Merge branch 'devel-stable' of http://ftp.arm.linux.org.uk/pub/linux/arm/kernel/git...
[deliverable/linux.git] / arch / arm / mm / dma-mapping.c
1 /*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/highmem.h>
21 #include <linux/slab.h>
22
23 #include <asm/memory.h>
24 #include <asm/highmem.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <asm/sizes.h>
28 #include <asm/mach/arch.h>
29
30 #include "mm.h"
31
32 static u64 get_coherent_dma_mask(struct device *dev)
33 {
34 u64 mask = (u64)arm_dma_limit;
35
36 if (dev) {
37 mask = dev->coherent_dma_mask;
38
39 /*
40 * Sanity check the DMA mask - it must be non-zero, and
41 * must be able to be satisfied by a DMA allocation.
42 */
43 if (mask == 0) {
44 dev_warn(dev, "coherent DMA mask is unset\n");
45 return 0;
46 }
47
48 if ((~mask) & (u64)arm_dma_limit) {
49 dev_warn(dev, "coherent DMA mask %#llx is smaller "
50 "than system GFP_DMA mask %#llx\n",
51 mask, (u64)arm_dma_limit);
52 return 0;
53 }
54 }
55
56 return mask;
57 }
58
59 /*
60 * Allocate a DMA buffer for 'dev' of size 'size' using the
61 * specified gfp mask. Note that 'size' must be page aligned.
62 */
63 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
64 {
65 unsigned long order = get_order(size);
66 struct page *page, *p, *e;
67 void *ptr;
68 u64 mask = get_coherent_dma_mask(dev);
69
70 #ifdef CONFIG_DMA_API_DEBUG
71 u64 limit = (mask + 1) & ~mask;
72 if (limit && size >= limit) {
73 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
74 size, mask);
75 return NULL;
76 }
77 #endif
78
79 if (!mask)
80 return NULL;
81
82 if (mask < 0xffffffffULL)
83 gfp |= GFP_DMA;
84
85 page = alloc_pages(gfp, order);
86 if (!page)
87 return NULL;
88
89 /*
90 * Now split the huge page and free the excess pages
91 */
92 split_page(page, order);
93 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
94 __free_page(p);
95
96 /*
97 * Ensure that the allocated pages are zeroed, and that any data
98 * lurking in the kernel direct-mapped region is invalidated.
99 */
100 ptr = page_address(page);
101 memset(ptr, 0, size);
102 dmac_flush_range(ptr, ptr + size);
103 outer_flush_range(__pa(ptr), __pa(ptr) + size);
104
105 return page;
106 }
107
108 /*
109 * Free a DMA buffer. 'size' must be page aligned.
110 */
111 static void __dma_free_buffer(struct page *page, size_t size)
112 {
113 struct page *e = page + (size >> PAGE_SHIFT);
114
115 while (page < e) {
116 __free_page(page);
117 page++;
118 }
119 }
120
121 #ifdef CONFIG_MMU
122
123 #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - consistent_base) >> PAGE_SHIFT)
124 #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PMD_SHIFT)
125
126 /*
127 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
128 */
129 static pte_t **consistent_pte;
130
131 #define DEFAULT_CONSISTENT_DMA_SIZE SZ_2M
132
133 unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE;
134
135 void __init init_consistent_dma_size(unsigned long size)
136 {
137 unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M);
138
139 BUG_ON(consistent_pte); /* Check we're called before DMA region init */
140 BUG_ON(base < VMALLOC_END);
141
142 /* Grow region to accommodate specified size */
143 if (base < consistent_base)
144 consistent_base = base;
145 }
146
147 #include "vmregion.h"
148
149 static struct arm_vmregion_head consistent_head = {
150 .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
151 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
152 .vm_end = CONSISTENT_END,
153 };
154
155 #ifdef CONFIG_HUGETLB_PAGE
156 #error ARM Coherent DMA allocator does not (yet) support huge TLB
157 #endif
158
159 /*
160 * Initialise the consistent memory allocation.
