Merge tag 'sound-4.7-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[deliverable/linux.git] / arch / arm / mm / dma-mapping.c
1 /*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
27 #include <linux/io.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
31
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
41
42 #include "dma.h"
43 #include "mm.h"
44
45 struct arm_dma_alloc_args {
46 struct device *dev;
47 size_t size;
48 gfp_t gfp;
49 pgprot_t prot;
50 const void *caller;
51 bool want_vaddr;
52 };
53
54 struct arm_dma_free_args {
55 struct device *dev;
56 size_t size;
57 void *cpu_addr;
58 struct page *page;
59 bool want_vaddr;
60 };
61
62 struct arm_dma_allocator {
63 void *(*alloc)(struct arm_dma_alloc_args *args,
64 struct page **ret_page);
65 void (*free)(struct arm_dma_free_args *args);
66 };
67
68 struct arm_dma_buffer {
69 struct list_head list;
70 void *virt;
71 struct arm_dma_allocator *allocator;
72 };
73
74 static LIST_HEAD(arm_dma_bufs);
75 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76
77 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78 {
79 struct arm_dma_buffer *buf, *found = NULL;
80 unsigned long flags;
81
82 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 list_for_each_entry(buf, &arm_dma_bufs, list) {
84 if (buf->virt == virt) {
85 list_del(&buf->list);
86 found = buf;
87 break;
88 }
89 }
90 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 return found;
92 }
93
94 /*
95 * The DMA API is built upon the notion of "buffer ownership". A buffer
96 * is either exclusively owned by the CPU (and therefore may be accessed
97 * by it) or exclusively owned by the DMA device. These helper functions
98 * represent the transitions between these two ownership states.
99 *
100 * Note, however, that on later ARMs, this notion does not work due to
101 * speculative prefetches. We model our approach on the assumption that
102 * the CPU does do speculative prefetches, which means we clean caches
103 * before transfers and delay cache invalidation until transfer completion.
104 *
105 */
106 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
107 size_t, enum dma_data_direction);
108 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
109 size_t, enum dma_data_direction);
110
111 /**
112 * arm_dma_map_page - map a portion of a page for streaming DMA
113 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
114 * @page: page that buffer resides in
115 * @offset: offset into page for start of buffer
116 * @size: size of buffer to map
117 * @dir: DMA transfer direction
118 *
119 * Ensure that any data held in the cache is appropriately discarded
120 * or written back.
121 *
122 * The device owns this memory once this call has completed. The CPU
123 * can regain ownership by calling dma_unmap_page().
124 */
125 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
126 unsigned long offset, size_t size, enum dma_data_direction dir,
127 struct dma_attrs *attrs)
128 {
129 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
130 __dma_page_cpu_to_dev(page, offset, size, dir);
131 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
132 }
133
134 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
135 unsigned long offset, size_t size, enum dma_data_direction dir,
136 struct dma_attrs *attrs)
137 {
138 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
139 }
140
141 /**
142 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
143 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
144 * @handle: DMA address of buffer
145 * @size: size of buffer (same as passed to dma_map_page)
146 * @dir: DMA transfer direction (same as passed to dma_map_page)
147 *
148 * Unmap a page streaming mode DMA translation. The handle and size
149 * must match what was provided in the previous dma_map_page() call.
150 * All other usages are undefined.
151 *
152 * After this call, reads by the CPU to the buffer are guaranteed to see
153 * whatever the device wrote there.
154 */
155 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
156 size_t size, enum dma_data_direction dir,
157 struct dma_attrs *attrs)
158 {
159 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
160 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
161 handle & ~PAGE_MASK, size, dir);
162 }
163
164 static void arm_dma_sync_single_for_cpu(struct device *dev,
165 dma_addr_t handle, size_t size, enum dma_data_direction dir)
166 {
167 unsigned int offset = handle & (PAGE_SIZE - 1);
168 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
169 __dma_page_dev_to_cpu(page, offset, size, dir);
170 }
171
172 static void arm_dma_sync_single_for_device(struct device *dev,
173 dma_addr_t handle, size_t size, enum dma_data_direction dir)
174 {
175 unsigned int offset = handle & (PAGE_SIZE - 1);
176 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
177 __dma_page_cpu_to_dev(page, offset, size, dir);
178 }
179
180 struct dma_map_ops arm_dma_ops = {
181 .alloc = arm_dma_alloc,
182 .free = arm_dma_free,
183 .mmap = arm_dma_mmap,
184 .get_sgtable = arm_dma_get_sgtable,
185 .map_page = arm_dma_map_page,
186 .unmap_page = arm_dma_unmap_page,
187 .map_sg = arm_dma_map_sg,
188 .unmap_sg = arm_dma_unmap_sg,
189 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
190 .sync_single_for_device = arm_dma_sync_single_for_device,
191 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
192 .sync_sg_for_device = arm_dma_sync_sg_for_device,
193 };
194 EXPORT_SYMBOL(arm_dma_ops);
195
196 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
197 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
198 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
199 dma_addr_t handle, struct dma_attrs *attrs);
200 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
201 void *cpu_addr, dma_addr_t dma_addr, size_t size,
202 struct dma_attrs *attrs);
203
204 struct dma_map_ops arm_coherent_dma_ops = {
205 .alloc = arm_coherent_dma_alloc,
206 .free = arm_coherent_dma_free,
207 .mmap = arm_coherent_dma_mmap,
208 .get_sgtable = arm_dma_get_sgtable,
209 .map_page = arm_coherent_dma_map_page,
210 .map_sg = arm_dma_map_sg,
211 };
212 EXPORT_SYMBOL(arm_coherent_dma_ops);
213
214 static int __dma_supported(struct device *dev, u64 mask, bool warn)
215 {
216 unsigned long max_dma_pfn;
217
218 /*
219 * If the mask allows for more memory than we can address,
220 * and we actually have that much memory, then we must
221 * indicate that DMA to this device is not supported.
222 */
223 if (sizeof(mask) != sizeof(dma_addr_t) &&
224 mask > (dma_addr_t)~0 &&
225 dma_to_pfn(dev, ~0) < max_pfn - 1) {
226 if (warn) {
227 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
228 mask);
229 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
230 }
231 return 0;
232 }
233
234 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
235
236 /*
237 * Translate the device's DMA mask to a PFN limit. This
238 * PFN number includes the page which we can DMA to.
239 */
240 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
241 if (warn)
242 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
243 mask,
244 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
245 max_dma_pfn + 1);
246 return 0;
247 }
248
249 return 1;
250 }
251
252 static u64 get_coherent_dma_mask(struct device *dev)
253 {
254 u64 mask = (u64)DMA_BIT_MASK(32);
255
256 if (dev) {
257 mask = dev->coherent_dma_mask;
258
259 /*
260 * Sanity check the DMA mask - it must be non-zero, and
261 * must be able to be satisfied by a DMA allocation.
262 */
263 if (mask == 0) {
264 dev_warn(dev, "coherent DMA mask is unset\n");
265 return 0;
266 }
267
268 if (!__dma_supported(dev, mask, true))
269 return 0;
270 }
271
272 return mask;
273 }
274
275 static void __dma_clear_buffer(struct page *page, size_t size)
276 {
277 /*
278 * Ensure that the allocated pages are zeroed, and that any data
279 * lurking in the kernel direct-mapped region is invalidated.
