Merge tag 'gpio-v4.0-3' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux...
[deliverable/linux.git] / arch / arm / mm / dma-mapping.c
1 /*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
27 #include <linux/io.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
31
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
41
42 #include "mm.h"
43
44 /*
45 * The DMA API is built upon the notion of "buffer ownership". A buffer
46 * is either exclusively owned by the CPU (and therefore may be accessed
47 * by it) or exclusively owned by the DMA device. These helper functions
48 * represent the transitions between these two ownership states.
49 *
50 * Note, however, that on later ARMs, this notion does not work due to
51 * speculative prefetches. We model our approach on the assumption that
52 * the CPU does do speculative prefetches, which means we clean caches
53 * before transfers and delay cache invalidation until transfer completion.
54 *
55 */
56 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
57 size_t, enum dma_data_direction);
58 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
59 size_t, enum dma_data_direction);
60
61 /**
62 * arm_dma_map_page - map a portion of a page for streaming DMA
63 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
64 * @page: page that buffer resides in
65 * @offset: offset into page for start of buffer
66 * @size: size of buffer to map
67 * @dir: DMA transfer direction
68 *
69 * Ensure that any data held in the cache is appropriately discarded
70 * or written back.
71 *
72 * The device owns this memory once this call has completed. The CPU
73 * can regain ownership by calling dma_unmap_page().
74 */
75 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
76 unsigned long offset, size_t size, enum dma_data_direction dir,
77 struct dma_attrs *attrs)
78 {
79 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
80 __dma_page_cpu_to_dev(page, offset, size, dir);
81 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
82 }
83
84 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
85 unsigned long offset, size_t size, enum dma_data_direction dir,
86 struct dma_attrs *attrs)
87 {
88 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
89 }
90
91 /**
92 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
93 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
94 * @handle: DMA address of buffer
95 * @size: size of buffer (same as passed to dma_map_page)
96 * @dir: DMA transfer direction (same as passed to dma_map_page)
97 *
98 * Unmap a page streaming mode DMA translation. The handle and size
99 * must match what was provided in the previous dma_map_page() call.
100 * All other usages are undefined.
101 *
102 * After this call, reads by the CPU to the buffer are guaranteed to see
103 * whatever the device wrote there.
104 */
105 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
106 size_t size, enum dma_data_direction dir,
107 struct dma_attrs *attrs)
108 {
109 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
110 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
111 handle & ~PAGE_MASK, size, dir);
112 }
113
114 static void arm_dma_sync_single_for_cpu(struct device *dev,
115 dma_addr_t handle, size_t size, enum dma_data_direction dir)
116 {
117 unsigned int offset = handle & (PAGE_SIZE - 1);
118 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
119 __dma_page_dev_to_cpu(page, offset, size, dir);
120 }
121
122 static void arm_dma_sync_single_for_device(struct device *dev,
123 dma_addr_t handle, size_t size, enum dma_data_direction dir)
124 {
125 unsigned int offset = handle & (PAGE_SIZE - 1);
126 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
127 __dma_page_cpu_to_dev(page, offset, size, dir);
128 }
129
130 struct dma_map_ops arm_dma_ops = {
131 .alloc = arm_dma_alloc,
132 .free = arm_dma_free,
133 .mmap = arm_dma_mmap,
134 .get_sgtable = arm_dma_get_sgtable,
135 .map_page = arm_dma_map_page,
136 .unmap_page = arm_dma_unmap_page,
137 .map_sg = arm_dma_map_sg,
138 .unmap_sg = arm_dma_unmap_sg,
139 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
140 .sync_single_for_device = arm_dma_sync_single_for_device,
141 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
142 .sync_sg_for_device = arm_dma_sync_sg_for_device,
143 .set_dma_mask = arm_dma_set_mask,
144 };
145 EXPORT_SYMBOL(arm_dma_ops);
146
147 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
148 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
149 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
150 dma_addr_t handle, struct dma_attrs *attrs);
151
152 struct dma_map_ops arm_coherent_dma_ops = {
153 .alloc = arm_coherent_dma_alloc,
154 .free = arm_coherent_dma_free,
155 .mmap = arm_dma_mmap,
156 .get_sgtable = arm_dma_get_sgtable,
157 .map_page = arm_coherent_dma_map_page,
158 .map_sg = arm_dma_map_sg,
159 .set_dma_mask = arm_dma_set_mask,
160 };
161 EXPORT_SYMBOL(arm_coherent_dma_ops);
162
163 static int __dma_supported(struct device *dev, u64 mask, bool warn)
164 {
165 unsigned long max_dma_pfn;
166
167 /*
168 * If the mask allows for more memory than we can address,
169 * and we actually have that much memory, then we must
170 * indicate that DMA to this device is not supported.
171 */
172 if (sizeof(mask) != sizeof(dma_addr_t) &&
173 mask > (dma_addr_t)~0 &&
174 dma_to_pfn(dev, ~0) < max_pfn - 1) {
175 if (warn) {
176 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
177 mask);
178 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
179 }
180 return 0;
181 }
182
183 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
184
185 /*
186 * Translate the device's DMA mask to a PFN limit. This
187 * PFN number includes the page which we can DMA to.
188 */
189 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
190 if (warn)
191 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
192 mask,
193 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
194 max_dma_pfn + 1);
195 return 0;
196 }
197
198 return 1;
199 }
200
201 static u64 get_coherent_dma_mask(struct device *dev)
202 {
203 u64 mask = (u64)DMA_BIT_MASK(32);
204
205 if (dev) {
206 mask = dev->coherent_dma_mask;
207
208 /*
209 * Sanity check the DMA mask - it must be non-zero, and
210 * must be able to be satisfied by a DMA allocation.
211 */
212 if (mask == 0) {
213 dev_warn(dev, "coherent DMA mask is unset\n");
214 return 0;
215 }
216
217 if (!__dma_supported(dev, mask, true))
218 return 0;
219 }
220
221 return mask;
222 }
223
224 static void __dma_clear_buffer(struct page *page, size_t size)
225 {
226 /*
227 * Ensure that the allocated pages are zeroed, and that any data
228 * lurking in the kernel direct-mapped region is invalidated.
229 */
230 if (PageHighMem(page)) {
231 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
232 phys_addr_t end = base + size;
233 while (size > 0) {
234 void *ptr = kmap_atomic(page);
235 memset(ptr, 0, PAGE_SIZE);
236 dmac_flush_range(ptr, ptr + PAGE_SIZE);
237 kunmap_atomic(ptr);
238 page++;
239 size -= PAGE_SIZE;
240 }
241 outer_flush_range(base, end);
242 } else {
243 void *ptr = page_address(page);
244 memset(ptr, 0, size);
245 dmac_flush_range(ptr, ptr + size);
246 outer_flush_range(__pa(ptr), __pa(ptr) + size);
247 }
248 }
249
250 /*
251 * Allocate a DMA buffer for 'dev' of size 'size' using the
252 * specified gfp mask. Note that 'size' must be page aligned.