161 */
162 static int __init consistent_init(void)
163 {
164 int ret = 0;
165 pgd_t *pgd;
166 pud_t *pud;
167 pmd_t *pmd;
168 pte_t *pte;
169 int i = 0;
170 unsigned long base = consistent_base;
171 unsigned long num_ptes = (CONSISTENT_END - base) >> PGDIR_SHIFT;
172
173 consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL);
174 if (!consistent_pte) {
175 pr_err("%s: no memory\n", __func__);
176 return -ENOMEM;
177 }
178
179 pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END);
180 consistent_head.vm_start = base;
181
182 do {
183 pgd = pgd_offset(&init_mm, base);
184
185 pud = pud_alloc(&init_mm, pgd, base);
186 if (!pud) {
187 printk(KERN_ERR "%s: no pud tables\n", __func__);
188 ret = -ENOMEM;
189 break;
190 }
191
192 pmd = pmd_alloc(&init_mm, pud, base);
193 if (!pmd) {
194 printk(KERN_ERR "%s: no pmd tables\n", __func__);
195 ret = -ENOMEM;
196 break;
197 }
198 WARN_ON(!pmd_none(*pmd));
199
200 pte = pte_alloc_kernel(pmd, base);
201 if (!pte) {
202 printk(KERN_ERR "%s: no pte tables\n", __func__);
203 ret = -ENOMEM;
204 break;
205 }
206
207 consistent_pte[i++] = pte;
208 base += PMD_SIZE;
209 } while (base < CONSISTENT_END);
210
211 return ret;
212 }
213
214 core_initcall(consistent_init);
215
216 static void *
217 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
218 {
219 struct arm_vmregion *c;
220 size_t align;
221 int bit;
222
223 if (!consistent_pte) {
224 printk(KERN_ERR "%s: not initialised\n", __func__);
225 dump_stack();
226 return NULL;
227 }
228
229 /*
230 * Align the virtual region allocation - maximum alignment is
231 * a section size, minimum is a page size. This helps reduce
232 * fragmentation of the DMA space, and also prevents allocations
233 * smaller than a section from crossing a section boundary.
234 */
235 bit = fls(size - 1);
236 if (bit > SECTION_SHIFT)
237 bit = SECTION_SHIFT;
238 align = 1 << bit;
239
240 /*
241 * Allocate a virtual address in the consistent mapping region.
242 */
243 c = arm_vmregion_alloc(&consistent_head, align, size,
244 gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
245 if (c) {
246 pte_t *pte;
247 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
248 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
249
250 pte = consistent_pte[idx] + off;
251 c->vm_pages = page;
252
253 do {
254 BUG_ON(!pte_none(*pte));
255
256 set_pte_ext(pte, mk_pte(page, prot), 0);
257 page++;
258 pte++;
259 off++;
260 if (off >= PTRS_PER_PTE) {
261 off = 0;
262 pte = consistent_pte[++idx];
263 }
264 } while (size -= PAGE_SIZE);
265
266 dsb();
267
268 return (void *)c->vm_start;
269 }
270 return NULL;
271 }
272
273 static void __dma_free_remap(void *cpu_addr, size_t size)
274 {
275 struct arm_vmregion *c;
276 unsigned long addr;
277 pte_t *ptep;
278 int idx;
279 u32 off;
280
281 c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
282 if (!c) {
283 printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
284 __func__, cpu_addr);
285 dump_stack();
286 return;
287 }
288
289 if ((c->vm_end - c->vm_start) != size) {
290 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
291 __func__, c->vm_end - c->vm_start, size);
292 dump_stack();
293 size = c->vm_end - c->vm_start;
294 }
295
296 idx = CONSISTENT_PTE_INDEX(c->vm_start);
297 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
298 ptep = consistent_pte[idx] + off;
299 addr = c->vm_start;
300 do {
301 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
302
303 ptep++;
304 addr += PAGE_SIZE;
305 off++;
306 if (off >= PTRS_PER_PTE) {
307 off = 0;
308 ptep = consistent_pte[++idx];
309 }
310
311 if (pte_none(pte) || !pte_present(pte))
312 printk(KERN_CRIT "%s: bad page in kernel page table\n",