280 */
281 if (PageHighMem(page)) {
282 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
283 phys_addr_t end = base + size;
284 while (size > 0) {
285 void *ptr = kmap_atomic(page);
286 memset(ptr, 0, PAGE_SIZE);
287 dmac_flush_range(ptr, ptr + PAGE_SIZE);
288 kunmap_atomic(ptr);
289 page++;
290 size -= PAGE_SIZE;
291 }
292 outer_flush_range(base, end);
293 } else {
294 void *ptr = page_address(page);
295 memset(ptr, 0, size);
296 dmac_flush_range(ptr, ptr + size);
297 outer_flush_range(__pa(ptr), __pa(ptr) + size);
298 }
299 }
300
301 /*
302 * Allocate a DMA buffer for 'dev' of size 'size' using the
303 * specified gfp mask. Note that 'size' must be page aligned.
304 */
305 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
306 {
307 unsigned long order = get_order(size);
308 struct page *page, *p, *e;
309
310 page = alloc_pages(gfp, order);
311 if (!page)
312 return NULL;
313
314 /*
315 * Now split the huge page and free the excess pages
316 */
317 split_page(page, order);
318 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
319 __free_page(p);
320
321 __dma_clear_buffer(page, size);
322
323 return page;
324 }
325
326 /*
327 * Free a DMA buffer. 'size' must be page aligned.
328 */
329 static void __dma_free_buffer(struct page *page, size_t size)
330 {
331 struct page *e = page + (size >> PAGE_SHIFT);
332
333 while (page < e) {
334 __free_page(page);
335 page++;
336 }
337 }
338
339 #ifdef CONFIG_MMU
340
341 static void *__alloc_from_contiguous(struct device *dev, size_t size,
342 pgprot_t prot, struct page **ret_page,
343 const void *caller, bool want_vaddr);
344
345 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
346 pgprot_t prot, struct page **ret_page,
347 const void *caller, bool want_vaddr);
348
349 static void *
350 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
351 const void *caller)
352 {
353 /*
354 * DMA allocation can be mapped to user space, so lets
355 * set VM_USERMAP flags too.
356 */
357 return dma_common_contiguous_remap(page, size,
358 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
359 prot, caller);
360 }
361
362 static void __dma_free_remap(void *cpu_addr, size_t size)
363 {
364 dma_common_free_remap(cpu_addr, size,
365 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
366 }
367
368 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
369 static struct gen_pool *atomic_pool;
370
371 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
372
373 static int __init early_coherent_pool(char *p)
374 {
375 atomic_pool_size = memparse(p, &p);
376 return 0;
377 }
378 early_param("coherent_pool", early_coherent_pool);
379
380 void __init init_dma_coherent_pool_size(unsigned long size)
381 {
382 /*
383 * Catch any attempt to set the pool size too late.
384 */
385 BUG_ON(atomic_pool);
386
387 /*
388 * Set architecture specific coherent pool size only if
389 * it has not been changed by kernel command line parameter.
390 */
391 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
392 atomic_pool_size = size;
393 }
394
395 /*
396 * Initialise the coherent pool for atomic allocations.
397 */
398 static int __init atomic_pool_init(void)
399 {
400 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
401 gfp_t gfp = GFP_KERNEL | GFP_DMA;
402 struct page *page;
403 void *ptr;
404
405 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
406 if (!atomic_pool)
407 goto out;
408
409 if (dev_get_cma_area(NULL))
410 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
411 &page, atomic_pool_init, true);
412 else
413 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
414 &page, atomic_pool_init, true);
415 if (ptr) {
416 int ret;
417
418 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
419 page_to_phys(page),
420 atomic_pool_size, -1);
421 if (ret)
422 goto destroy_genpool;
423
424 gen_pool_set_algo(atomic_pool,
425 gen_pool_first_fit_order_align,
426 (void *)PAGE_SHIFT);
427 pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
428 atomic_pool_size / 1024);
429 return 0;
430 }
431
432 destroy_genpool:
433 gen_pool_destroy(atomic_pool);
434 atomic_pool = NULL;
435 out:
436 pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
437 atomic_pool_size / 1024);
438 return -ENOMEM;
439 }
440 /*
441 * CMA is activated by core_initcall, so we must be called after it.
442 */
443 postcore_initcall(atomic_pool_init);
444
445 struct dma_contig_early_reserve {
446 phys_addr_t base;
447 unsigned long size;
448 };
449
450 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
451
452 static int dma_mmu_remap_num __initdata;
453
454 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
455 {
456 dma_mmu_remap[dma_mmu_remap_num].base = base;
457 dma_mmu_remap[dma_mmu_remap_num].size = size;
458 dma_mmu_remap_num++;
459 }
460
461 void __init dma_contiguous_remap(void)
462 {
463 int i;
464 for (i = 0; i < dma_mmu_remap_num; i++) {
465 phys_addr_t start = dma_mmu_remap[i].base;
466 phys_addr_t end = start + dma_mmu_remap[i].size;
467 struct map_desc map;
468 unsigned long addr;
469
470 if (end > arm_lowmem_limit)
471 end = arm_lowmem_limit;
472 if (start >= end)
473 continue;
474
475 map.pfn = __phys_to_pfn(start);
476 map.virtual = __phys_to_virt(start);
477 map.length = end - start;
478 map.type = MT_MEMORY_DMA_READY;
479
480 /*
481 * Clear previous low-memory mapping to ensure that the
482 * TLB does not see any conflicting entries, then flush
483 * the TLB of the old entries before creating new mappings.
484 *
485 * This ensures that any speculatively loaded TLB entries
486 * (even though they may be rare) can not cause any problems,
487 * and ensures that this code is architecturally compliant.
488 */
489 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
490 addr += PMD_SIZE)
491 pmd_clear(pmd_off_k(addr));
492
493 flush_tlb_kernel_range(__phys_to_virt(start),
494 __phys_to_virt(end));
495
496 iotable_init(&map, 1);
497 }
498 }
499
500 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
501 void *data)
502 {
503 struct page *page = virt_to_page(addr);
504 pgprot_t prot = *(pgprot_t *)data;
505
506 set_pte_ext(pte, mk_pte(page, prot), 0);
507 return 0;
508 }
509
510 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
511 {
512 unsigned long start = (unsigned long) page_address(page);
513 unsigned end = start + size;
514
515 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
516 flush_tlb_kernel_range(start, end);
517 }
518
519 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
520 pgprot_t prot, struct page **ret_page,
521 const void *caller, bool want_vaddr)
522 {
523 struct page *page;
524 void *ptr = NULL;
525 page = __dma_alloc_buffer(dev, size, gfp);
526 if (!page)
527 return NULL;
528 if (!want_vaddr)
529 goto out;
530
531 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
532 if (!ptr) {
533 __dma_free_buffer(page, size);
534 return NULL;
535 }
536
537 out:
538 *ret_page = page;
539 return ptr;
540 }
541
542 static void *__alloc_from_pool(size_t size, struct page **ret_page)
543 {
544 unsigned long val;
545 void *ptr = NULL;
546
547 if (!atomic_pool) {
548 WARN(1, "coherent pool not initialised!\n");
549 return NULL;
550 }
551
552 val = gen_pool_alloc(atomic_pool, size);
553 if (val) {
554 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
555
556 *ret_page = phys_to_page(phys);
557 ptr = (void *)val;
558 }
559
560 return ptr;
561 }
562
563 static bool __in_atomic_pool(void *start, size_t size)
564 {
565 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
566 }
567
568 static int __free_from_pool(void *start, size_t size)
569 {
570 if (!__in_atomic_pool(start, size))
571 return 0;
572
573 gen_pool_free(atomic_pool, (unsigned long)start, size);
574
575 return 1;
576 }
577
578 static void *__alloc_from_contiguous(struct device *dev, size_t size,
579 pgprot_t prot, struct page **ret_page,
580 const void *caller, bool want_vaddr)
581 {
582 unsigned long order = get_order(size);
583 size_t count = size >> PAGE_SHIFT;
584 struct page *page;
585 void *ptr = NULL;
586
