ARM: support generic per-device coherent dma mem
[deliverable/linux.git] / arch / arm / mm / fault.c
1 /*
2 * linux/arch/arm/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Modifications for ARM processor (c) 1995-2004 Russell King
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/signal.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/kprobes.h>
16
17 #include <asm/system.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
20 #include <asm/uaccess.h>
21
22 #include "fault.h"
23
24
25 #ifdef CONFIG_KPROBES
26 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
27 {
28 int ret = 0;
29
30 if (!user_mode(regs)) {
31 /* kprobe_running() needs smp_processor_id() */
32 preempt_disable();
33 if (kprobe_running() && kprobe_fault_handler(regs, fsr))
34 ret = 1;
35 preempt_enable();
36 }
37
38 return ret;
39 }
40 #else
41 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
42 {
43 return 0;
44 }
45 #endif
46
47 /*
48 * This is useful to dump out the page tables associated with
49 * 'addr' in mm 'mm'.
50 */
51 void show_pte(struct mm_struct *mm, unsigned long addr)
52 {
53 pgd_t *pgd;
54
55 if (!mm)
56 mm = &init_mm;
57
58 printk(KERN_ALERT "pgd = %p\n", mm->pgd);
59 pgd = pgd_offset(mm, addr);
60 printk(KERN_ALERT "[%08lx] *pgd=%08lx", addr, pgd_val(*pgd));
61
62 do {
63 pmd_t *pmd;
64 pte_t *pte;
65
66 if (pgd_none(*pgd))
67 break;
68
69 if (pgd_bad(*pgd)) {
70 printk("(bad)");
71 break;
72 }
73
74 pmd = pmd_offset(pgd, addr);
75 #if PTRS_PER_PMD != 1
76 printk(", *pmd=%08lx", pmd_val(*pmd));
77 #endif
78
79 if (pmd_none(*pmd))
80 break;
81
82 if (pmd_bad(*pmd)) {
83 printk("(bad)");
84 break;
85 }
86
87 #ifndef CONFIG_HIGHMEM
88 /* We must not map this if we have highmem enabled */
89 pte = pte_offset_map(pmd, addr);
90 printk(", *pte=%08lx", pte_val(*pte));
91 printk(", *ppte=%08lx", pte_val(pte[-PTRS_PER_PTE]));
92 pte_unmap(pte);
93 #endif
94 } while(0);
95
96 printk("\n");
97 }
98
99 /*
100 * Oops. The kernel tried to access some page that wasn't present.
101 */
102 static void
103 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
104 struct pt_regs *regs)
105 {
106 /*
107 * Are we prepared to handle this kernel fault?
108 */
109 if (fixup_exception(regs))
110 return;
111
112 /*
113 * No handler, we'll have to terminate things with extreme prejudice.
114 */
115 bust_spinlocks(1);
116 printk(KERN_ALERT
117 "Unable to handle kernel %s at virtual address %08lx\n",
118 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
119 "paging request", addr);
120
121 show_pte(mm, addr);
122 die("Oops", regs, fsr);
123 bust_spinlocks(0);
124 do_exit(SIGKILL);
125 }
126
127 /*
128 * Something tried to access memory that isn't in our memory map..
129 * User mode accesses just cause a SIGSEGV
130 */
131 static void
132 __do_user_fault(struct task_struct *tsk, unsigned long addr,
133 unsigned int fsr, unsigned int sig, int code,
134 struct pt_regs *regs)
135 {
136 struct siginfo si;
137
138 #ifdef CONFIG_DEBUG_USER
139 if (user_debug & UDBG_SEGV) {
140 printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
141 tsk->comm, sig, addr, fsr);
142 show_pte(tsk->mm, addr);
143 show_regs(regs);
144 }
145 #endif
146
147 tsk->thread.address = addr;
148 tsk->thread.error_code = fsr;
149 tsk->thread.trap_no = 14;
150 si.si_signo = sig;
151 si.si_errno = 0;
152 si.si_code = code;
153 si.si_addr = (void __user *)addr;
154 force_sig_info(sig, &si, tsk);
155 }
156
157 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
158 {
159 struct task_struct *tsk = current;
160 struct mm_struct *mm = tsk->active_mm;
161
162 /*
163 * If we are in kernel mode at this point, we
164 * have no context to handle this fault with.
165 */
166 if (user_mode(regs))
167 __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
168 else
169 __do_kernel_fault(mm, addr, fsr, regs);
170 }
171
172 #define VM_FAULT_BADMAP 0x010000
173 #define VM_FAULT_BADACCESS 0x020000
174
175 static int
176 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
177 struct task_struct *tsk)
178 {
179 struct vm_area_struct *vma;
180 int fault, mask;
181
182 vma = find_vma(mm, addr);
183 fault = VM_FAULT_BADMAP;
184 if (!vma)
185 goto out;
186 if (vma->vm_start > addr)
187 goto check_stack;
188
189 /*
190 * Ok, we have a good vm_area for this
191 * memory access, so we can handle it.