313 __func__);
314 } while (size -= PAGE_SIZE);
315
316 flush_tlb_kernel_range(c->vm_start, c->vm_end);
317
318 arm_vmregion_free(&consistent_head, c);
319 }
320
321 #else /* !CONFIG_MMU */
322
323 #define __dma_alloc_remap(page, size, gfp, prot) page_address(page)
324 #define __dma_free_remap(addr, size) do { } while (0)
325
326 #endif /* CONFIG_MMU */
327
328 static void *
329 __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
330 pgprot_t prot)
331 {
332 struct page *page;
333 void *addr;
334
335 *handle = ~0;
336 size = PAGE_ALIGN(size);
337
338 page = __dma_alloc_buffer(dev, size, gfp);
339 if (!page)
340 return NULL;
341
342 if (!arch_is_coherent())
343 addr = __dma_alloc_remap(page, size, gfp, prot);
344 else
345 addr = page_address(page);
346
347 if (addr)
348 *handle = pfn_to_dma(dev, page_to_pfn(page));
349 else
350 __dma_free_buffer(page, size);
351
352 return addr;
353 }
354
355 /*
356 * Allocate DMA-coherent memory space and return both the kernel remapped
357 * virtual and bus address for that space.
358 */
359 void *
360 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
361 {
362 void *memory;
363
364 if (dma_alloc_from_coherent(dev, size, handle, &memory))
365 return memory;
366
367 return __dma_alloc(dev, size, handle, gfp,
368 pgprot_dmacoherent(pgprot_kernel));
369 }
370 EXPORT_SYMBOL(dma_alloc_coherent);
371
372 /*
373 * Allocate a writecombining region, in much the same way as
374 * dma_alloc_coherent above.
375 */
376 void *
377 dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
378 {
379 return __dma_alloc(dev, size, handle, gfp,
380 pgprot_writecombine(pgprot_kernel));
381 }
382 EXPORT_SYMBOL(dma_alloc_writecombine);
383
384 static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
385 void *cpu_addr, dma_addr_t dma_addr, size_t size)
386 {
387 int ret = -ENXIO;
388 #ifdef CONFIG_MMU
389 unsigned long user_size, kern_size;
390 struct arm_vmregion *c;
391
392 user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
393
394 c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
395 if (c) {
396 unsigned long off = vma->vm_pgoff;
397
398 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
399
400 if (off < kern_size &&
401 user_size <= (kern_size - off)) {
402 ret = remap_pfn_range(vma, vma->vm_start,
403 page_to_pfn(c->vm_pages) + off,
404 user_size << PAGE_SHIFT,
405 vma->vm_page_prot);
406 }
407 }
408 #endif /* CONFIG_MMU */
409
410 return ret;
411 }
412
413 int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
414 void *cpu_addr, dma_addr_t dma_addr, size_t size)
415 {
416 vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
417 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
418 }
419 EXPORT_SYMBOL(dma_mmap_coherent);
420
421 int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
422 void *cpu_addr, dma_addr_t dma_addr, size_t size)
423 {
424 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
425 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
426 }
427 EXPORT_SYMBOL(dma_mmap_writecombine);
428
429 /*
430 * free a page as defined by the above mapping.
431 * Must not be called with IRQs disabled.
432 */
433 void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
434 {
435 WARN_ON(irqs_disabled());
436
437 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
438 return;
439
440 size = PAGE_ALIGN(size);
441
442 if (!arch_is_coherent())
443 __dma_free_remap(cpu_addr, size);
444
445 __dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
446 }
447 EXPORT_SYMBOL(dma_free_coherent);
448
449 /*
450 * Make an area consistent for devices.
451 * Note: Drivers should NOT use this function directly, as it will break
452 * platforms with CONFIG_DMABOUNCE.