253 */
254 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
255 {
256 unsigned long order = get_order(size);
257 struct page *page, *p, *e;
258
259 page = alloc_pages(gfp, order);
260 if (!page)
261 return NULL;
262
263 /*
264 * Now split the huge page and free the excess pages
265 */
266 split_page(page, order);
267 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
268 __free_page(p);
269
270 __dma_clear_buffer(page, size);
271
272 return page;
273 }
274
275 /*
276 * Free a DMA buffer. 'size' must be page aligned.
277 */
278 static void __dma_free_buffer(struct page *page, size_t size)
279 {
280 struct page *e = page + (size >> PAGE_SHIFT);
281
282 while (page < e) {
283 __free_page(page);
284 page++;
285 }
286 }
287
288 #ifdef CONFIG_MMU
289
290 static void *__alloc_from_contiguous(struct device *dev, size_t size,
291 pgprot_t prot, struct page **ret_page,
292 const void *caller);
293
294 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
295 pgprot_t prot, struct page **ret_page,
296 const void *caller);
297
298 static void *
299 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
300 const void *caller)
301 {
302 /*
303 * DMA allocation can be mapped to user space, so lets
304 * set VM_USERMAP flags too.
305 */
306 return dma_common_contiguous_remap(page, size,
307 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
308 prot, caller);
309 }
310
311 static void __dma_free_remap(void *cpu_addr, size_t size)
312 {
313 dma_common_free_remap(cpu_addr, size,
314 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
315 }
316
317 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
318 static struct gen_pool *atomic_pool;
319
320 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
321
322 static int __init early_coherent_pool(char *p)
323 {
324 atomic_pool_size = memparse(p, &p);
325 return 0;
326 }
327 early_param("coherent_pool", early_coherent_pool);
328
329 void __init init_dma_coherent_pool_size(unsigned long size)
330 {
331 /*
332 * Catch any attempt to set the pool size too late.
333 */
334 BUG_ON(atomic_pool);
335
336 /*
337 * Set architecture specific coherent pool size only if
338 * it has not been changed by kernel command line parameter.
339 */
340 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
341 atomic_pool_size = size;
342 }
343
344 /*
345 * Initialise the coherent pool for atomic allocations.
346 */
347 static int __init atomic_pool_init(void)
348 {
349 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
350 gfp_t gfp = GFP_KERNEL | GFP_DMA;
351 struct page *page;
352 void *ptr;
353
354 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
355 if (!atomic_pool)
356 goto out;
357
358 if (dev_get_cma_area(NULL))
359 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
360 &page, atomic_pool_init);
361 else
362 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
363 &page, atomic_pool_init);
364 if (ptr) {
365 int ret;
366
367 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
368 page_to_phys(page),
369 atomic_pool_size, -1);
370 if (ret)
371 goto destroy_genpool;
372
373 gen_pool_set_algo(atomic_pool,
374 gen_pool_first_fit_order_align,
375 (void *)PAGE_SHIFT);
376 pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
377 atomic_pool_size / 1024);
378 return 0;
379 }
380
381 destroy_genpool:
382 gen_pool_destroy(atomic_pool);
383 atomic_pool = NULL;
384 out:
385 pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
386 atomic_pool_size / 1024);
387 return -ENOMEM;
388 }
389 /*
390 * CMA is activated by core_initcall, so we must be called after it.
391 */
392 postcore_initcall(atomic_pool_init);
393
394 struct dma_contig_early_reserve {
395 phys_addr_t base;
396 unsigned long size;
397 };
398
399 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
400
401 static int dma_mmu_remap_num __initdata;
402
403 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
404 {
405 dma_mmu_remap[dma_mmu_remap_num].base = base;
406 dma_mmu_remap[dma_mmu_remap_num].size = size;
407 dma_mmu_remap_num++;
408 }
409
410 void __init dma_contiguous_remap(void)
411 {
412 int i;
413 for (i = 0; i < dma_mmu_remap_num; i++) {
414 phys_addr_t start = dma_mmu_remap[i].base;
415 phys_addr_t end = start + dma_mmu_remap[i].size;
416 struct map_desc map;
417 unsigned long addr;
418
419 if (end > arm_lowmem_limit)
420 end = arm_lowmem_limit;
421 if (start >= end)
422 continue;
423
424 map.pfn = __phys_to_pfn(start);
425 map.virtual = __phys_to_virt(start);
426 map.length = end - start;
427 map.type = MT_MEMORY_DMA_READY;
428
429 /*
430 * Clear previous low-memory mapping to ensure that the
431 * TLB does not see any conflicting entries, then flush
432 * the TLB of the old entries before creating new mappings.
433 *
434 * This ensures that any speculatively loaded TLB entries
435 * (even though they may be rare) can not cause any problems,
436 * and ensures that this code is architecturally compliant.
437 */
438 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
439 addr += PMD_SIZE)
440 pmd_clear(pmd_off_k(addr));
441
442 flush_tlb_kernel_range(__phys_to_virt(start),
443 __phys_to_virt(end));
444
445 iotable_init(&map, 1);
446 }
447 }
448
449 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
450 void *data)
451 {
452 struct page *page = virt_to_page(addr);
453 pgprot_t prot = *(pgprot_t *)data;
454
455 set_pte_ext(pte, mk_pte(page, prot), 0);
456 return 0;
457 }
458
459 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
460 {
461 unsigned long start = (unsigned long) page_address(page);
462 unsigned end = start + size;
463
464 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
465 flush_tlb_kernel_range(start, end);
466 }
467
468 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
469 pgprot_t prot, struct page **ret_page,
470 const void *caller)
471 {
472 struct page *page;
473 void *ptr;
474 page = __dma_alloc_buffer(dev, size, gfp);
475 if (!page)
476 return NULL;
477
478 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
479 if (!ptr) {
480 __dma_free_buffer(page, size);
481 return NULL;
482 }
483
484 *ret_page = page;
485 return ptr;
486 }
487
488 static void *__alloc_from_pool(size_t size, struct page **ret_page)
489 {
490 unsigned long val;
491 void *ptr = NULL;
492
493 if (!atomic_pool) {
494 WARN(1, "coherent pool not initialised!\n");
495 return NULL;
496 }
497
498 val = gen_pool_alloc(atomic_pool, size);
499 if (val) {
500 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
501
502 *ret_page = phys_to_page(phys);
503 ptr = (void *)val;
504 }
505
506 return ptr;
507 }
508
509 static bool __in_atomic_pool(void *start, size_t size)
510 {
511 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
512 }
513
514 static int __free_from_pool(void *start, size_t size)
515 {
516 if (!__in_atomic_pool(start, size))
517 return 0;
518
519 gen_pool_free(atomic_pool, (unsigned long)start, size);
520
521 return 1;
522 }
523
524 static void *__alloc_from_contiguous(struct device *dev, size_t size,
525 pgprot_t prot, struct page **ret_page,
526 const void *caller)
527 {
528 unsigned long order = get_order(size);
529 size_t count = size >> PAGE_SHIFT;
530 struct page *page;
531 void *ptr;
532
533 page = dma_alloc_from_contiguous(dev, count, order);
534 if (!page)
535 return NULL;
536
537 __dma_clear_buffer(page, size);
538
539 if (PageHighMem(page)) {
540 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
541 if (!ptr) {