587 page = dma_alloc_from_contiguous(dev, count, order);
588 if (!page)
589 return NULL;
590
591 __dma_clear_buffer(page, size);
592
593 if (!want_vaddr)
594 goto out;
595
596 if (PageHighMem(page)) {
597 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
598 if (!ptr) {
599 dma_release_from_contiguous(dev, page, count);
600 return NULL;
601 }
602 } else {
603 __dma_remap(page, size, prot);
604 ptr = page_address(page);
605 }
606
607 out:
608 *ret_page = page;
609 return ptr;
610 }
611
612 static void __free_from_contiguous(struct device *dev, struct page *page,
613 void *cpu_addr, size_t size, bool want_vaddr)
614 {
615 if (want_vaddr) {
616 if (PageHighMem(page))
617 __dma_free_remap(cpu_addr, size);
618 else
619 __dma_remap(page, size, PAGE_KERNEL);
620 }
621 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
622 }
623
624 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
625 {
626 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
627 pgprot_writecombine(prot) :
628 pgprot_dmacoherent(prot);
629 return prot;
630 }
631
632 #define nommu() 0
633
634 #else /* !CONFIG_MMU */
635
636 #define nommu() 1
637
638 #define __get_dma_pgprot(attrs, prot) __pgprot(0)
639 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL
640 #define __alloc_from_pool(size, ret_page) NULL
641 #define __alloc_from_contiguous(dev, size, prot, ret, c, wv) NULL
642 #define __free_from_pool(cpu_addr, size) do { } while (0)
643 #define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0)
644 #define __dma_free_remap(cpu_addr, size) do { } while (0)
645
646 #endif /* CONFIG_MMU */
647
648 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
649 struct page **ret_page)
650 {
651 struct page *page;
652 page = __dma_alloc_buffer(dev, size, gfp);
653 if (!page)
654 return NULL;
655
656 *ret_page = page;
657 return page_address(page);
658 }
659
660 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
661 struct page **ret_page)
662 {
663 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
664 ret_page);
665 }
666
667 static void simple_allocator_free(struct arm_dma_free_args *args)
668 {
669 __dma_free_buffer(args->page, args->size);
670 }
671
672 static struct arm_dma_allocator simple_allocator = {
673 .alloc = simple_allocator_alloc,
674 .free = simple_allocator_free,
675 };
676
677 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
678 struct page **ret_page)
679 {
680 return __alloc_from_contiguous(args->dev, args->size, args->prot,
681 ret_page, args->caller,
682 args->want_vaddr);
683 }
684
685 static void cma_allocator_free(struct arm_dma_free_args *args)
686 {
687 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
688 args->size, args->want_vaddr);
689 }
690
691 static struct arm_dma_allocator cma_allocator = {
692 .alloc = cma_allocator_alloc,
693 .free = cma_allocator_free,
694 };
695
696 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
697 struct page **ret_page)
698 {
699 return __alloc_from_pool(args->size, ret_page);
700 }
701
702 static void pool_allocator_free(struct arm_dma_free_args *args)
703 {
704 __free_from_pool(args->cpu_addr, args->size);
705 }
706
707 static struct arm_dma_allocator pool_allocator = {
708 .alloc = pool_allocator_alloc,
709 .free = pool_allocator_free,
710 };
711
712 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
713 struct page **ret_page)
714 {
715 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
716 args->prot, ret_page, args->caller,
717 args->want_vaddr);
718 }
719
720 static void remap_allocator_free(struct arm_dma_free_args *args)
721 {
722 if (args->want_vaddr)
723 __dma_free_remap(args->cpu_addr, args->size);
724
725 __dma_free_buffer(args->page, args->size);
726 }
727
728 static struct arm_dma_allocator remap_allocator = {
729 .alloc = remap_allocator_alloc,
730 .free = remap_allocator_free,
731 };
732
733 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
734 gfp_t gfp, pgprot_t prot, bool is_coherent,
735 struct dma_attrs *attrs, const void *caller)
736 {
737 u64 mask = get_coherent_dma_mask(dev);
738 struct page *page = NULL;
739 void *addr;
740 bool allowblock, cma;
741 struct arm_dma_buffer *buf;
742 struct arm_dma_alloc_args args = {
743 .dev = dev,
744 .size = PAGE_ALIGN(size),
745 .gfp = gfp,
746 .prot = prot,
747 .caller = caller,
748 .want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
749 };
750
751 #ifdef CONFIG_DMA_API_DEBUG
752 u64 limit = (mask + 1) & ~mask;
753 if (limit && size >= limit) {
754 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
755 size, mask);
756 return NULL;
757 }
758 #endif
759
760 if (!mask)
761 return NULL;
762
763 buf = kzalloc(sizeof(*buf),
764 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
765 if (!buf)
766 return NULL;
767
768 if (mask < 0xffffffffULL)
769 gfp |= GFP_DMA;
770
771 /*
772 * Following is a work-around (a.k.a. hack) to prevent pages
773 * with __GFP_COMP being passed to split_page() which cannot
774 * handle them. The real problem is that this flag probably
775 * should be 0 on ARM as it is not supported on this
776 * platform; see CONFIG_HUGETLBFS.
777 */
778 gfp &= ~(__GFP_COMP);
779 args.gfp = gfp;
780
781 *handle = DMA_ERROR_CODE;
782 allowblock = gfpflags_allow_blocking(gfp);
783 cma = allowblock ? dev_get_cma_area(dev) : false;
784
785 if (cma)
786 buf->allocator = &cma_allocator;
787 else if (nommu() || is_coherent)
788 buf->allocator = &simple_allocator;
789 else if (allowblock)
790 buf->allocator = &remap_allocator;
791 else
792 buf->allocator = &pool_allocator;
793
794 addr = buf->allocator->alloc(&args, &page);
795
796 if (page) {
797 unsigned long flags;
798
799 *handle = pfn_to_dma(dev, page_to_pfn(page));
800 buf->virt = args.want_vaddr ? addr : page;
801
802 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
803 list_add(&buf->list, &arm_dma_bufs);
804 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
805 } else {
806 kfree(buf);
807 }
808
809 return args.want_vaddr ? addr : page;
810 }
811
812 /*
813 * Allocate DMA-coherent memory space and return both the kernel remapped
814 * virtual and bus address for that space.
815 */
816 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
817 gfp_t gfp, struct dma_attrs *attrs)
818 {
819 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
820
821 return __dma_alloc(dev, size, handle, gfp, prot, false,
822 attrs, __builtin_return_address(0));
823 }
824
825 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
826 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
827 {
828 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
829 attrs, __builtin_return_address(0));
830 }
831
832 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
833 void *cpu_addr, dma_addr_t dma_addr, size_t size,
834 struct dma_attrs *attrs)
835 {
836 int ret = -ENXIO;
837 #ifdef CONFIG_MMU
838 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
839 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
840 unsigned long pfn = dma_to_pfn(dev, dma_addr);
841 unsigned long off = vma->vm_pgoff;
842
843 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
844 return ret;
845
846 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
847 ret = remap_pfn_range(vma, vma->vm_start,
848 pfn + off,
849 vma->vm_end - vma->vm_start,
850 vma->vm_page_prot);
851 }
852 #endif /* CONFIG_MMU */
853
854 return ret;
855 }
856
857 /*
858 * Create userspace mapping for the DMA-coherent memory.
859 */
860 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
861 void *cpu_addr, dma_addr_t dma_addr, size_t size,
862 struct dma_attrs *attrs)
863 {
864 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
865 }
866
867 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
868 void *cpu_addr, dma_addr_t dma_addr, size_t size,
869 struct dma_attrs *attrs)
870 {
871 #ifdef CONFIG_MMU
872 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
873 #endif /* CONFIG_MMU */
874 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
875 }
876
877 /*
878 * Free a buffer as defined by the above mapping.