192 */
193 good_area:
194 if (fsr & (1 << 11)) /* write? */
195 mask = VM_WRITE;
196 else
197 mask = VM_READ|VM_EXEC|VM_WRITE;
198
199 fault = VM_FAULT_BADACCESS;
200 if (!(vma->vm_flags & mask))
201 goto out;
202
203 /*
204 * If for any reason at all we couldn't handle
205 * the fault, make sure we exit gracefully rather
206 * than endlessly redo the fault.
207 */
208 survive:
209 fault = handle_mm_fault(mm, vma, addr & PAGE_MASK, fsr & (1 << 11));
210 if (unlikely(fault & VM_FAULT_ERROR)) {
211 if (fault & VM_FAULT_OOM)
212 goto out_of_memory;
213 else if (fault & VM_FAULT_SIGBUS)
214 return fault;
215 BUG();
216 }
217 if (fault & VM_FAULT_MAJOR)
218 tsk->maj_flt++;
219 else
220 tsk->min_flt++;
221 return fault;
222
223 out_of_memory:
224 if (!is_global_init(tsk))
225 goto out;
226
227 /*
228 * If we are out of memory for pid1, sleep for a while and retry
229 */
230 up_read(&mm->mmap_sem);
231 yield();
232 down_read(&mm->mmap_sem);
233 goto survive;
234
235 check_stack:
236 if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
237 goto good_area;
238 out:
239 return fault;
240 }
241
242 static int __kprobes
243 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
244 {
245 struct task_struct *tsk;
246 struct mm_struct *mm;
247 int fault, sig, code;
248
249 if (notify_page_fault(regs, fsr))
250 return 0;
251
252 tsk = current;
253 mm = tsk->mm;
254
255 /*
256 * If we're in an interrupt or have no user
257 * context, we must not take the fault..
258 */
259 if (in_atomic() || !mm)
260 goto no_context;
261
262 /*
263 * As per x86, we may deadlock here. However, since the kernel only
264 * validly references user space from well defined areas of the code,
265 * we can bug out early if this is from code which shouldn't.
266 */
267 if (!down_read_trylock(&mm->mmap_sem)) {
268 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
269 goto no_context;
270 down_read(&mm->mmap_sem);
271 }
272
273 fault = __do_page_fault(mm, addr, fsr, tsk);
274 up_read(&mm->mmap_sem);
275
276 /*
277 * Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
278 */
279 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
280 return 0;
281
282 /*
283 * If we are in kernel mode at this point, we
284 * have no context to handle this fault with.
285 */
286 if (!user_mode(regs))
287 goto no_context;
288
289 if (fault & VM_FAULT_OOM) {
290 /*
291 * We ran out of memory, or some other thing
292 * happened to us that made us unable to handle
293 * the page fault gracefully.
294 */
295 printk("VM: killing process %s\n", tsk->comm);
296 do_group_exit(SIGKILL);
297 return 0;
298 }
299 if (fault & VM_FAULT_SIGBUS) {
300 /*
301 * We had some memory, but were unable to
302 * successfully fix up this page fault.
303 */
304 sig = SIGBUS;
305 code = BUS_ADRERR;
306 } else {
307 /*
308 * Something tried to access memory that
309 * isn't in our memory map..
310 */
311 sig = SIGSEGV;
312 code = fault == VM_FAULT_BADACCESS ?
313 SEGV_ACCERR : SEGV_MAPERR;
314 }
315
316 __do_user_fault(tsk, addr, fsr, sig, code, regs);
317 return 0;
318
319 no_context:
320 __do_kernel_fault(mm, addr, fsr, regs);
321 return 0;
322 }
323
324 /*
325 * First Level Translation Fault Handler
326 *
327 * We enter here because the first level page table doesn't contain
328 * a valid entry for the address.
329 *
330 * If the address is in kernel space (>= TASK_SIZE), then we are
331 * probably faulting in the vmalloc() area.
332 *
333 * If the init_task's first level page tables contains the relevant
334 * entry, we copy the it to this task. If not, we send the process
335 * a signal, fixup the exception, or oops the kernel.
336 *
337 * NOTE! We MUST NOT take any locks for this case. We may be in an
338 * interrupt or a critical region, and should only copy the information
339 * from the master page table, nothing more.
340 */
341 static int __kprobes
342 do_translation_fault(unsigned long addr, unsigned int fsr,
343 struct pt_regs *regs)
344 {
345 unsigned int index;
346 pgd_t *pgd, *pgd_k;
347 pmd_t *pmd, *pmd_k;
348
349 if (addr < TASK_SIZE)
350 return do_page_fault(addr, fsr, regs);
351
352 index = pgd_index(addr);
353
354 /*
355 * FIXME: CP15 C1 is write only on ARMv3 architectures.