542 dma_release_from_contiguous(dev, page, count);
543 return NULL;
544 }
545 } else {
546 __dma_remap(page, size, prot);
547 ptr = page_address(page);
548 }
549 *ret_page = page;
550 return ptr;
551 }
552
553 static void __free_from_contiguous(struct device *dev, struct page *page,
554 void *cpu_addr, size_t size)
555 {
556 if (PageHighMem(page))
557 __dma_free_remap(cpu_addr, size);
558 else
559 __dma_remap(page, size, PAGE_KERNEL);
560 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
561 }
562
563 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
564 {
565 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
566 pgprot_writecombine(prot) :
567 pgprot_dmacoherent(prot);
568 return prot;
569 }
570
571 #define nommu() 0
572
573 #else /* !CONFIG_MMU */
574
575 #define nommu() 1
576
577 #define __get_dma_pgprot(attrs, prot) __pgprot(0)
578 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
579 #define __alloc_from_pool(size, ret_page) NULL
580 #define __alloc_from_contiguous(dev, size, prot, ret, c) NULL
581 #define __free_from_pool(cpu_addr, size) 0
582 #define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0)
583 #define __dma_free_remap(cpu_addr, size) do { } while (0)
584
585 #endif /* CONFIG_MMU */
586
587 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
588 struct page **ret_page)
589 {
590 struct page *page;
591 page = __dma_alloc_buffer(dev, size, gfp);
592 if (!page)
593 return NULL;
594
595 *ret_page = page;
596 return page_address(page);
597 }
598
599
600
601 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
602 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
603 {
604 u64 mask = get_coherent_dma_mask(dev);
605 struct page *page = NULL;
606 void *addr;
607
608 #ifdef CONFIG_DMA_API_DEBUG
609 u64 limit = (mask + 1) & ~mask;
610 if (limit && size >= limit) {
611 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
612 size, mask);
613 return NULL;
614 }
615 #endif
616
617 if (!mask)
618 return NULL;
619
620 if (mask < 0xffffffffULL)
621 gfp |= GFP_DMA;
622
623 /*
624 * Following is a work-around (a.k.a. hack) to prevent pages
625 * with __GFP_COMP being passed to split_page() which cannot
626 * handle them. The real problem is that this flag probably
627 * should be 0 on ARM as it is not supported on this
628 * platform; see CONFIG_HUGETLBFS.
629 */
630 gfp &= ~(__GFP_COMP);
631
632 *handle = DMA_ERROR_CODE;
633 size = PAGE_ALIGN(size);
634
635 if (is_coherent || nommu())
636 addr = __alloc_simple_buffer(dev, size, gfp, &page);
637 else if (!(gfp & __GFP_WAIT))
638 addr = __alloc_from_pool(size, &page);
639 else if (!dev_get_cma_area(dev))
640 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
641 else
642 addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
643
644 if (addr)
645 *handle = pfn_to_dma(dev, page_to_pfn(page));
646
647 return addr;
648 }
649
650 /*
651 * Allocate DMA-coherent memory space and return both the kernel remapped
652 * virtual and bus address for that space.
653 */
654 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
655 gfp_t gfp, struct dma_attrs *attrs)
656 {
657 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
658 void *memory;
659
660 if (dma_alloc_from_coherent(dev, size, handle, &memory))
661 return memory;
662
663 return __dma_alloc(dev, size, handle, gfp, prot, false,
664 __builtin_return_address(0));
665 }
666
667 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
668 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
669 {
670 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
671 void *memory;
672
673 if (dma_alloc_from_coherent(dev, size, handle, &memory))
674 return memory;
675
676 return __dma_alloc(dev, size, handle, gfp, prot, true,
677 __builtin_return_address(0));
678 }
679
680 /*
681 * Create userspace mapping for the DMA-coherent memory.
682 */
683 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
684 void *cpu_addr, dma_addr_t dma_addr, size_t size,
685 struct dma_attrs *attrs)
686 {
687 int ret = -ENXIO;
688 #ifdef CONFIG_MMU
689 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
690 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
691 unsigned long pfn = dma_to_pfn(dev, dma_addr);
692 unsigned long off = vma->vm_pgoff;
693
694 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
695
696 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
697 return ret;
698
699 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
700 ret = remap_pfn_range(vma, vma->vm_start,
701 pfn + off,
702 vma->vm_end - vma->vm_start,
703 vma->vm_page_prot);
704 }
705 #endif /* CONFIG_MMU */
706
707 return ret;
708 }
709
710 /*
711 * Free a buffer as defined by the above mapping.
712 */
713 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
714 dma_addr_t handle, struct dma_attrs *attrs,
715 bool is_coherent)
716 {
717 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
718
719 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
720 return;
721
722 size = PAGE_ALIGN(size);
723
724 if (is_coherent || nommu()) {
725 __dma_free_buffer(page, size);
726 } else if (__free_from_pool(cpu_addr, size)) {
727 return;
728 } else if (!dev_get_cma_area(dev)) {
729 __dma_free_remap(cpu_addr, size);
730 __dma_free_buffer(page, size);
731 } else {
732 /*
733 * Non-atomic allocations cannot be freed with IRQs disabled
734 */
735 WARN_ON(irqs_disabled());
736 __free_from_contiguous(dev, page, cpu_addr, size);
737 }
738 }
739
740 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
741 dma_addr_t handle, struct dma_attrs *attrs)
742 {
743 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
744 }
745
746 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
747 dma_addr_t handle, struct dma_attrs *attrs)
748 {
749 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
750 }
751
752 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
753 void *cpu_addr, dma_addr_t handle, size_t size,
754 struct dma_attrs *attrs)
755 {
756 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
757 int ret;
758
759 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
760 if (unlikely(ret))
761 return ret;
762
763 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
764 return 0;
765 }
766
767 static void dma_cache_maint_page(struct page *page, unsigned long offset,
768 size_t size, enum dma_data_direction dir,
769 void (*op)(const void *, size_t, int))
770 {
771 unsigned long pfn;
772 size_t left = size;
773
774 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
775 offset %= PAGE_SIZE;
776
777 /*
778 * A single sg entry may refer to multiple physically contiguous
779 * pages. But we still need to process highmem pages individually.
780 * If highmem is not configured then the bulk of this loop gets
781 * optimized out.
782 */
783 do {
784 size_t len = left;
785 void *vaddr;
786
787 page = pfn_to_page(pfn);
788
789 if (PageHighMem(page)) {
790 if (len + offset > PAGE_SIZE)
791 len = PAGE_SIZE - offset;
792
793 if (cache_is_vipt_nonaliasing()) {
794 vaddr = kmap_atomic(page);
795 op(vaddr + offset, len, dir);
796 kunmap_atomic(vaddr);
797 } else {
798 vaddr = kmap_high_get(page);
799 if (vaddr) {
800 op(vaddr + offset, len, dir);
801 kunmap_high(page);
802 }
803 }
804 } else {
805 vaddr = page_address(page) + offset;
806 op(vaddr, len, dir);
807 }
808 offset = 0;
809 pfn++;
810 left -= len;
811 } while (left);
812 }
813
814 /*
815 * Make an area consistent for devices.