879 */
880 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
881 dma_addr_t handle, struct dma_attrs *attrs,
882 bool is_coherent)
883 {
884 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
885 struct arm_dma_buffer *buf;
886 struct arm_dma_free_args args = {
887 .dev = dev,
888 .size = PAGE_ALIGN(size),
889 .cpu_addr = cpu_addr,
890 .page = page,
891 .want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
892 };
893
894 buf = arm_dma_buffer_find(cpu_addr);
895 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
896 return;
897
898 buf->allocator->free(&args);
899 kfree(buf);
900 }
901
902 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
903 dma_addr_t handle, struct dma_attrs *attrs)
904 {
905 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
906 }
907
908 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
909 dma_addr_t handle, struct dma_attrs *attrs)
910 {
911 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
912 }
913
914 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
915 void *cpu_addr, dma_addr_t handle, size_t size,
916 struct dma_attrs *attrs)
917 {
918 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
919 int ret;
920
921 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
922 if (unlikely(ret))
923 return ret;
924
925 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
926 return 0;
927 }
928
929 static void dma_cache_maint_page(struct page *page, unsigned long offset,
930 size_t size, enum dma_data_direction dir,
931 void (*op)(const void *, size_t, int))
932 {
933 unsigned long pfn;
934 size_t left = size;
935
936 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
937 offset %= PAGE_SIZE;
938
939 /*
940 * A single sg entry may refer to multiple physically contiguous
941 * pages. But we still need to process highmem pages individually.
942 * If highmem is not configured then the bulk of this loop gets
943 * optimized out.
944 */
945 do {
946 size_t len = left;
947 void *vaddr;
948
949 page = pfn_to_page(pfn);
950
951 if (PageHighMem(page)) {
952 if (len + offset > PAGE_SIZE)
953 len = PAGE_SIZE - offset;
954
955 if (cache_is_vipt_nonaliasing()) {
956 vaddr = kmap_atomic(page);
957 op(vaddr + offset, len, dir);
958 kunmap_atomic(vaddr);
959 } else {
960 vaddr = kmap_high_get(page);
961 if (vaddr) {
962 op(vaddr + offset, len, dir);
963 kunmap_high(page);
964 }
965 }
966 } else {
967 vaddr = page_address(page) + offset;
968 op(vaddr, len, dir);
969 }
970 offset = 0;
971 pfn++;
972 left -= len;
973 } while (left);
974 }
975
976 /*
977 * Make an area consistent for devices.
978 * Note: Drivers should NOT use this function directly, as it will break
979 * platforms with CONFIG_DMABOUNCE.
980 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
981 */
982 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
983 size_t size, enum dma_data_direction dir)
984 {
985 phys_addr_t paddr;
986
987 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
988
989 paddr = page_to_phys(page) + off;
990 if (dir == DMA_FROM_DEVICE) {
991 outer_inv_range(paddr, paddr + size);
992 } else {
993 outer_clean_range(paddr, paddr + size);
994 }
995 /* FIXME: non-speculating: flush on bidirectional mappings? */
996 }
997
998 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
999 size_t size, enum dma_data_direction dir)
1000 {
1001 phys_addr_t paddr = page_to_phys(page) + off;
1002
1003 /* FIXME: non-speculating: not required */
1004 /* in any case, don't bother invalidating if DMA to device */
1005 if (dir != DMA_TO_DEVICE) {
1006 outer_inv_range(paddr, paddr + size);
1007
1008 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1009 }
1010
1011 /*
1012 * Mark the D-cache clean for these pages to avoid extra flushing.
1013 */
1014 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1015 unsigned long pfn;
1016 size_t left = size;
1017
1018 pfn = page_to_pfn(page) + off / PAGE_SIZE;
1019 off %= PAGE_SIZE;
1020 if (off) {
1021 pfn++;
1022 left -= PAGE_SIZE - off;
1023 }
1024 while (left >= PAGE_SIZE) {
1025 page = pfn_to_page(pfn++);
1026 set_bit(PG_dcache_clean, &page->flags);
1027 left -= PAGE_SIZE;
1028 }
1029 }
1030 }
1031
1032 /**
1033 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1034 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1035 * @sg: list of buffers
1036 * @nents: number of buffers to map
1037 * @dir: DMA transfer direction
1038 *
1039 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1040 * This is the scatter-gather version of the dma_map_single interface.
1041 * Here the scatter gather list elements are each tagged with the
1042 * appropriate dma address and length. They are obtained via
1043 * sg_dma_{address,length}.
1044 *
1045 * Device ownership issues as mentioned for dma_map_single are the same
1046 * here.
1047 */
1048 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1049 enum dma_data_direction dir, struct dma_attrs *attrs)
1050 {
1051 struct dma_map_ops *ops = get_dma_ops(dev);
1052 struct scatterlist *s;
1053 int i, j;
1054
1055 for_each_sg(sg, s, nents, i) {
1056 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1057 s->dma_length = s->length;
1058 #endif
1059 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1060 s->length, dir, attrs);
1061 if (dma_mapping_error(dev, s->dma_address))
1062 goto bad_mapping;
1063 }
1064 return nents;
1065
1066 bad_mapping:
1067 for_each_sg(sg, s, i, j)
1068 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1069 return 0;
1070 }
1071
1072 /**
1073 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1074 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1075 * @sg: list of buffers
1076 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1077 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1078 *
1079 * Unmap a set of streaming mode DMA translations. Again, CPU access
1080 * rules concerning calls here are the same as for dma_unmap_single().
1081 */
1082 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1083 enum dma_data_direction dir, struct dma_attrs *attrs)
1084 {
1085 struct dma_map_ops *ops = get_dma_ops(dev);
1086 struct scatterlist *s;
1087
1088 int i;
1089
1090 for_each_sg(sg, s, nents, i)
1091 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1092 }
1093
1094 /**
1095 * arm_dma_sync_sg_for_cpu
1096 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1097 * @sg: list of buffers
1098 * @nents: number of buffers to map (returned from dma_map_sg)
1099 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1100 */
1101 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1102 int nents, enum dma_data_direction dir)
1103 {
1104 struct dma_map_ops *ops = get_dma_ops(dev);
1105 struct scatterlist *s;
1106 int i;
1107
1108 for_each_sg(sg, s, nents, i)
1109 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1110 dir);
1111 }
1112
1113 /**
1114 * arm_dma_sync_sg_for_device
1115 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1116 * @sg: list of buffers
1117 * @nents: number of buffers to map (returned from dma_map_sg)
1118 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1119 */
1120 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1121 int nents, enum dma_data_direction dir)
1122 {
1123 struct dma_map_ops *ops = get_dma_ops(dev);
1124 struct scatterlist *s;
1125 int i;
1126
1127 for_each_sg(sg, s, nents, i)
1128 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1129 dir);
1130 }
1131
1132 /*
1133 * Return whether the given device DMA address mask can be supported
1134 * properly. For example, if your device can only drive the low 24-bits
1135 * during bus mastering, then you would pass 0x00ffffff as the mask
1136 * to this function.
