Introduce flags for reserve_bootmem()
[deliverable/linux.git] / arch / arm / mm / init.c
1 /*
2 * linux/arch/arm/mm/init.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18
19 #include <asm/mach-types.h>
20 #include <asm/setup.h>
21 #include <asm/sizes.h>
22 #include <asm/tlb.h>
23
24 #include <asm/mach/arch.h>
25 #include <asm/mach/map.h>
26
27 #include "mm.h"
28
29 extern void _text, _etext, __data_start, _end, __init_begin, __init_end;
30 extern unsigned long phys_initrd_start;
31 extern unsigned long phys_initrd_size;
32
33 /*
34 * This is used to pass memory configuration data from paging_init
35 * to mem_init, and by show_mem() to skip holes in the memory map.
36 */
37 static struct meminfo meminfo = { 0, };
38
39 #define for_each_nodebank(iter,mi,no) \
40 for (iter = 0; iter < mi->nr_banks; iter++) \
41 if (mi->bank[iter].node == no)
42
43 void show_mem(void)
44 {
45 int free = 0, total = 0, reserved = 0;
46 int shared = 0, cached = 0, slab = 0, node, i;
47 struct meminfo * mi = &meminfo;
48
49 printk("Mem-info:\n");
50 show_free_areas();
51 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
52
53 for_each_online_node(node) {
54 pg_data_t *n = NODE_DATA(node);
55 struct page *map = n->node_mem_map - n->node_start_pfn;
56
57 for_each_nodebank (i,mi,node) {
58 unsigned int pfn1, pfn2;
59 struct page *page, *end;
60
61 pfn1 = __phys_to_pfn(mi->bank[i].start);
62 pfn2 = __phys_to_pfn(mi->bank[i].size + mi->bank[i].start);
63
64 page = map + pfn1;
65 end = map + pfn2;
66
67 do {
68 total++;
69 if (PageReserved(page))
70 reserved++;
71 else if (PageSwapCache(page))
72 cached++;
73 else if (PageSlab(page))
74 slab++;
75 else if (!page_count(page))
76 free++;
77 else
78 shared += page_count(page) - 1;
79 page++;
80 } while (page < end);
81 }
82 }
83
84 printk("%d pages of RAM\n", total);
85 printk("%d free pages\n", free);
86 printk("%d reserved pages\n", reserved);
87 printk("%d slab pages\n", slab);
88 printk("%d pages shared\n", shared);
89 printk("%d pages swap cached\n", cached);
90 }
91
92 /*
93 * FIXME: We really want to avoid allocating the bootmap bitmap
94 * over the top of the initrd. Hopefully, this is located towards
95 * the start of a bank, so if we allocate the bootmap bitmap at
96 * the end, we won't clash.
97 */
98 static unsigned int __init
99 find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
100 {
101 unsigned int start_pfn, bank, bootmap_pfn;
102
103 start_pfn = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT;
104 bootmap_pfn = 0;
105
106 for_each_nodebank(bank, mi, node) {
107 unsigned int start, end;
108
109 start = mi->bank[bank].start >> PAGE_SHIFT;
110 end = (mi->bank[bank].size +
111 mi->bank[bank].start) >> PAGE_SHIFT;
112
113 if (end < start_pfn)
114 continue;
115
116 if (start < start_pfn)
117 start = start_pfn;
118
119 if (end <= start)
120 continue;
121
122 if (end - start >= bootmap_pages) {
123 bootmap_pfn = start;
124 break;
125 }
126 }
127
128 if (bootmap_pfn == 0)
129 BUG();
130
131 return bootmap_pfn;
132 }
133
134 static int __init check_initrd(struct meminfo *mi)
135 {
136 int initrd_node = -2;
137 #ifdef CONFIG_BLK_DEV_INITRD
138 unsigned long end = phys_initrd_start + phys_initrd_size;
139
140 /*
141 * Make sure that the initrd is within a valid area of
142 * memory.
143 */
144 if (phys_initrd_size) {
145 unsigned int i;
146
147 initrd_node = -1;
148
149 for (i = 0; i < mi->nr_banks; i++) {
150 unsigned long bank_end;
151
152 bank_end = mi->bank[i].start + mi->bank[i].size;
153
154 if (mi->bank[i].start <= phys_initrd_start &&
155 end <= bank_end)
156 initrd_node = mi->bank[i].node;
157 }
158 }
159
160 if (initrd_node == -1) {
161 printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond "
162 "physical memory - disabling initrd\n",
163 phys_initrd_start, end);
164 phys_initrd_start = phys_initrd_size = 0;
165 }
166 #endif
167
168 return initrd_node;
169 }
170
171 static inline void map_memory_bank(struct membank *bank)
172 {
173 #ifdef CONFIG_MMU
174 struct map_desc map;
175
176 map.pfn = __phys_to_pfn(bank->start);
177 map.virtual = __phys_to_virt(bank->start);
178 map.length = bank->size;
179 map.type = MT_MEMORY;
180
181 create_mapping(&map);
182 #endif
183 }
184
185 static unsigned long __init
186 bootmem_init_node(int node, int initrd_node, struct meminfo *mi)
187 {
188 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
189 unsigned long start_pfn, end_pfn, boot_pfn;
190 unsigned int boot_pages;
191 pg_data_t *pgdat;
192 int i;
193
194 start_pfn = -1UL;
195 end_pfn = 0;
196
197 /*
198 * Calculate the pfn range, and map the memory banks for this node.