816 * Note: Drivers should NOT use this function directly, as it will break
817 * platforms with CONFIG_DMABOUNCE.
818 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
819 */
820 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
821 size_t size, enum dma_data_direction dir)
822 {
823 phys_addr_t paddr;
824
825 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
826
827 paddr = page_to_phys(page) + off;
828 if (dir == DMA_FROM_DEVICE) {
829 outer_inv_range(paddr, paddr + size);
830 } else {
831 outer_clean_range(paddr, paddr + size);
832 }
833 /* FIXME: non-speculating: flush on bidirectional mappings? */
834 }
835
836 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
837 size_t size, enum dma_data_direction dir)
838 {
839 phys_addr_t paddr = page_to_phys(page) + off;
840
841 /* FIXME: non-speculating: not required */
842 /* in any case, don't bother invalidating if DMA to device */
843 if (dir != DMA_TO_DEVICE) {
844 outer_inv_range(paddr, paddr + size);
845
846 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
847 }
848
849 /*
850 * Mark the D-cache clean for these pages to avoid extra flushing.
851 */
852 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
853 unsigned long pfn;
854 size_t left = size;
855
856 pfn = page_to_pfn(page) + off / PAGE_SIZE;
857 off %= PAGE_SIZE;
858 if (off) {
859 pfn++;
860 left -= PAGE_SIZE - off;
861 }
862 while (left >= PAGE_SIZE) {
863 page = pfn_to_page(pfn++);
864 set_bit(PG_dcache_clean, &page->flags);
865 left -= PAGE_SIZE;
866 }
867 }
868 }
869
870 /**
871 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
872 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
873 * @sg: list of buffers
874 * @nents: number of buffers to map
875 * @dir: DMA transfer direction
876 *
877 * Map a set of buffers described by scatterlist in streaming mode for DMA.
878 * This is the scatter-gather version of the dma_map_single interface.
879 * Here the scatter gather list elements are each tagged with the
880 * appropriate dma address and length. They are obtained via
881 * sg_dma_{address,length}.
882 *
883 * Device ownership issues as mentioned for dma_map_single are the same
884 * here.
885 */
886 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
887 enum dma_data_direction dir, struct dma_attrs *attrs)
888 {
889 struct dma_map_ops *ops = get_dma_ops(dev);
890 struct scatterlist *s;
891 int i, j;
892
893 for_each_sg(sg, s, nents, i) {
894 #ifdef CONFIG_NEED_SG_DMA_LENGTH
895 s->dma_length = s->length;
896 #endif
897 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
898 s->length, dir, attrs);
899 if (dma_mapping_error(dev, s->dma_address))
900 goto bad_mapping;
901 }
902 return nents;
903
904 bad_mapping:
905 for_each_sg(sg, s, i, j)
906 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
907 return 0;
908 }
909
910 /**
911 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
912 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
913 * @sg: list of buffers
914 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
915 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
916 *
917 * Unmap a set of streaming mode DMA translations. Again, CPU access
918 * rules concerning calls here are the same as for dma_unmap_single().
919 */
920 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
921 enum dma_data_direction dir, struct dma_attrs *attrs)
922 {
923 struct dma_map_ops *ops = get_dma_ops(dev);
924 struct scatterlist *s;
925
926 int i;
927
928 for_each_sg(sg, s, nents, i)
929 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
930 }
931
932 /**
933 * arm_dma_sync_sg_for_cpu
934 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
935 * @sg: list of buffers
936 * @nents: number of buffers to map (returned from dma_map_sg)
937 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
938 */
939 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
940 int nents, enum dma_data_direction dir)
941 {
942 struct dma_map_ops *ops = get_dma_ops(dev);
943 struct scatterlist *s;
944 int i;
945
946 for_each_sg(sg, s, nents, i)
947 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
948 dir);
949 }
950
951 /**
952 * arm_dma_sync_sg_for_device
953 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
954 * @sg: list of buffers
955 * @nents: number of buffers to map (returned from dma_map_sg)
956 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
957 */
958 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
959 int nents, enum dma_data_direction dir)
960 {
961 struct dma_map_ops *ops = get_dma_ops(dev);
962 struct scatterlist *s;
963 int i;
964
965 for_each_sg(sg, s, nents, i)
966 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
967 dir);
968 }
969
970 /*
971 * Return whether the given device DMA address mask can be supported
972 * properly. For example, if your device can only drive the low 24-bits
973 * during bus mastering, then you would pass 0x00ffffff as the mask
974 * to this function.
975 */
976 int dma_supported(struct device *dev, u64 mask)
977 {
978 return __dma_supported(dev, mask, false);
979 }
980 EXPORT_SYMBOL(dma_supported);
981
982 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
983 {
984 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
985 return -EIO;
986
987 *dev->dma_mask = dma_mask;
988
989 return 0;
990 }
991
992 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
993
994 static int __init dma_debug_do_init(void)
995 {
996 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
997 return 0;
998 }
999 fs_initcall(dma_debug_do_init);
1000
1001 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1002
1003 /* IOMMU */
1004
1005 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1006
1007 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1008 size_t size)
1009 {
1010 unsigned int order = get_order(size);
1011 unsigned int align = 0;
1012 unsigned int count, start;
1013 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1014 unsigned long flags;
1015 dma_addr_t iova;
1016 int i;
1017
1018 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1019 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1020
1021 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1022 align = (1 << order) - 1;
1023
1024 spin_lock_irqsave(&mapping->lock, flags);
1025 for (i = 0; i < mapping->nr_bitmaps; i++) {
1026 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1027 mapping->bits, 0, count, align);
1028
1029 if (start > mapping->bits)
1030 continue;
1031
1032 bitmap_set(mapping->bitmaps[i], start, count);
1033 break;
1034 }
1035
1036 /*
1037 * No unused range found. Try to extend the existing mapping
1038 * and perform a second attempt to reserve an IO virtual
1039 * address range of size bytes.
1040 */
1041 if (i == mapping->nr_bitmaps) {
1042 if (extend_iommu_mapping(mapping)) {
1043 spin_unlock_irqrestore(&mapping->lock, flags);
1044 return DMA_ERROR_CODE;
1045 }
1046
1047 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1048 mapping->bits, 0, count, align);
1049
1050 if (start > mapping->bits) {
1051 spin_unlock_irqrestore(&mapping->lock, flags);
1052 return DMA_ERROR_CODE;
1053 }
1054
1055 bitmap_set(mapping->bitmaps[i], start, count);
1056 }
1057 spin_unlock_irqrestore(&mapping->lock, flags);
1058
1059 iova = mapping->base + (mapping_size * i);
1060 iova += start << PAGE_SHIFT;
1061
1062 return iova;
1063 }
1064
1065 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1066 dma_addr_t addr, size_t size)
1067 {
1068 unsigned int start, count;
1069 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1070 unsigned long flags;
1071 dma_addr_t bitmap_base;
1072 u32 bitmap_index;
1073
1074 if (!size)
1075 return;
1076
1077 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1078 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1079
1080 bitmap_base = mapping->base + mapping_size * bitmap_index;
1081
1082 start = (addr - bitmap_base) >> PAGE_SHIFT;
1083
1084 if (addr + size > bitmap_base + mapping_size) {
1085 /*
1086 * The address range to be freed reaches into the iova
1087 * range of the next bitmap. This should not happen as
1088 * we don't allow this in __alloc_iova (at the
1089 * moment).