1137 */
1138 int dma_supported(struct device *dev, u64 mask)
1139 {
1140 return __dma_supported(dev, mask, false);
1141 }
1142 EXPORT_SYMBOL(dma_supported);
1143
1144 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
1145
1146 static int __init dma_debug_do_init(void)
1147 {
1148 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1149 return 0;
1150 }
1151 fs_initcall(dma_debug_do_init);
1152
1153 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1154
1155 /* IOMMU */
1156
1157 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1158
1159 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1160 size_t size)
1161 {
1162 unsigned int order = get_order(size);
1163 unsigned int align = 0;
1164 unsigned int count, start;
1165 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1166 unsigned long flags;
1167 dma_addr_t iova;
1168 int i;
1169
1170 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1171 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1172
1173 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1174 align = (1 << order) - 1;
1175
1176 spin_lock_irqsave(&mapping->lock, flags);
1177 for (i = 0; i < mapping->nr_bitmaps; i++) {
1178 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1179 mapping->bits, 0, count, align);
1180
1181 if (start > mapping->bits)
1182 continue;
1183
1184 bitmap_set(mapping->bitmaps[i], start, count);
1185 break;
1186 }
1187
1188 /*
1189 * No unused range found. Try to extend the existing mapping
1190 * and perform a second attempt to reserve an IO virtual
1191 * address range of size bytes.
1192 */
1193 if (i == mapping->nr_bitmaps) {
1194 if (extend_iommu_mapping(mapping)) {
1195 spin_unlock_irqrestore(&mapping->lock, flags);
1196 return DMA_ERROR_CODE;
1197 }
1198
1199 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1200 mapping->bits, 0, count, align);
1201
1202 if (start > mapping->bits) {
1203 spin_unlock_irqrestore(&mapping->lock, flags);
1204 return DMA_ERROR_CODE;
1205 }
1206
1207 bitmap_set(mapping->bitmaps[i], start, count);
1208 }
1209 spin_unlock_irqrestore(&mapping->lock, flags);
1210
1211 iova = mapping->base + (mapping_size * i);
1212 iova += start << PAGE_SHIFT;
1213
1214 return iova;
1215 }
1216
1217 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1218 dma_addr_t addr, size_t size)
1219 {
1220 unsigned int start, count;
1221 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1222 unsigned long flags;
1223 dma_addr_t bitmap_base;
1224 u32 bitmap_index;
1225
1226 if (!size)
1227 return;
1228
1229 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1230 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1231
1232 bitmap_base = mapping->base + mapping_size * bitmap_index;
1233
1234 start = (addr - bitmap_base) >> PAGE_SHIFT;
1235
1236 if (addr + size > bitmap_base + mapping_size) {
1237 /*
1238 * The address range to be freed reaches into the iova
1239 * range of the next bitmap. This should not happen as
1240 * we don't allow this in __alloc_iova (at the
1241 * moment).
1242 */
1243 BUG();
1244 } else
1245 count = size >> PAGE_SHIFT;
1246
1247 spin_lock_irqsave(&mapping->lock, flags);
1248 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1249 spin_unlock_irqrestore(&mapping->lock, flags);
1250 }
1251
1252 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1253 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1254
1255 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1256 gfp_t gfp, struct dma_attrs *attrs)
1257 {
1258 struct page **pages;
1259 int count = size >> PAGE_SHIFT;
1260 int array_size = count * sizeof(struct page *);
1261 int i = 0;
1262 int order_idx = 0;
1263
1264 if (array_size <= PAGE_SIZE)
1265 pages = kzalloc(array_size, GFP_KERNEL);
1266 else
1267 pages = vzalloc(array_size);
1268 if (!pages)
1269 return NULL;
1270
1271 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1272 {
1273 unsigned long order = get_order(size);
1274 struct page *page;
1275
1276 page = dma_alloc_from_contiguous(dev, count, order);
1277 if (!page)
1278 goto error;
1279
1280 __dma_clear_buffer(page, size);
1281
1282 for (i = 0; i < count; i++)
1283 pages[i] = page + i;
1284
1285 return pages;
1286 }
1287
1288 /* Go straight to 4K chunks if caller says it's OK. */
1289 if (dma_get_attr(DMA_ATTR_ALLOC_SINGLE_PAGES, attrs))
1290 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1291
1292 /*
1293 * IOMMU can map any pages, so himem can also be used here
1294 */
1295 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1296
1297 while (count) {
1298 int j, order;
1299
1300 order = iommu_order_array[order_idx];
1301
1302 /* Drop down when we get small */
1303 if (__fls(count) < order) {
1304 order_idx++;
1305 continue;
1306 }
1307
1308 if (order) {
1309 /* See if it's easy to allocate a high-order chunk */
1310 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1311
1312 /* Go down a notch at first sign of pressure */
1313 if (!pages[i]) {
1314 order_idx++;
1315 continue;
1316 }
1317 } else {
1318 pages[i] = alloc_pages(gfp, 0);
1319 if (!pages[i])
1320 goto error;
1321 }
1322
1323 if (order) {
1324 split_page(pages[i], order);
1325 j = 1 << order;
1326 while (--j)
1327 pages[i + j] = pages[i] + j;
1328 }
1329
1330 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1331 i += 1 << order;
1332 count -= 1 << order;
1333 }
1334
1335 return pages;
1336 error:
1337 while (i--)
1338 if (pages[i])
1339 __free_pages(pages[i], 0);
1340 kvfree(pages);
1341 return NULL;
1342 }
1343
1344 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1345 size_t size, struct dma_attrs *attrs)
1346 {
1347 int count = size >> PAGE_SHIFT;
1348 int i;
1349
1350 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1351 dma_release_from_contiguous(dev, pages[0], count);
1352 } else {
1353 for (i = 0; i < count; i++)
1354 if (pages[i])
1355 __free_pages(pages[i], 0);
1356 }
1357
1358 kvfree(pages);
1359 return 0;
1360 }
1361
1362 /*
1363 * Create a CPU mapping for a specified pages
1364 */
1365 static void *
1366 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1367 const void *caller)
1368 {
1369 return dma_common_pages_remap(pages, size,
1370 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1371 }
1372
1373 /*
1374 * Create a mapping in device IO address space for specified pages
1375 */
1376 static dma_addr_t
1377 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1378 {
1379 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1380 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1381 dma_addr_t dma_addr, iova;
1382 int i;
1383
1384 dma_addr = __alloc_iova(mapping, size);
1385 if (dma_addr == DMA_ERROR_CODE)
1386 return dma_addr;
1387
1388 iova = dma_addr;
1389 for (i = 0; i < count; ) {
1390 int ret;
1391
1392 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1393 phys_addr_t phys = page_to_phys(pages[i]);
1394 unsigned int len, j;
1395
1396 for (j = i + 1; j < count; j++, next_pfn++)
1397 if (page_to_pfn(pages[j]) != next_pfn)
1398 break;
1399
1400 len = (j - i) << PAGE_SHIFT;
1401 ret = iommu_map(mapping->domain, iova, phys, len,
1402 IOMMU_READ|IOMMU_WRITE);
1403 if (ret < 0)
1404 goto fail;
1405 iova += len;
1406 i = j;
1407 }
1408 return dma_addr;
1409 fail:
1410 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1411 __free_iova(mapping, dma_addr, size);
1412 return DMA_ERROR_CODE;
1413 }
1414
1415 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1416 {
1417 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1418
1419 /*
1420 * add optional in-page offset from iova to size and align
1421 * result to page size
1422 */
1423 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1424 iova &= PAGE_MASK;
1425
1426 iommu_unmap(mapping->domain, iova, size);
1427 __free_iova(mapping, iova, size);
1428 return 0;
1429 }
1430
1431 static struct page **__atomic_get_pages(void *addr)
1432 {
1433 struct page *page;
1434 phys_addr_t phys;
1435
1436 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1437 page = phys_to_page(phys);
1438
1439 return (struct page **)page;
1440 }
1441
1442 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1443 {
1444 struct vm_struct *area;
1445
1446 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1447 return __atomic_get_pages(cpu_addr);
1448
1449 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1450 return cpu_addr;
1451
1452 area = find_vm_area(cpu_addr);
1453 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1454 return area->pages;
1455 return NULL;
1456 }
1457
1458 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1459 dma_addr_t *handle)
1460 {
1461 struct page *page;
1462 void *addr;
1463
1464 addr = __alloc_from_pool(size, &page);
1465 if (!addr)
1466 return NULL;
1467
1468 *handle = __iommu_create_mapping(dev, &page, size);
1469 if (*handle == DMA_ERROR_CODE)
1470 goto err_mapping;
1471
1472 return addr;
1473
1474 err_mapping:
1475 __free_from_pool(addr, size);
1476 return NULL;
1477 }
1478
1479 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1480 dma_addr_t handle, size_t size)
1481 {
1482 __iommu_remove_mapping(dev, handle, size);
1483 __free_from_pool(cpu_addr, size);
1484 }
1485
1486 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1487 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1488 {
1489 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1490 struct page **pages;
1491 void *addr = NULL;
1492
1493 *handle = DMA_ERROR_CODE;
1494 size = PAGE_ALIGN(size);
1495
1496 if (!gfpflags_allow_blocking(gfp))
1497 return __iommu_alloc_atomic(dev, size, handle);
1498
1499 /*
1500 * Following is a work-around (a.k.a. hack) to prevent pages
1501 * with __GFP_COMP being passed to split_page() which cannot
1502 * handle them. The real problem is that this flag probably
1503 * should be 0 on ARM as it is not supported on this
1504 * platform; see CONFIG_HUGETLBFS.
