_coherent())
1539 __dma_page_dev_to_cpu(page, offset, size, dir);
1540 }
1541
1542 static void arm_iommu_sync_single_for_device(struct device *dev,
1543 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1544 {
1545 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1546 dma_addr_t iova = handle & PAGE_MASK;
1547 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1548 unsigned int offset = handle & ~PAGE_MASK;
1549
1550 if (!iova)
1551 return;
1552
1553 __dma_page_cpu_to_dev(page, offset, size, dir);
1554 }
1555
1556 struct dma_map_ops iommu_ops = {
1557 .alloc = arm_iommu_alloc_attrs,
1558 .free = arm_iommu_free_attrs,
1559 .mmap = arm_iommu_mmap_attrs,
1560 .get_sgtable = arm_iommu_get_sgtable,
1561
1562 .map_page = arm_iommu_map_page,
1563 .unmap_page = arm_iommu_unmap_page,
1564 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1565 .sync_single_for_device = arm_iommu_sync_single_for_device,
1566
1567 .map_sg = arm_iommu_map_sg,
1568 .unmap_sg = arm_iommu_unmap_sg,
1569 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1570 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1571 };
1572
1573 /**
1574 * arm_iommu_create_mapping
1575 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1576 * @base: start address of the valid IO address space
1577 * @size: size of the valid IO address space
1578 * @order: accuracy of the IO addresses allocations
1579 *
1580 * Creates a mapping structure which holds information about used/unused
1581 * IO address ranges, which is required to perform memory allocation and
1582 * mapping with IOMMU aware functions.
1583 *
1584 * The client device need to be attached to the mapping with
1585 * arm_iommu_attach_device function.
1586 */
1587 struct dma_iommu_mapping *
1588 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1589 int order)
1590 {
1591 unsigned int count = size >> (PAGE_SHIFT + order);
1592 unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1593 struct dma_iommu_mapping *mapping;
1594 int err = -ENOMEM;
1595
1596 if (!count)
1597 return ERR_PTR(-EINVAL);
1598
1599 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1600 if (!mapping)
1601 goto err;
1602
1603 mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1604 if (!mapping->bitmap)
1605 goto err2;
1606
1607 mapping->base = base;
1608 mapping->bits = BITS_PER_BYTE * bitmap_size;
1609 mapping->order = order;
1610 spin_lock_init(&mapping->lock);
1611
1612 mapping->domain = iommu_domain_alloc(bus);
1613 if (!mapping->domain)
1614 goto err3;
1615
1616 kref_init(&mapping->kref);
1617 return mapping;
1618 err3:
1619 kfree(mapping->bitmap);
1620 err2:
1621 kfree(mapping);
1622 err:
1623 return ERR_PTR(err);
1624 }
1625
1626 static void release_iommu_mapping(struct kref *kref)
1627 {
1628 struct dma_iommu_mapping *mapping =
1629 container_of(kref, struct dma_iommu_mapping, kref);
1630
1631 iommu_domain_free(mapping->domain);
1632 kfree(mapping->bitmap);
1633 kfree(mapping);
1634 }
1635
1636 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1637 {
1638 if (mapping)
1639 kref_put(&mapping->kref, release_iommu_mapping);
1640 }
1641
1642 /**
1643 * arm_iommu_attach_device
1644 * @dev: valid struct device pointer
1645 * @mapping: io address space mapping structure (returned from
1646 * arm_iommu_create_mapping)
1647 *
1648 * Attaches specified io address space mapping to the provided device,
1649 * this replaces the dma operations (dma_map_ops pointer) with the
1650 * IOMMU aware version. More than one client might be attached to
1651 * the same io address space mapping.
1652 */
1653 int arm_iommu_attach_device(struct device *dev,
1654 struct dma_iommu_mapping *mapping)
1655 {
1656 int err;
1657
1658 err = iommu_attach_device(mapping->domain, dev);
1659 if (err)
1660 return err;
1661
1662 kref_get(&mapping->kref);
1663 dev->archdata.mapping = mapping;
1664 set_dma_ops(dev, &iommu_ops);
1665
1666 pr_info("Attached IOMMU controller to %s device.\n", dev_name(dev));
1667 return 0;
1668 }
1669
1670 #endif
This page took 0.163931 seconds and 5 git commands to generate.