1090 */
1091 BUG();
1092 } else
1093 count = size >> PAGE_SHIFT;
1094
1095 spin_lock_irqsave(&mapping->lock, flags);
1096 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1097 spin_unlock_irqrestore(&mapping->lock, flags);
1098 }
1099
1100 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1101 gfp_t gfp, struct dma_attrs *attrs)
1102 {
1103 struct page **pages;
1104 int count = size >> PAGE_SHIFT;
1105 int array_size = count * sizeof(struct page *);
1106 int i = 0;
1107
1108 if (array_size <= PAGE_SIZE)
1109 pages = kzalloc(array_size, GFP_KERNEL);
1110 else
1111 pages = vzalloc(array_size);
1112 if (!pages)
1113 return NULL;
1114
1115 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1116 {
1117 unsigned long order = get_order(size);
1118 struct page *page;
1119
1120 page = dma_alloc_from_contiguous(dev, count, order);
1121 if (!page)
1122 goto error;
1123
1124 __dma_clear_buffer(page, size);
1125
1126 for (i = 0; i < count; i++)
1127 pages[i] = page + i;
1128
1129 return pages;
1130 }
1131
1132 /*
1133 * IOMMU can map any pages, so himem can also be used here
1134 */
1135 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1136
1137 while (count) {
1138 int j, order = __fls(count);
1139
1140 pages[i] = alloc_pages(gfp, order);
1141 while (!pages[i] && order)
1142 pages[i] = alloc_pages(gfp, --order);
1143 if (!pages[i])
1144 goto error;
1145
1146 if (order) {
1147 split_page(pages[i], order);
1148 j = 1 << order;
1149 while (--j)
1150 pages[i + j] = pages[i] + j;
1151 }
1152
1153 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1154 i += 1 << order;
1155 count -= 1 << order;
1156 }
1157
1158 return pages;
1159 error:
1160 while (i--)
1161 if (pages[i])
1162 __free_pages(pages[i], 0);
1163 if (array_size <= PAGE_SIZE)
1164 kfree(pages);
1165 else
1166 vfree(pages);
1167 return NULL;
1168 }
1169
1170 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1171 size_t size, struct dma_attrs *attrs)
1172 {
1173 int count = size >> PAGE_SHIFT;
1174 int array_size = count * sizeof(struct page *);
1175 int i;
1176
1177 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1178 dma_release_from_contiguous(dev, pages[0], count);
1179 } else {
1180 for (i = 0; i < count; i++)
1181 if (pages[i])
1182 __free_pages(pages[i], 0);
1183 }
1184
1185 if (array_size <= PAGE_SIZE)
1186 kfree(pages);
1187 else
1188 vfree(pages);
1189 return 0;
1190 }
1191
1192 /*
1193 * Create a CPU mapping for a specified pages
1194 */
1195 static void *
1196 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1197 const void *caller)
1198 {
1199 return dma_common_pages_remap(pages, size,
1200 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1201 }
1202
1203 /*
1204 * Create a mapping in device IO address space for specified pages
1205 */
1206 static dma_addr_t
1207 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1208 {
1209 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1210 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1211 dma_addr_t dma_addr, iova;
1212 int i, ret = DMA_ERROR_CODE;
1213
1214 dma_addr = __alloc_iova(mapping, size);
1215 if (dma_addr == DMA_ERROR_CODE)
1216 return dma_addr;
1217
1218 iova = dma_addr;
1219 for (i = 0; i < count; ) {
1220 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1221 phys_addr_t phys = page_to_phys(pages[i]);
1222 unsigned int len, j;
1223
1224 for (j = i + 1; j < count; j++, next_pfn++)
1225 if (page_to_pfn(pages[j]) != next_pfn)
1226 break;
1227
1228 len = (j - i) << PAGE_SHIFT;
1229 ret = iommu_map(mapping->domain, iova, phys, len,
1230 IOMMU_READ|IOMMU_WRITE);
1231 if (ret < 0)
1232 goto fail;
1233 iova += len;
1234 i = j;
1235 }
1236 return dma_addr;
1237 fail:
1238 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1239 __free_iova(mapping, dma_addr, size);
1240 return DMA_ERROR_CODE;
1241 }
1242
1243 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1244 {
1245 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1246
1247 /*
1248 * add optional in-page offset from iova to size and align
1249 * result to page size
1250 */
1251 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1252 iova &= PAGE_MASK;
1253
1254 iommu_unmap(mapping->domain, iova, size);
1255 __free_iova(mapping, iova, size);
1256 return 0;
1257 }
1258
1259 static struct page **__atomic_get_pages(void *addr)
1260 {
1261 struct page *page;
1262 phys_addr_t phys;
1263
1264 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1265 page = phys_to_page(phys);
1266
1267 return (struct page **)page;
1268 }
1269
1270 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1271 {
1272 struct vm_struct *area;
1273
1274 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1275 return __atomic_get_pages(cpu_addr);
1276
1277 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1278 return cpu_addr;
1279
1280 area = find_vm_area(cpu_addr);
1281 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1282 return area->pages;
1283 return NULL;
1284 }
1285
1286 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1287 dma_addr_t *handle)
1288 {
1289 struct page *page;
1290 void *addr;
1291
1292 addr = __alloc_from_pool(size, &page);
1293 if (!addr)
1294 return NULL;
1295
1296 *handle = __iommu_create_mapping(dev, &page, size);
1297 if (*handle == DMA_ERROR_CODE)
1298 goto err_mapping;
1299
1300 return addr;
1301
1302 err_mapping:
1303 __free_from_pool(addr, size);
1304 return NULL;
1305 }
1306
1307 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1308 dma_addr_t handle, size_t size)
1309 {
1310 __iommu_remove_mapping(dev, handle, size);
1311 __free_from_pool(cpu_addr, size);
1312 }
1313
1314 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1315 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1316 {
1317 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1318 struct page **pages;
1319 void *addr = NULL;
1320
1321 *handle = DMA_ERROR_CODE;
1322 size = PAGE_ALIGN(size);
1323
1324 if (!(gfp & __GFP_WAIT))
1325 return __iommu_alloc_atomic(dev, size, handle);
1326
1327 /*
1328 * Following is a work-around (a.k.a. hack) to prevent pages
1329 * with __GFP_COMP being passed to split_page() which cannot
1330 * handle them. The real problem is that this flag probably
1331 * should be 0 on ARM as it is not supported on this
1332 * platform; see CONFIG_HUGETLBFS.