453 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
454 */
455 void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
456 enum dma_data_direction dir)
457 {
458 unsigned long paddr;
459
460 BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
461
462 dmac_map_area(kaddr, size, dir);
463
464 paddr = __pa(kaddr);
465 if (dir == DMA_FROM_DEVICE) {
466 outer_inv_range(paddr, paddr + size);
467 } else {
468 outer_clean_range(paddr, paddr + size);
469 }
470 /* FIXME: non-speculating: flush on bidirectional mappings? */
471 }
472 EXPORT_SYMBOL(___dma_single_cpu_to_dev);
473
474 void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
475 enum dma_data_direction dir)
476 {
477 BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
478
479 /* FIXME: non-speculating: not required */
480 /* don't bother invalidating if DMA to device */
481 if (dir != DMA_TO_DEVICE) {
482 unsigned long paddr = __pa(kaddr);
483 outer_inv_range(paddr, paddr + size);
484 }
485
486 dmac_unmap_area(kaddr, size, dir);
487 }
488 EXPORT_SYMBOL(___dma_single_dev_to_cpu);
489
490 static void dma_cache_maint_page(struct page *page, unsigned long offset,
491 size_t size, enum dma_data_direction dir,
492 void (*op)(const void *, size_t, int))
493 {
494 /*
495 * A single sg entry may refer to multiple physically contiguous
496 * pages. But we still need to process highmem pages individually.
497 * If highmem is not configured then the bulk of this loop gets
498 * optimized out.
499 */
500 size_t left = size;
501 do {
502 size_t len = left;
503 void *vaddr;
504
505 if (PageHighMem(page)) {
506 if (len + offset > PAGE_SIZE) {
507 if (offset >= PAGE_SIZE) {
508 page += offset / PAGE_SIZE;
509 offset %= PAGE_SIZE;
510 }
511 len = PAGE_SIZE - offset;
512 }
513 vaddr = kmap_high_get(page);
514 if (vaddr) {
515 vaddr += offset;
516 op(vaddr, len, dir);
517 kunmap_high(page);
518 } else if (cache_is_vipt()) {
519 /* unmapped pages might still be cached */
520 vaddr = kmap_atomic(page);
521 op(vaddr + offset, len, dir);
522 kunmap_atomic(vaddr);
523 }
524 } else {
525 vaddr = page_address(page) + offset;
526 op(vaddr, len, dir);
527 }
528 offset = 0;
529 page++;
530 left -= len;
531 } while (left);
532 }
533
534 void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
535 size_t size, enum dma_data_direction dir)
536 {
537 unsigned long paddr;
538
539 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
540
541 paddr = page_to_phys(page) + off;
542 if (dir == DMA_FROM_DEVICE) {
543 outer_inv_range(paddr, paddr + size);
544 } else {
545 outer_clean_range(paddr, paddr + size);
546 }
547 /* FIXME: non-speculating: flush on bidirectional mappings? */
548 }
549 EXPORT_SYMBOL(___dma_page_cpu_to_dev);
550
551 void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
552 size_t size, enum dma_data_direction dir)
553 {
554 unsigned long paddr = page_to_phys(page) + off;
555
556 /* FIXME: non-speculating: not required */
557 /* don't bother invalidating if DMA to device */
558 if (dir != DMA_TO_DEVICE)
559 outer_inv_range(paddr, paddr + size);
560
561 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
562
563 /*
564 * Mark the D-cache clean for this page to avoid extra flushing.
565 */
566 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
567 set_bit(PG_dcache_clean, &page->flags);
568 }
569 EXPORT_SYMBOL(___dma_page_dev_to_cpu);
570
571 /**
572 * dma_map_sg - map a set of SG buffers for streaming mode DMA
573 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
574 * @sg: list of buffers
575 * @nents: number of buffers to map
576 * @dir: DMA transfer direction
577 *
578 * Map a set of buffers described by scatterlist in streaming mode for DMA.