356 */
357 pgd = cpu_get_pgd() + index;
358 pgd_k = init_mm.pgd + index;
359
360 if (pgd_none(*pgd_k))
361 goto bad_area;
362
363 if (!pgd_present(*pgd))
364 set_pgd(pgd, *pgd_k);
365
366 pmd_k = pmd_offset(pgd_k, addr);
367 pmd = pmd_offset(pgd, addr);
368
369 if (pmd_none(*pmd_k))
370 goto bad_area;
371
372 copy_pmd(pmd, pmd_k);
373 return 0;
374
375 bad_area:
376 do_bad_area(addr, fsr, regs);
377 return 0;
378 }
379
380 /*
381 * Some section permission faults need to be handled gracefully.
382 * They can happen due to a __{get,put}_user during an oops.
383 */
384 static int
385 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
386 {
387 do_bad_area(addr, fsr, regs);
388 return 0;
389 }
390
391 /*
392 * This abort handler always returns "fault".
393 */
394 static int
395 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
396 {
397 return 1;
398 }
399
400 static struct fsr_info {
401 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
402 int sig;
403 int code;
404 const char *name;
405 } fsr_info[] = {
406 /*
407 * The following are the standard ARMv3 and ARMv4 aborts. ARMv5
408 * defines these to be "precise" aborts.
409 */
410 { do_bad, SIGSEGV, 0, "vector exception" },
411 { do_bad, SIGILL, BUS_ADRALN, "alignment exception" },
412 { do_bad, SIGKILL, 0, "terminal exception" },
413 { do_bad, SIGILL, BUS_ADRALN, "alignment exception" },
414 { do_bad, SIGBUS, 0, "external abort on linefetch" },
415 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "section translation fault" },
416 { do_bad, SIGBUS, 0, "external abort on linefetch" },
417 { do_page_fault, SIGSEGV, SEGV_MAPERR, "page translation fault" },
418 { do_bad, SIGBUS, 0, "external abort on non-linefetch" },
419 { do_bad, SIGSEGV, SEGV_ACCERR, "section domain fault" },
420 { do_bad, SIGBUS, 0, "external abort on non-linefetch" },
421 { do_bad, SIGSEGV, SEGV_ACCERR, "page domain fault" },
422 { do_bad, SIGBUS, 0, "external abort on translation" },
423 { do_sect_fault, SIGSEGV, SEGV_ACCERR, "section permission fault" },
424 { do_bad, SIGBUS, 0, "external abort on translation" },
425 { do_page_fault, SIGSEGV, SEGV_ACCERR, "page permission fault" },
426 /*
427 * The following are "imprecise" aborts, which are signalled by bit
428 * 10 of the FSR, and may not be recoverable. These are only
429 * supported if the CPU abort handler supports bit 10.
430 */
431 { do_bad, SIGBUS, 0, "unknown 16" },
432 { do_bad, SIGBUS, 0, "unknown 17" },
433 { do_bad, SIGBUS, 0, "unknown 18" },
434 { do_bad, SIGBUS, 0, "unknown 19" },
435 { do_bad, SIGBUS, 0, "lock abort" }, /* xscale */
436 { do_bad, SIGBUS, 0, "unknown 21" },
437 { do_bad, SIGBUS, BUS_OBJERR, "imprecise external abort" }, /* xscale */
438 { do_bad, SIGBUS, 0, "unknown 23" },
439 { do_bad, SIGBUS, 0, "dcache parity error" }, /* xscale */
440 { do_bad, SIGBUS, 0, "unknown 25" },
441 { do_bad, SIGBUS, 0, "unknown 26" },
442 { do_bad, SIGBUS, 0, "unknown 27" },
443 { do_bad, SIGBUS, 0, "unknown 28" },
444 { do_bad, SIGBUS, 0, "unknown 29" },
445 { do_bad, SIGBUS, 0, "unknown 30" },
446 { do_bad, SIGBUS, 0, "unknown 31" }
447 };
448
449 void __init
450 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
451 int sig, const char *name)
452 {
453 if (nr >= 0 && nr < ARRAY_SIZE(fsr_info)) {
454 fsr_info[nr].fn = fn;
455 fsr_info[nr].sig = sig;
456 fsr_info[nr].name = name;
457 }
458 }
459
460 /*
461 * Dispatch a data abort to the relevant handler.
462 */
463 asmlinkage void __exception
464 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
465 {
466 const struct fsr_info *inf = fsr_info + (fsr & 15) + ((fsr & (1 << 10)) >> 6);
467 struct siginfo info;
468
469 if (!inf->fn(addr, fsr, regs))
470 return;
471
472 printk(KERN_ALERT "Unhandled fault: %s (0x%03x) at 0x%08lx\n",
473 inf->name, fsr, addr);
474
475 info.si_signo = inf->sig;
476 info.si_errno = 0;
477 info.si_code = inf->code;
478 info.si_addr = (void __user *)addr;
479 arm_notify_die("", regs, &info, fsr, 0);
480 }
481
482 asmlinkage void __exception
483 do_PrefetchAbort(unsigned long addr, struct pt_regs *regs)
484 {
485 do_translation_fault(addr, 0, regs);
486 }
487
This page took 0.042205 seconds and 5 git commands to generate.