1333 */
1334 gfp &= ~(__GFP_COMP);
1335
1336 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1337 if (!pages)
1338 return NULL;
1339
1340 *handle = __iommu_create_mapping(dev, pages, size);
1341 if (*handle == DMA_ERROR_CODE)
1342 goto err_buffer;
1343
1344 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1345 return pages;
1346
1347 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1348 __builtin_return_address(0));
1349 if (!addr)
1350 goto err_mapping;
1351
1352 return addr;
1353
1354 err_mapping:
1355 __iommu_remove_mapping(dev, *handle, size);
1356 err_buffer:
1357 __iommu_free_buffer(dev, pages, size, attrs);
1358 return NULL;
1359 }
1360
1361 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1362 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1363 struct dma_attrs *attrs)
1364 {
1365 unsigned long uaddr = vma->vm_start;
1366 unsigned long usize = vma->vm_end - vma->vm_start;
1367 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1368
1369 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1370
1371 if (!pages)
1372 return -ENXIO;
1373
1374 do {
1375 int ret = vm_insert_page(vma, uaddr, *pages++);
1376 if (ret) {
1377 pr_err("Remapping memory failed: %d\n", ret);
1378 return ret;
1379 }
1380 uaddr += PAGE_SIZE;
1381 usize -= PAGE_SIZE;
1382 } while (usize > 0);
1383
1384 return 0;
1385 }
1386
1387 /*
1388 * free a page as defined by the above mapping.
1389 * Must not be called with IRQs disabled.
1390 */
1391 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1392 dma_addr_t handle, struct dma_attrs *attrs)
1393 {
1394 struct page **pages;
1395 size = PAGE_ALIGN(size);
1396
1397 if (__in_atomic_pool(cpu_addr, size)) {
1398 __iommu_free_atomic(dev, cpu_addr, handle, size);
1399 return;
1400 }
1401
1402 pages = __iommu_get_pages(cpu_addr, attrs);
1403 if (!pages) {
1404 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1405 return;
1406 }
1407
1408 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1409 dma_common_free_remap(cpu_addr, size,
1410 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1411 }
1412
1413 __iommu_remove_mapping(dev, handle, size);
1414 __iommu_free_buffer(dev, pages, size, attrs);
1415 }
1416
1417 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1418 void *cpu_addr, dma_addr_t dma_addr,
1419 size_t size, struct dma_attrs *attrs)
1420 {
1421 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1422 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1423
1424 if (!pages)
1425 return -ENXIO;
1426
1427 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1428 GFP_KERNEL);
1429 }
1430
1431 static int __dma_direction_to_prot(enum dma_data_direction dir)
1432 {
1433 int prot;
1434
1435 switch (dir) {
1436 case DMA_BIDIRECTIONAL:
1437 prot = IOMMU_READ | IOMMU_WRITE;
1438 break;
1439 case DMA_TO_DEVICE:
1440 prot = IOMMU_READ;
1441 break;
1442 case DMA_FROM_DEVICE:
1443 prot = IOMMU_WRITE;
1444 break;
1445 default:
1446 prot = 0;
1447 }
1448
1449 return prot;
1450 }
1451
1452 /*
1453 * Map a part of the scatter-gather list into contiguous io address space
1454 */
1455 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1456 size_t size, dma_addr_t *handle,
1457 enum dma_data_direction dir, struct dma_attrs *attrs,
1458 bool is_coherent)
1459 {
1460 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1461 dma_addr_t iova, iova_base;
1462 int ret = 0;
1463 unsigned int count;
1464 struct scatterlist *s;
1465 int prot;
1466
1467 size = PAGE_ALIGN(size);
1468 *handle = DMA_ERROR_CODE;
1469
1470 iova_base = iova = __alloc_iova(mapping, size);
1471 if (iova == DMA_ERROR_CODE)
1472 return -ENOMEM;
1473
1474 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1475 phys_addr_t phys = page_to_phys(sg_page(s));
1476 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1477
1478 if (!is_coherent &&
1479 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1480 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1481
1482 prot = __dma_direction_to_prot(dir);
1483
1484 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1485 if (ret < 0)
1486 goto fail;
1487 count += len >> PAGE_SHIFT;
1488 iova += len;
1489 }
1490 *handle = iova_base;
1491
1492 return 0;
1493 fail:
1494 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1495 __free_iova(mapping, iova_base, size);
1496 return ret;
1497 }
1498
1499 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1500 enum dma_data_direction dir, struct dma_attrs *attrs,
1501 bool is_coherent)
1502 {
1503 struct scatterlist *s = sg, *dma = sg, *start = sg;
1504 int i, count = 0;
1505 unsigned int offset = s->offset;
1506 unsigned int size = s->offset + s->length;
1507 unsigned int max = dma_get_max_seg_size(dev);
1508
1509 for (i = 1; i < nents; i++) {
1510 s = sg_next(s);
1511
1512 s->dma_address = DMA_ERROR_CODE;
1513 s->dma_length = 0;
1514
1515 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1516 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1517 dir, attrs, is_coherent) < 0)
1518 goto bad_mapping;
1519
1520 dma->dma_address += offset;
1521 dma->dma_length = size - offset;
1522
1523 size = offset = s->offset;
1524 start = s;
1525 dma = sg_next(dma);
1526 count += 1;
1527 }
1528 size += s->length;
1529 }
1530 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1531 is_coherent) < 0)
1532 goto bad_mapping;
1533
1534 dma->dma_address += offset;
1535 dma->dma_length = size - offset;
1536
1537 return count+1;
1538
1539 bad_mapping:
1540 for_each_sg(sg, s, count, i)
1541 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1542 return 0;
1543 }
1544
1545 /**
1546 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1547 * @dev: valid struct device pointer
1548 * @sg: list of buffers
1549 * @nents: number of buffers to map
1550 * @dir: DMA transfer direction
1551 *
1552 * Map a set of i/o coherent buffers described by scatterlist in streaming
1553 * mode for DMA. The scatter gather list elements are merged together (if
1554 * possible) and tagged with the appropriate dma address and length. They are
1555 * obtained via sg_dma_{address,length}.
1556 */
1557 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1558 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1559 {
1560 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1561 }
1562
1563 /**
1564 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1565 * @dev: valid struct device pointer
1566 * @sg: list of buffers
1567 * @nents: number of buffers to map
1568 * @dir: DMA transfer direction
1569 *
1570 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1571 * The scatter gather list elements are merged together (if possible) and
1572 * tagged with the appropriate dma address and length. They are obtained via
1573 * sg_dma_{address,length}.
1574 */
1575 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1576 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1577 {
1578 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1579 }
1580
1581 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1582 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1583 bool is_coherent)
1584 {
1585 struct scatterlist *s;
1586 int i;
1587
1588 for_each_sg(sg, s, nents, i) {
1589 if (sg_dma_len(s))
1590 __iommu_remove_mapping(dev, sg_dma_address(s),
1591 sg_dma_len(s));
1592 if (!is_coherent &&
1593 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1594 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1595 s->length, dir);
1596 }
1597 }
1598
1599 /**
1600 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1601 * @dev: valid struct device pointer
1602 * @sg: list of buffers
1603 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1604 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1605 *
1606 * Unmap a set of streaming mode DMA translations. Again, CPU access
1607 * rules concerning calls here are the same as for dma_unmap_single().