1505 */
1506 gfp &= ~(__GFP_COMP);
1507
1508 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1509 if (!pages)
1510 return NULL;
1511
1512 *handle = __iommu_create_mapping(dev, pages, size);
1513 if (*handle == DMA_ERROR_CODE)
1514 goto err_buffer;
1515
1516 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1517 return pages;
1518
1519 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1520 __builtin_return_address(0));
1521 if (!addr)
1522 goto err_mapping;
1523
1524 return addr;
1525
1526 err_mapping:
1527 __iommu_remove_mapping(dev, *handle, size);
1528 err_buffer:
1529 __iommu_free_buffer(dev, pages, size, attrs);
1530 return NULL;
1531 }
1532
1533 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1534 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1535 struct dma_attrs *attrs)
1536 {
1537 unsigned long uaddr = vma->vm_start;
1538 unsigned long usize = vma->vm_end - vma->vm_start;
1539 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1540 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1541 unsigned long off = vma->vm_pgoff;
1542
1543 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1544
1545 if (!pages)
1546 return -ENXIO;
1547
1548 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1549 return -ENXIO;
1550
1551 pages += off;
1552
1553 do {
1554 int ret = vm_insert_page(vma, uaddr, *pages++);
1555 if (ret) {
1556 pr_err("Remapping memory failed: %d\n", ret);
1557 return ret;
1558 }
1559 uaddr += PAGE_SIZE;
1560 usize -= PAGE_SIZE;
1561 } while (usize > 0);
1562
1563 return 0;
1564 }
1565
1566 /*
1567 * free a page as defined by the above mapping.
1568 * Must not be called with IRQs disabled.
1569 */
1570 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1571 dma_addr_t handle, struct dma_attrs *attrs)
1572 {
1573 struct page **pages;
1574 size = PAGE_ALIGN(size);
1575
1576 if (__in_atomic_pool(cpu_addr, size)) {
1577 __iommu_free_atomic(dev, cpu_addr, handle, size);
1578 return;
1579 }
1580
1581 pages = __iommu_get_pages(cpu_addr, attrs);
1582 if (!pages) {
1583 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1584 return;
1585 }
1586
1587 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1588 dma_common_free_remap(cpu_addr, size,
1589 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1590 }
1591
1592 __iommu_remove_mapping(dev, handle, size);
1593 __iommu_free_buffer(dev, pages, size, attrs);
1594 }
1595
1596 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1597 void *cpu_addr, dma_addr_t dma_addr,
1598 size_t size, struct dma_attrs *attrs)
1599 {
1600 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1601 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1602
1603 if (!pages)
1604 return -ENXIO;
1605
1606 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1607 GFP_KERNEL);
1608 }
1609
1610 static int __dma_direction_to_prot(enum dma_data_direction dir)
1611 {
1612 int prot;
1613
1614 switch (dir) {
1615 case DMA_BIDIRECTIONAL:
1616 prot = IOMMU_READ | IOMMU_WRITE;
1617 break;
1618 case DMA_TO_DEVICE:
1619 prot = IOMMU_READ;
1620 break;
1621 case DMA_FROM_DEVICE:
1622 prot = IOMMU_WRITE;
1623 break;
1624 default:
1625 prot = 0;
1626 }
1627
1628 return prot;
1629 }
1630
1631 /*
1632 * Map a part of the scatter-gather list into contiguous io address space
1633 */
1634 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1635 size_t size, dma_addr_t *handle,
1636 enum dma_data_direction dir, struct dma_attrs *attrs,
1637 bool is_coherent)
1638 {
1639 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1640 dma_addr_t iova, iova_base;
1641 int ret = 0;
1642 unsigned int count;
1643 struct scatterlist *s;
1644 int prot;
1645
1646 size = PAGE_ALIGN(size);
1647 *handle = DMA_ERROR_CODE;
1648
1649 iova_base = iova = __alloc_iova(mapping, size);
1650 if (iova == DMA_ERROR_CODE)
1651 return -ENOMEM;
1652
1653 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1654 phys_addr_t phys = page_to_phys(sg_page(s));
1655 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1656
1657 if (!is_coherent &&
1658 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1659 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1660
1661 prot = __dma_direction_to_prot(dir);
1662
1663 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1664 if (ret < 0)
1665 goto fail;
1666 count += len >> PAGE_SHIFT;
1667 iova += len;
1668 }
1669 *handle = iova_base;
1670
1671 return 0;
1672 fail:
1673 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1674 __free_iova(mapping, iova_base, size);
1675 return ret;
1676 }
1677
1678 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1679 enum dma_data_direction dir, struct dma_attrs *attrs,
1680 bool is_coherent)
1681 {
1682 struct scatterlist *s = sg, *dma = sg, *start = sg;
1683 int i, count = 0;
1684 unsigned int offset = s->offset;
1685 unsigned int size = s->offset + s->length;
1686 unsigned int max = dma_get_max_seg_size(dev);
1687
1688 for (i = 1; i < nents; i++) {
1689 s = sg_next(s);
1690
1691 s->dma_address = DMA_ERROR_CODE;
1692 s->dma_length = 0;
1693
1694 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1695 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1696 dir, attrs, is_coherent) < 0)
1697 goto bad_mapping;
1698
1699 dma->dma_address += offset;
1700 dma->dma_length = size - offset;
1701
1702 size = offset = s->offset;
1703 start = s;
1704 dma = sg_next(dma);
1705 count += 1;
1706 }
1707 size += s->length;
1708 }
1709 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1710 is_coherent) < 0)
1711 goto bad_mapping;
1712
1713 dma->dma_address += offset;
1714 dma->dma_length = size - offset;
1715
1716 return count+1;
1717
1718 bad_mapping:
1719 for_each_sg(sg, s, count, i)
1720 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1721 return 0;
1722 }
1723
1724 /**
1725 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1726 * @dev: valid struct device pointer
1727 * @sg: list of buffers
1728 * @nents: number of buffers to map
1729 * @dir: DMA transfer direction
1730 *
1731 * Map a set of i/o coherent buffers described by scatterlist in streaming
1732 * mode for DMA. The scatter gather list elements are merged together (if
1733 * possible) and tagged with the appropriate dma address and length. They are
1734 * obtained via sg_dma_{address,length}.