199 */
200 for_each_nodebank(i, mi, node) {
201 struct membank *bank = &mi->bank[i];
202 unsigned long start, end;
203
204 start = bank->start >> PAGE_SHIFT;
205 end = (bank->start + bank->size) >> PAGE_SHIFT;
206
207 if (start_pfn > start)
208 start_pfn = start;
209 if (end_pfn < end)
210 end_pfn = end;
211
212 map_memory_bank(bank);
213 }
214
215 /*
216 * If there is no memory in this node, ignore it.
217 */
218 if (end_pfn == 0)
219 return end_pfn;
220
221 /*
222 * Allocate the bootmem bitmap page.
223 */
224 boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
225 boot_pfn = find_bootmap_pfn(node, mi, boot_pages);
226
227 /*
228 * Initialise the bootmem allocator for this node, handing the
229 * memory banks over to bootmem.
230 */
231 node_set_online(node);
232 pgdat = NODE_DATA(node);
233 init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn);
234
235 for_each_nodebank(i, mi, node)
236 free_bootmem_node(pgdat, mi->bank[i].start, mi->bank[i].size);
237
238 /*
239 * Reserve the bootmem bitmap for this node.
240 */
241 reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT,
242 boot_pages << PAGE_SHIFT, BOOTMEM_DEFAULT);
243
244 #ifdef CONFIG_BLK_DEV_INITRD
245 /*
246 * If the initrd is in this node, reserve its memory.
247 */
248 if (node == initrd_node) {
249 reserve_bootmem_node(pgdat, phys_initrd_start,
250 phys_initrd_size, BOOTMEM_DEFAULT);
251 initrd_start = __phys_to_virt(phys_initrd_start);
252 initrd_end = initrd_start + phys_initrd_size;
253 }
254 #endif
255
256 /*
257 * Finally, reserve any node zero regions.
258 */
259 if (node == 0)
260 reserve_node_zero(pgdat);
261
262 /*
263 * initialise the zones within this node.
264 */
265 memset(zone_size, 0, sizeof(zone_size));
266 memset(zhole_size, 0, sizeof(zhole_size));
267
268 /*
269 * The size of this node has already been determined. If we need
270 * to do anything fancy with the allocation of this memory to the
271 * zones, now is the time to do it.
272 */
273 zone_size[0] = end_pfn - start_pfn;
274
275 /*
276 * For each bank in this node, calculate the size of the holes.
277 * holes = node_size - sum(bank_sizes_in_node)
278 */
279 zhole_size[0] = zone_size[0];
280 for_each_nodebank(i, mi, node)
281 zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT;
282
283 /*
284 * Adjust the sizes according to any special requirements for
285 * this machine type.
286 */
287 arch_adjust_zones(node, zone_size, zhole_size);
288
289 free_area_init_node(node, pgdat, zone_size, start_pfn, zhole_size);
290
291 return end_pfn;
292 }
293
294 void __init bootmem_init(struct meminfo *mi)
295 {
296 unsigned long memend_pfn = 0;
297 int node, initrd_node, i;
298
299 /*
300 * Invalidate the node number for empty or invalid memory banks
301 */
302 for (i = 0; i < mi->nr_banks; i++)
303 if (mi->bank[i].size == 0 || mi->bank[i].node >= MAX_NUMNODES)
304 mi->bank[i].node = -1;
305
306 memcpy(&meminfo, mi, sizeof(meminfo));
307
308 /*
309 * Locate which node contains the ramdisk image, if any.
310 */
311 initrd_node = check_initrd(mi);
312
313 /*
314 * Run through each node initialising the bootmem allocator.
315 */
316 for_each_node(node) {
317 unsigned long end_pfn;
318
319 end_pfn = bootmem_init_node(node, initrd_node, mi);
320
321 /*
322 * Remember the highest memory PFN.
323 */
324 if (end_pfn > memend_pfn)
325 memend_pfn = end_pfn;
326 }
327
328 high_memory = __va(memend_pfn << PAGE_SHIFT);
329
330 /*
331 * This doesn't seem to be used by the Linux memory manager any
332 * more, but is used by ll_rw_block. If we can get rid of it, we
333 * also get rid of some of the stuff above as well.
334 *
335 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
336 * the system, not the maximum PFN.