1608 */
1609 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1610 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1611 {
1612 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1613 }
1614
1615 /**
1616 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1617 * @dev: valid struct device pointer
1618 * @sg: list of buffers
1619 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1620 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1621 *
1622 * Unmap a set of streaming mode DMA translations. Again, CPU access
1623 * rules concerning calls here are the same as for dma_unmap_single().
1624 */
1625 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1626 enum dma_data_direction dir, struct dma_attrs *attrs)
1627 {
1628 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1629 }
1630
1631 /**
1632 * arm_iommu_sync_sg_for_cpu
1633 * @dev: valid struct device pointer
1634 * @sg: list of buffers
1635 * @nents: number of buffers to map (returned from dma_map_sg)
1636 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1637 */
1638 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1639 int nents, enum dma_data_direction dir)
1640 {
1641 struct scatterlist *s;
1642 int i;
1643
1644 for_each_sg(sg, s, nents, i)
1645 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1646
1647 }
1648
1649 /**
1650 * arm_iommu_sync_sg_for_device
1651 * @dev: valid struct device pointer
1652 * @sg: list of buffers
1653 * @nents: number of buffers to map (returned from dma_map_sg)
1654 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1655 */
1656 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1657 int nents, enum dma_data_direction dir)
1658 {
1659 struct scatterlist *s;
1660 int i;
1661
1662 for_each_sg(sg, s, nents, i)
1663 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1664 }
1665
1666
1667 /**
1668 * arm_coherent_iommu_map_page
1669 * @dev: valid struct device pointer
1670 * @page: page that buffer resides in
1671 * @offset: offset into page for start of buffer
1672 * @size: size of buffer to map
1673 * @dir: DMA transfer direction
1674 *
1675 * Coherent IOMMU aware version of arm_dma_map_page()
1676 */
1677 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1678 unsigned long offset, size_t size, enum dma_data_direction dir,
1679 struct dma_attrs *attrs)
1680 {
1681 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1682 dma_addr_t dma_addr;
1683 int ret, prot, len = PAGE_ALIGN(size + offset);
1684
1685 dma_addr = __alloc_iova(mapping, len);
1686 if (dma_addr == DMA_ERROR_CODE)
1687 return dma_addr;
1688
1689 prot = __dma_direction_to_prot(dir);
1690
1691 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1692 if (ret < 0)
1693 goto fail;
1694
1695 return dma_addr + offset;
1696 fail:
1697 __free_iova(mapping, dma_addr, len);
1698 return DMA_ERROR_CODE;
1699 }
1700
1701 /**
1702 * arm_iommu_map_page
1703 * @dev: valid struct device pointer
1704 * @page: page that buffer resides in
1705 * @offset: offset into page for start of buffer
1706 * @size: size of buffer to map
1707 * @dir: DMA transfer direction
1708 *
1709 * IOMMU aware version of arm_dma_map_page()
1710 */
1711 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1712 unsigned long offset, size_t size, enum dma_data_direction dir,
1713 struct dma_attrs *attrs)
1714 {
1715 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1716 __dma_page_cpu_to_dev(page, offset, size, dir);
1717
1718 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1719 }
1720
1721 /**
1722 * arm_coherent_iommu_unmap_page
1723 * @dev: valid struct device pointer
1724 * @handle: DMA address of buffer
1725 * @size: size of buffer (same as passed to dma_map_page)
1726 * @dir: DMA transfer direction (same as passed to dma_map_page)
1727 *
1728 * Coherent IOMMU aware version of arm_dma_unmap_page()
1729 */
1730 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1731 size_t size, enum dma_data_direction dir,
1732 struct dma_attrs *attrs)
1733 {
1734 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1735 dma_addr_t iova = handle & PAGE_MASK;
1736 int offset = handle & ~PAGE_MASK;
1737 int len = PAGE_ALIGN(size + offset);
1738
1739 if (!iova)
1740 return;
1741
1742 iommu_unmap(mapping->domain, iova, len);
1743 __free_iova(mapping, iova, len);
1744 }
1745
1746 /**
1747 * arm_iommu_unmap_page
1748 * @dev: valid struct device pointer
1749 * @handle: DMA address of buffer
1750 * @size: size of buffer (same as passed to dma_map_page)
1751 * @dir: DMA transfer direction (same as passed to dma_map_page)
1752 *
1753 * IOMMU aware version of arm_dma_unmap_page()
1754 */
1755 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1756 size_t size, enum dma_data_direction dir,
1757 struct dma_attrs *attrs)
1758 {
1759 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1760 dma_addr_t iova = handle & PAGE_MASK;
1761 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1762 int offset = handle & ~PAGE_MASK;
1763 int len = PAGE_ALIGN(size + offset);
1764
1765 if (!iova)
1766 return;
1767
1768 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1769 __dma_page_dev_to_cpu(page, offset, size, dir);
1770
1771 iommu_unmap(mapping->domain, iova, len);
1772 __free_iova(mapping, iova, len);
1773 }
1774
1775 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1776 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1777 {
1778 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1779 dma_addr_t iova = handle & PAGE_MASK;
1780 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1781 unsigned int offset = handle & ~PAGE_MASK;
1782
1783 if (!iova)
1784 return;
1785
1786 __dma_page_dev_to_cpu(page, offset, size, dir);
1787 }
1788
1789 static void arm_iommu_sync_single_for_device(struct device *dev,
1790 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1791 {
1792 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1793 dma_addr_t iova = handle & PAGE_MASK;
1794 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1795 unsigned int offset = handle & ~PAGE_MASK;
1796
1797 if (!iova)
1798 return;
1799
1800 __dma_page_cpu_to_dev(page, offset, size, dir);
1801 }
1802
1803 struct dma_map_ops iommu_ops = {
1804 .alloc = arm_iommu_alloc_attrs,
1805 .free = arm_iommu_free_attrs,
1806 .mmap = arm_iommu_mmap_attrs,
1807 .get_sgtable = arm_iommu_get_sgtable,
1808
1809 .map_page = arm_iommu_map_page,
1810 .unmap_page = arm_iommu_unmap_page,
1811 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1812 .sync_single_for_device = arm_iommu_sync_single_for_device,
1813
1814 .map_sg = arm_iommu_map_sg,
1815 .unmap_sg = arm_iommu_unmap_sg,
1816 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1817 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1818
1819 .set_dma_mask = arm_dma_set_mask,
1820 };
1821
1822 struct dma_map_ops iommu_coherent_ops = {
1823 .alloc = arm_iommu_alloc_attrs,
1824 .free = arm_iommu_free_attrs,
1825 .mmap = arm_iommu_mmap_attrs,
1826 .get_sgtable = arm_iommu_get_sgtable,
1827
1828 .map_page = arm_coherent_iommu_map_page,
1829 .unmap_page = arm_coherent_iommu_unmap_page,
1830
1831 .map_sg = arm_coherent_iommu_map_sg,
1832 .unmap_sg = arm_coherent_iommu_unmap_sg,
1833
1834 .set_dma_mask = arm_dma_set_mask,
1835 };
1836
1837 /**
1838 * arm_iommu_create_mapping
1839 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1840 * @base: start address of the valid IO address space
1841 * @size: maximum size of the valid IO address space
1842 *
1843 * Creates a mapping structure which holds information about used/unused
1844 * IO address ranges, which is required to perform memory allocation and
1845 * mapping with IOMMU aware functions.