1735 */
1736 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1737 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1738 {
1739 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1740 }
1741
1742 /**
1743 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1744 * @dev: valid struct device pointer
1745 * @sg: list of buffers
1746 * @nents: number of buffers to map
1747 * @dir: DMA transfer direction
1748 *
1749 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1750 * The scatter gather list elements are merged together (if possible) and
1751 * tagged with the appropriate dma address and length. They are obtained via
1752 * sg_dma_{address,length}.
1753 */
1754 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1755 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1756 {
1757 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1758 }
1759
1760 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1761 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1762 bool is_coherent)
1763 {
1764 struct scatterlist *s;
1765 int i;
1766
1767 for_each_sg(sg, s, nents, i) {
1768 if (sg_dma_len(s))
1769 __iommu_remove_mapping(dev, sg_dma_address(s),
1770 sg_dma_len(s));
1771 if (!is_coherent &&
1772 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1773 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1774 s->length, dir);
1775 }
1776 }
1777
1778 /**
1779 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1780 * @dev: valid struct device pointer
1781 * @sg: list of buffers
1782 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1783 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1784 *
1785 * Unmap a set of streaming mode DMA translations. Again, CPU access
1786 * rules concerning calls here are the same as for dma_unmap_single().
1787 */
1788 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1789 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1790 {
1791 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1792 }
1793
1794 /**
1795 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1796 * @dev: valid struct device pointer
1797 * @sg: list of buffers
1798 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1799 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1800 *
1801 * Unmap a set of streaming mode DMA translations. Again, CPU access
1802 * rules concerning calls here are the same as for dma_unmap_single().
1803 */
1804 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1805 enum dma_data_direction dir, struct dma_attrs *attrs)
1806 {
1807 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1808 }
1809
1810 /**
1811 * arm_iommu_sync_sg_for_cpu
1812 * @dev: valid struct device pointer
1813 * @sg: list of buffers
1814 * @nents: number of buffers to map (returned from dma_map_sg)
1815 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1816 */
1817 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1818 int nents, enum dma_data_direction dir)
1819 {
1820 struct scatterlist *s;
1821 int i;
1822
1823 for_each_sg(sg, s, nents, i)
1824 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1825
1826 }
1827
1828 /**
1829 * arm_iommu_sync_sg_for_device
1830 * @dev: valid struct device pointer
1831 * @sg: list of buffers
1832 * @nents: number of buffers to map (returned from dma_map_sg)
1833 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1834 */
1835 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1836 int nents, enum dma_data_direction dir)
1837 {
1838 struct scatterlist *s;
1839 int i;
1840
1841 for_each_sg(sg, s, nents, i)
1842 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1843 }
1844
1845
1846 /**
1847 * arm_coherent_iommu_map_page
1848 * @dev: valid struct device pointer
1849 * @page: page that buffer resides in
1850 * @offset: offset into page for start of buffer
1851 * @size: size of buffer to map
1852 * @dir: DMA transfer direction
1853 *
1854 * Coherent IOMMU aware version of arm_dma_map_page()
1855 */
1856 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1857 unsigned long offset, size_t size, enum dma_data_direction dir,
1858 struct dma_attrs *attrs)
1859 {
1860 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1861 dma_addr_t dma_addr;
1862 int ret, prot, len = PAGE_ALIGN(size + offset);
1863
1864 dma_addr = __alloc_iova(mapping, len);
1865 if (dma_addr == DMA_ERROR_CODE)
1866 return dma_addr;
1867
1868 prot = __dma_direction_to_prot(dir);
1869
1870 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1871 if (ret < 0)
1872 goto fail;
1873
1874 return dma_addr + offset;
1875 fail:
1876 __free_iova(mapping, dma_addr, len);
1877 return DMA_ERROR_CODE;
1878 }
1879
1880 /**
1881 * arm_iommu_map_page
1882 * @dev: valid struct device pointer
1883 * @page: page that buffer resides in
1884 * @offset: offset into page for start of buffer
1885 * @size: size of buffer to map
1886 * @dir: DMA transfer direction
1887 *
1888 * IOMMU aware version of arm_dma_map_page()
1889 */
1890 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1891 unsigned long offset, size_t size, enum dma_data_direction dir,
1892 struct dma_attrs *attrs)
1893 {
1894 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1895 __dma_page_cpu_to_dev(page, offset, size, dir);
1896
1897 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1898 }
1899
1900 /**
1901 * arm_coherent_iommu_unmap_page
1902 * @dev: valid struct device pointer
1903 * @handle: DMA address of buffer
1904 * @size: size of buffer (same as passed to dma_map_page)
1905 * @dir: DMA transfer direction (same as passed to dma_map_page)
1906 *
1907 * Coherent IOMMU aware version of arm_dma_unmap_page()
1908 */
1909 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1910 size_t size, enum dma_data_direction dir,
1911 struct dma_attrs *attrs)
1912 {
1913 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1914 dma_addr_t iova = handle & PAGE_MASK;
1915 int offset = handle & ~PAGE_MASK;
1916 int len = PAGE_ALIGN(size + offset);
1917
1918 if (!iova)
1919 return;
1920
1921 iommu_unmap(mapping->domain, iova, len);
1922 __free_iova(mapping, iova, len);
1923 }
1924
1925 /**
1926 * arm_iommu_unmap_page
1927 * @dev: valid struct device pointer
1928 * @handle: DMA address of buffer
1929 * @size: size of buffer (same as passed to dma_map_page)
1930 * @dir: DMA transfer direction (same as passed to dma_map_page)
1931 *
1932 * IOMMU aware version of arm_dma_unmap_page()
1933 */
1934 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1935 size_t size, enum dma_data_direction dir,
1936 struct dma_attrs *attrs)
1937 {
1938 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1939 dma_addr_t iova = handle & PAGE_MASK;
1940 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1941 int offset = handle & ~PAGE_MASK;
1942 int len = PAGE_ALIGN(size + offset);
1943
1944 if (!iova)
1945 return;
1946
1947 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1948 __dma_page_dev_to_cpu(page, offset, size, dir);
1949
1950 iommu_unmap(mapping->domain, iova, len);
1951 __free_iova(mapping, iova, len);
1952 }
1953
1954 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1955 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1956 {
1957 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1958 dma_addr_t iova = handle & PAGE_MASK;
1959 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1960 unsigned int offset = handle & ~PAGE_MASK;
1961
1962 if (!iova)
1963 return;
1964
1965 __dma_page_dev_to_cpu(page, offset, size, dir);
1966 }
1967
1968 static void arm_iommu_sync_single_for_device(struct device *dev,
1969 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1970 {
1971 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1972 dma_addr_t iova = handle & PAGE_MASK;
1973 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1974 unsigned int offset = handle & ~PAGE_MASK;
1975
1976 if (!iova)
1977 return;
1978
1979 __dma_page_cpu_to_dev(page, offset, size, dir);
1980 }
1981
1982 struct dma_map_ops iommu_ops = {
1983 .alloc = arm_iommu_alloc_attrs,
1984 .free = arm_iommu_free_attrs,
1985 .mmap = arm_iommu_mmap_attrs,
1986 .get_sgtable = arm_iommu_get_sgtable,
1987
1988 .map_page = arm_iommu_map_page,
1989 .unmap_page = arm_iommu_unmap_page,
1990 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1991 .sync_single_for_device = arm_iommu_sync_single_for_device,
1992
1993 .map_sg = arm_iommu_map_sg,
1994 .unmap_sg = arm_iommu_unmap_sg,
1995 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1996 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1997 };
1998
1999 struct dma_map_ops iommu_coherent_ops = {
2000 .alloc = arm_iommu_alloc_attrs,
2001 .free = arm_iommu_free_attrs,
2002 .mmap = arm_iommu_mmap_attrs,
2003 .get_sgtable = arm_iommu_get_sgtable,
2004
2005 .map_page = arm_coherent_iommu_map_page,
2006 .unmap_page = arm_coherent_iommu_unmap_page,
2007
2008 .map_sg = arm_coherent_iommu_map_sg,
2009 .unmap_sg = arm_coherent_iommu_unmap_sg,
2010 };
2011
2012 /**
2013 * arm_iommu_create_mapping
2014 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2015 * @base: start address of the valid IO address space
2016 * @size: maximum size of the valid IO address space
2017 *
2018 * Creates a mapping structure which holds information about used/unused
2019 * IO address ranges, which is required to perform memory allocation and
2020 * mapping with IOMMU aware functions.