337 */
338 max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET;
339 }
340
341 static inline void free_area(unsigned long addr, unsigned long end, char *s)
342 {
343 unsigned int size = (end - addr) >> 10;
344
345 for (; addr < end; addr += PAGE_SIZE) {
346 struct page *page = virt_to_page(addr);
347 ClearPageReserved(page);
348 init_page_count(page);
349 free_page(addr);
350 totalram_pages++;
351 }
352
353 if (size && s)
354 printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
355 }
356
357 static inline void
358 free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
359 {
360 struct page *start_pg, *end_pg;
361 unsigned long pg, pgend;
362
363 /*
364 * Convert start_pfn/end_pfn to a struct page pointer.
365 */
366 start_pg = pfn_to_page(start_pfn);
367 end_pg = pfn_to_page(end_pfn);
368
369 /*
370 * Convert to physical addresses, and
371 * round start upwards and end downwards.
372 */
373 pg = PAGE_ALIGN(__pa(start_pg));
374 pgend = __pa(end_pg) & PAGE_MASK;
375
376 /*
377 * If there are free pages between these,
378 * free the section of the memmap array.
379 */
380 if (pg < pgend)
381 free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
382 }
383
384 /*
385 * The mem_map array can get very big. Free the unused area of the memory map.
386 */
387 static void __init free_unused_memmap_node(int node, struct meminfo *mi)
388 {
389 unsigned long bank_start, prev_bank_end = 0;
390 unsigned int i;
391
392 /*
393 * [FIXME] This relies on each bank being in address order. This
394 * may not be the case, especially if the user has provided the
395 * information on the command line.
396 */
397 for_each_nodebank(i, mi, node) {
398 bank_start = mi->bank[i].start >> PAGE_SHIFT;
399 if (bank_start < prev_bank_end) {
400 printk(KERN_ERR "MEM: unordered memory banks. "
401 "Not freeing memmap.\n");
402 break;
403 }
404
405 /*
406 * If we had a previous bank, and there is a space
407 * between the current bank and the previous, free it.
408 */
409 if (prev_bank_end && prev_bank_end != bank_start)
410 free_memmap(node, prev_bank_end, bank_start);
411
412 prev_bank_end = (mi->bank[i].start +
413 mi->bank[i].size) >> PAGE_SHIFT;
414 }
415 }
416
417 /*
418 * mem_init() marks the free areas in the mem_map and tells us how much
419 * memory is free. This is done after various parts of the system have
420 * claimed their memory after the kernel image.
421 */
422 void __init mem_init(void)
423 {
424 unsigned int codepages, datapages, initpages;
425 int i, node;
426
427 codepages = &_etext - &_text;
428 datapages = &_end - &__data_start;
429 initpages = &__init_end - &__init_begin;
430
431 #ifndef CONFIG_DISCONTIGMEM
432 max_mapnr = virt_to_page(high_memory) - mem_map;
433 #endif
434
435 /* this will put all unused low memory onto the freelists */
436 for_each_online_node(node) {
437 pg_data_t *pgdat = NODE_DATA(node);
438
439 free_unused_memmap_node(node, &meminfo);
440
441 if (pgdat->node_spanned_pages != 0)
442 totalram_pages += free_all_bootmem_node(pgdat);
443 }
444
445 #ifdef CONFIG_SA1111
446 /* now that our DMA memory is actually so designated, we can free it */
447 free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL);
448 #endif
449
450 /*
451 * Since our memory may not be contiguous, calculate the
452 * real number of pages we have in this system
453 */
454 printk(KERN_INFO "Memory:");
455
456 num_physpages = 0;
457 for (i = 0; i < meminfo.nr_banks; i++) {
458 num_physpages += meminfo.bank[i].size >> PAGE_SHIFT;
459 printk(" %ldMB", meminfo.bank[i].size >> 20);
460 }
461
462 printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
463 printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
464 "%dK data, %dK init)\n",
465 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
466 codepages >> 10, datapages >> 10, initpages >> 10);
467
468 if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
469 extern int sysctl_overcommit_memory;
470 /*
471 * On a machine this small we won't get
472 * anywhere without overcommit, so turn
473 * it on by default.
474 */
475 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
476 }
477 }
478
479 void free_initmem(void)
480 {
481 if (!machine_is_integrator() && !machine_is_cintegrator()) {
482 free_area((unsigned long)(&__init_begin),
483 (unsigned long)(&__init_end),
484 "init");
485 }
486 }
487
488 #ifdef CONFIG_BLK_DEV_INITRD
489
490 static int keep_initrd;
491
492 void free_initrd_mem(unsigned long start, unsigned long end)
493 {
494 if (!keep_initrd)
495 free_area(start, end, "initrd");
496 }
497
498 static int __init keepinitrd_setup(char *__unused)
499 {
500 keep_initrd = 1;
501 return 1;
502 }
503
504 __setup("keepinitrd", keepinitrd_setup);
505 #endif
This page took 0.053503 seconds and 5 git commands to generate.