1846 *
1847 * The client device need to be attached to the mapping with
1848 * arm_iommu_attach_device function.
1849 */
1850 struct dma_iommu_mapping *
1851 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
1852 {
1853 unsigned int bits = size >> PAGE_SHIFT;
1854 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1855 struct dma_iommu_mapping *mapping;
1856 int extensions = 1;
1857 int err = -ENOMEM;
1858
1859 if (!bitmap_size)
1860 return ERR_PTR(-EINVAL);
1861
1862 if (bitmap_size > PAGE_SIZE) {
1863 extensions = bitmap_size / PAGE_SIZE;
1864 bitmap_size = PAGE_SIZE;
1865 }
1866
1867 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1868 if (!mapping)
1869 goto err;
1870
1871 mapping->bitmap_size = bitmap_size;
1872 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1873 GFP_KERNEL);
1874 if (!mapping->bitmaps)
1875 goto err2;
1876
1877 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1878 if (!mapping->bitmaps[0])
1879 goto err3;
1880
1881 mapping->nr_bitmaps = 1;
1882 mapping->extensions = extensions;
1883 mapping->base = base;
1884 mapping->bits = BITS_PER_BYTE * bitmap_size;
1885
1886 spin_lock_init(&mapping->lock);
1887
1888 mapping->domain = iommu_domain_alloc(bus);
1889 if (!mapping->domain)
1890 goto err4;
1891
1892 kref_init(&mapping->kref);
1893 return mapping;
1894 err4:
1895 kfree(mapping->bitmaps[0]);
1896 err3:
1897 kfree(mapping->bitmaps);
1898 err2:
1899 kfree(mapping);
1900 err:
1901 return ERR_PTR(err);
1902 }
1903 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1904
1905 static void release_iommu_mapping(struct kref *kref)
1906 {
1907 int i;
1908 struct dma_iommu_mapping *mapping =
1909 container_of(kref, struct dma_iommu_mapping, kref);
1910
1911 iommu_domain_free(mapping->domain);
1912 for (i = 0; i < mapping->nr_bitmaps; i++)
1913 kfree(mapping->bitmaps[i]);
1914 kfree(mapping->bitmaps);
1915 kfree(mapping);
1916 }
1917
1918 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1919 {
1920 int next_bitmap;
1921
1922 if (mapping->nr_bitmaps > mapping->extensions)
1923 return -EINVAL;
1924
1925 next_bitmap = mapping->nr_bitmaps;
1926 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1927 GFP_ATOMIC);
1928 if (!mapping->bitmaps[next_bitmap])
1929 return -ENOMEM;
1930
1931 mapping->nr_bitmaps++;
1932
1933 return 0;
1934 }
1935
1936 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1937 {
1938 if (mapping)
1939 kref_put(&mapping->kref, release_iommu_mapping);
1940 }
1941 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1942
1943 static int __arm_iommu_attach_device(struct device *dev,
1944 struct dma_iommu_mapping *mapping)
1945 {
1946 int err;
1947
1948 err = iommu_attach_device(mapping->domain, dev);
1949 if (err)
1950 return err;
1951
1952 kref_get(&mapping->kref);
1953 dev->archdata.mapping = mapping;
1954
1955 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1956 return 0;
1957 }
1958
1959 /**
1960 * arm_iommu_attach_device
1961 * @dev: valid struct device pointer
1962 * @mapping: io address space mapping structure (returned from
1963 * arm_iommu_create_mapping)
1964 *
1965 * Attaches specified io address space mapping to the provided device.
1966 * This replaces the dma operations (dma_map_ops pointer) with the
1967 * IOMMU aware version.
1968 *
1969 * More than one client might be attached to the same io address space
1970 * mapping.
1971 */
1972 int arm_iommu_attach_device(struct device *dev,
1973 struct dma_iommu_mapping *mapping)
1974 {
1975 int err;
1976
1977 err = __arm_iommu_attach_device(dev, mapping);
1978 if (err)
1979 return err;
1980
1981 set_dma_ops(dev, &iommu_ops);
1982 return 0;
1983 }
1984 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1985
1986 static void __arm_iommu_detach_device(struct device *dev)
1987 {
1988 struct dma_iommu_mapping *mapping;
1989
1990 mapping = to_dma_iommu_mapping(dev);
1991 if (!mapping) {
1992 dev_warn(dev, "Not attached\n");
1993 return;
1994 }
1995
1996 iommu_detach_device(mapping->domain, dev);
1997 kref_put(&mapping->kref, release_iommu_mapping);
1998 dev->archdata.mapping = NULL;
1999
2000 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2001 }
2002
2003 /**
2004 * arm_iommu_detach_device
2005 * @dev: valid struct device pointer
2006 *
2007 * Detaches the provided device from a previously attached map.
2008 * This voids the dma operations (dma_map_ops pointer)
2009 */
2010 void arm_iommu_detach_device(struct device *dev)
2011 {
2012 __arm_iommu_detach_device(dev);
2013 set_dma_ops(dev, NULL);
2014 }
2015 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2016
2017 static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2018 {
2019 return coherent ? &iommu_coherent_ops : &iommu_ops;
2020 }
2021
2022 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2023 struct iommu_ops *iommu)
2024 {
2025 struct dma_iommu_mapping *mapping;
2026
2027 if (!iommu)
2028 return false;
2029
2030 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2031 if (IS_ERR(mapping)) {
2032 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2033 size, dev_name(dev));
2034 return false;
2035 }
2036
2037 if (__arm_iommu_attach_device(dev, mapping)) {
2038 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2039 dev_name(dev));
2040 arm_iommu_release_mapping(mapping);
2041 return false;
2042 }
2043
2044 return true;
2045 }
2046
2047 static void arm_teardown_iommu_dma_ops(struct device *dev)
2048 {
2049 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
2050
2051 if (!mapping)
2052 return;
2053
2054 __arm_iommu_detach_device(dev);
2055 arm_iommu_release_mapping(mapping);
2056 }
2057
2058 #else
2059
2060 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2061 struct iommu_ops *iommu)
2062 {
2063 return false;
2064 }
2065
2066 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2067
2068 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2069
2070 #endif /* CONFIG_ARM_DMA_USE_IOMMU */
2071
2072 static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2073 {
2074 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2075 }
2076
2077 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2078 struct iommu_ops *iommu, bool coherent)
2079 {
2080 struct dma_map_ops *dma_ops;
2081
2082 dev->archdata.dma_coherent = coherent;
2083 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2084 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2085 else
2086 dma_ops = arm_get_dma_map_ops(coherent);
2087
2088 set_dma_ops(dev, dma_ops);
2089 }
2090
2091 void arch_teardown_dma_ops(struct device *dev)
2092 {
2093 arm_teardown_iommu_dma_ops(dev);
2094 }
This page took 0.109487 seconds and 6 git commands to generate.