2021 *
2022 * The client device need to be attached to the mapping with
2023 * arm_iommu_attach_device function.
2024 */
2025 struct dma_iommu_mapping *
2026 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2027 {
2028 unsigned int bits = size >> PAGE_SHIFT;
2029 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2030 struct dma_iommu_mapping *mapping;
2031 int extensions = 1;
2032 int err = -ENOMEM;
2033
2034 /* currently only 32-bit DMA address space is supported */
2035 if (size > DMA_BIT_MASK(32) + 1)
2036 return ERR_PTR(-ERANGE);
2037
2038 if (!bitmap_size)
2039 return ERR_PTR(-EINVAL);
2040
2041 if (bitmap_size > PAGE_SIZE) {
2042 extensions = bitmap_size / PAGE_SIZE;
2043 bitmap_size = PAGE_SIZE;
2044 }
2045
2046 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2047 if (!mapping)
2048 goto err;
2049
2050 mapping->bitmap_size = bitmap_size;
2051 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2052 GFP_KERNEL);
2053 if (!mapping->bitmaps)
2054 goto err2;
2055
2056 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2057 if (!mapping->bitmaps[0])
2058 goto err3;
2059
2060 mapping->nr_bitmaps = 1;
2061 mapping->extensions = extensions;
2062 mapping->base = base;
2063 mapping->bits = BITS_PER_BYTE * bitmap_size;
2064
2065 spin_lock_init(&mapping->lock);
2066
2067 mapping->domain = iommu_domain_alloc(bus);
2068 if (!mapping->domain)
2069 goto err4;
2070
2071 kref_init(&mapping->kref);
2072 return mapping;
2073 err4:
2074 kfree(mapping->bitmaps[0]);
2075 err3:
2076 kfree(mapping->bitmaps);
2077 err2:
2078 kfree(mapping);
2079 err:
2080 return ERR_PTR(err);
2081 }
2082 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2083
2084 static void release_iommu_mapping(struct kref *kref)
2085 {
2086 int i;
2087 struct dma_iommu_mapping *mapping =
2088 container_of(kref, struct dma_iommu_mapping, kref);
2089
2090 iommu_domain_free(mapping->domain);
2091 for (i = 0; i < mapping->nr_bitmaps; i++)
2092 kfree(mapping->bitmaps[i]);
2093 kfree(mapping->bitmaps);
2094 kfree(mapping);
2095 }
2096
2097 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2098 {
2099 int next_bitmap;
2100
2101 if (mapping->nr_bitmaps >= mapping->extensions)
2102 return -EINVAL;
2103
2104 next_bitmap = mapping->nr_bitmaps;
2105 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2106 GFP_ATOMIC);
2107 if (!mapping->bitmaps[next_bitmap])
2108 return -ENOMEM;
2109
2110 mapping->nr_bitmaps++;
2111
2112 return 0;
2113 }
2114
2115 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2116 {
2117 if (mapping)
2118 kref_put(&mapping->kref, release_iommu_mapping);
2119 }
2120 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2121
2122 static int __arm_iommu_attach_device(struct device *dev,
2123 struct dma_iommu_mapping *mapping)
2124 {
2125 int err;
2126
2127 err = iommu_attach_device(mapping->domain, dev);
2128 if (err)
2129 return err;
2130
2131 kref_get(&mapping->kref);
2132 to_dma_iommu_mapping(dev) = mapping;
2133
2134 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2135 return 0;
2136 }
2137
2138 /**
2139 * arm_iommu_attach_device
2140 * @dev: valid struct device pointer
2141 * @mapping: io address space mapping structure (returned from
2142 * arm_iommu_create_mapping)
2143 *
2144 * Attaches specified io address space mapping to the provided device.
2145 * This replaces the dma operations (dma_map_ops pointer) with the
2146 * IOMMU aware version.
2147 *
2148 * More than one client might be attached to the same io address space
2149 * mapping.
2150 */
2151 int arm_iommu_attach_device(struct device *dev,
2152 struct dma_iommu_mapping *mapping)
2153 {
2154 int err;
2155
2156 err = __arm_iommu_attach_device(dev, mapping);
2157 if (err)
2158 return err;
2159
2160 set_dma_ops(dev, &iommu_ops);
2161 return 0;
2162 }
2163 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2164
2165 static void __arm_iommu_detach_device(struct device *dev)
2166 {
2167 struct dma_iommu_mapping *mapping;
2168
2169 mapping = to_dma_iommu_mapping(dev);
2170 if (!mapping) {
2171 dev_warn(dev, "Not attached\n");
2172 return;
2173 }
2174
2175 iommu_detach_device(mapping->domain, dev);
2176 kref_put(&mapping->kref, release_iommu_mapping);
2177 to_dma_iommu_mapping(dev) = NULL;
2178
2179 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2180 }
2181
2182 /**
2183 * arm_iommu_detach_device
2184 * @dev: valid struct device pointer
2185 *
2186 * Detaches the provided device from a previously attached map.
2187 * This voids the dma operations (dma_map_ops pointer)
2188 */
2189 void arm_iommu_detach_device(struct device *dev)
2190 {
2191 __arm_iommu_detach_device(dev);
2192 set_dma_ops(dev, NULL);
2193 }
2194 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2195
2196 static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2197 {
2198 return coherent ? &iommu_coherent_ops : &iommu_ops;
2199 }
2200
2201 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2202 const struct iommu_ops *iommu)
2203 {
2204 struct dma_iommu_mapping *mapping;
2205
2206 if (!iommu)
2207 return false;
2208
2209 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2210 if (IS_ERR(mapping)) {
2211 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2212 size, dev_name(dev));
2213 return false;
2214 }
2215
2216 if (__arm_iommu_attach_device(dev, mapping)) {
2217 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2218 dev_name(dev));
2219 arm_iommu_release_mapping(mapping);
2220 return false;
2221 }
2222
2223 return true;
2224 }
2225
2226 static void arm_teardown_iommu_dma_ops(struct device *dev)
2227 {
2228 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2229
2230 if (!mapping)
2231 return;
2232
2233 __arm_iommu_detach_device(dev);
2234 arm_iommu_release_mapping(mapping);
2235 }
2236
2237 #else
2238
2239 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2240 const struct iommu_ops *iommu)
2241 {
2242 return false;
2243 }
2244
2245 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2246
2247 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2248
2249 #endif /* CONFIG_ARM_DMA_USE_IOMMU */
2250
2251 static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2252 {
2253 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2254 }
2255
2256 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2257 const struct iommu_ops *iommu, bool coherent)
2258 {
2259 struct dma_map_ops *dma_ops;
2260
2261 dev->archdata.dma_coherent = coherent;
2262 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2263 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2264 else
2265 dma_ops = arm_get_dma_map_ops(coherent);
2266
2267 set_dma_ops(dev, dma_ops);
2268 }
2269
2270 void arch_teardown_dma_ops(struct device *dev)
2271 {
2272 arm_teardown_iommu_dma_ops(dev);
2273 }
This page took 0.109523 seconds and 5 git commands to generate.