579 * This is the scatter-gather version of the dma_map_single interface.
580 * Here the scatter gather list elements are each tagged with the
581 * appropriate dma address and length. They are obtained via
582 * sg_dma_{address,length}.
583 *
584 * Device ownership issues as mentioned for dma_map_single are the same
585 * here.
586 */
587 int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
588 enum dma_data_direction dir)
589 {
590 struct scatterlist *s;
591 int i, j;
592
593 BUG_ON(!valid_dma_direction(dir));
594
595 for_each_sg(sg, s, nents, i) {
596 s->dma_address = __dma_map_page(dev, sg_page(s), s->offset,
597 s->length, dir);
598 if (dma_mapping_error(dev, s->dma_address))
599 goto bad_mapping;
600 }
601 debug_dma_map_sg(dev, sg, nents, nents, dir);
602 return nents;
603
604 bad_mapping:
605 for_each_sg(sg, s, i, j)
606 __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
607 return 0;
608 }
609 EXPORT_SYMBOL(dma_map_sg);
610
611 /**
612 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
613 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
614 * @sg: list of buffers
615 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
616 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
617 *
618 * Unmap a set of streaming mode DMA translations. Again, CPU access
619 * rules concerning calls here are the same as for dma_unmap_single().
620 */
621 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
622 enum dma_data_direction dir)
623 {
624 struct scatterlist *s;
625 int i;
626
627 debug_dma_unmap_sg(dev, sg, nents, dir);
628
629 for_each_sg(sg, s, nents, i)
630 __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
631 }
632 EXPORT_SYMBOL(dma_unmap_sg);
633
634 /**
635 * dma_sync_sg_for_cpu
636 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
637 * @sg: list of buffers
638 * @nents: number of buffers to map (returned from dma_map_sg)
639 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
640 */
641 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
642 int nents, enum dma_data_direction dir)
643 {
644 struct scatterlist *s;
645 int i;
646
647 for_each_sg(sg, s, nents, i) {
648 if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
649 sg_dma_len(s), dir))
650 continue;
651
652 __dma_page_dev_to_cpu(sg_page(s), s->offset,
653 s->length, dir);
654 }
655
656 debug_dma_sync_sg_for_cpu(dev, sg, nents, dir);
657 }
658 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
659
660 /**
661 * dma_sync_sg_for_device
662 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
663 * @sg: list of buffers
664 * @nents: number of buffers to map (returned from dma_map_sg)
665 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
666 */
667 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
668 int nents, enum dma_data_direction dir)
669 {
670 struct scatterlist *s;
671 int i;
672
673 for_each_sg(sg, s, nents, i) {
674 if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
675 sg_dma_len(s), dir))
676 continue;
677
678 __dma_page_cpu_to_dev(sg_page(s), s->offset,
679 s->length, dir);
680 }
681
682 debug_dma_sync_sg_for_device(dev, sg, nents, dir);
683 }
684 EXPORT_SYMBOL(dma_sync_sg_for_device);
685
686 /*
687 * Return whether the given device DMA address mask can be supported
688 * properly. For example, if your device can only drive the low 24-bits
689 * during bus mastering, then you would pass 0x00ffffff as the mask
690 * to this function.
691 */
692 int dma_supported(struct device *dev, u64 mask)
693 {
694 if (mask < (u64)arm_dma_limit)
695 return 0;
696 return 1;
697 }
698 EXPORT_SYMBOL(dma_supported);
699
700 int dma_set_mask(struct device *dev, u64 dma_mask)
701 {
702 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
703 return -EIO;
704
705 #ifndef CONFIG_DMABOUNCE
706 *dev->dma_mask = dma_mask;
707 #endif
708
709 return 0;
710 }
711 EXPORT_SYMBOL(dma_set_mask);
712
713 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
714
715 static int __init dma_debug_do_init(void)
716 {
717 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
718 return 0;
719 }
720 fs_initcall(dma_debug_do_init);
This page took 0.06629 seconds and 6 git commands to generate.