Merge master.kernel.org:/pub/scm/linux/kernel/git/tmlind/linux-omap-upstream into...
[deliverable/linux.git] / arch / arm / mm / init.c
1 /*
2 * linux/arch/arm/mm/init.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/ptrace.h>
13 #include <linux/swap.h>
14 #include <linux/init.h>
15 #include <linux/bootmem.h>
16 #include <linux/mman.h>
17 #include <linux/nodemask.h>
18 #include <linux/initrd.h>
19
20 #include <asm/mach-types.h>
21 #include <asm/setup.h>
22 #include <asm/sizes.h>
23 #include <asm/tlb.h>
24
25 #include <asm/mach/arch.h>
26 #include <asm/mach/map.h>
27
28 #include "mm.h"
29
30 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
31
32 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
33 extern void _stext, _text, _etext, __data_start, _end, __init_begin, __init_end;
34 extern unsigned long phys_initrd_start;
35 extern unsigned long phys_initrd_size;
36
37 /*
38 * The sole use of this is to pass memory configuration
39 * data from paging_init to mem_init.
40 */
41 static struct meminfo meminfo __initdata = { 0, };
42
43 /*
44 * empty_zero_page is a special page that is used for
45 * zero-initialized data and COW.
46 */
47 struct page *empty_zero_page;
48
49 /*
50 * The pmd table for the upper-most set of pages.
51 */
52 pmd_t *top_pmd;
53
54 void show_mem(void)
55 {
56 int free = 0, total = 0, reserved = 0;
57 int shared = 0, cached = 0, slab = 0, node;
58
59 printk("Mem-info:\n");
60 show_free_areas();
61 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
62
63 for_each_online_node(node) {
64 struct page *page, *end;
65
66 page = NODE_MEM_MAP(node);
67 end = page + NODE_DATA(node)->node_spanned_pages;
68
69 do {
70 total++;
71 if (PageReserved(page))
72 reserved++;
73 else if (PageSwapCache(page))
74 cached++;
75 else if (PageSlab(page))
76 slab++;
77 else if (!page_count(page))
78 free++;
79 else
80 shared += page_count(page) - 1;
81 page++;
82 } while (page < end);
83 }
84
85 printk("%d pages of RAM\n", total);
86 printk("%d free pages\n", free);
87 printk("%d reserved pages\n", reserved);
88 printk("%d slab pages\n", slab);
89 printk("%d pages shared\n", shared);
90 printk("%d pages swap cached\n", cached);
91 }
92
93 #define for_each_nodebank(iter,mi,no) \
94 for (iter = 0; iter < mi->nr_banks; iter++) \
95 if (mi->bank[iter].node == no)
96
97 /*
98 * FIXME: We really want to avoid allocating the bootmap bitmap
99 * over the top of the initrd. Hopefully, this is located towards
100 * the start of a bank, so if we allocate the bootmap bitmap at
101 * the end, we won't clash.
102 */
103 static unsigned int __init
104 find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
105 {
106 unsigned int start_pfn, bank, bootmap_pfn;
107
108 start_pfn = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT;
109 bootmap_pfn = 0;
110
111 for_each_nodebank(bank, mi, node) {
112 unsigned int start, end;
113
114 start = mi->bank[bank].start >> PAGE_SHIFT;
115 end = (mi->bank[bank].size +
116 mi->bank[bank].start) >> PAGE_SHIFT;
117
118 if (end < start_pfn)
119 continue;
120
121 if (start < start_pfn)
122 start = start_pfn;
123
124 if (end <= start)
125 continue;
126
127 if (end - start >= bootmap_pages) {
128 bootmap_pfn = start;
129 break;
130 }
131 }
132
133 if (bootmap_pfn == 0)
134 BUG();
135
136 return bootmap_pfn;
137 }
138
139 static int __init check_initrd(struct meminfo *mi)
140 {
141 int initrd_node = -2;
142 #ifdef CONFIG_BLK_DEV_INITRD
143 unsigned long end = phys_initrd_start + phys_initrd_size;
144
145 /*
146 * Make sure that the initrd is within a valid area of
147 * memory.
148 */
149 if (phys_initrd_size) {
150 unsigned int i;
151
152 initrd_node = -1;
153
154 for (i = 0; i < mi->nr_banks; i++) {
155 unsigned long bank_end;
156
157 bank_end = mi->bank[i].start + mi->bank[i].size;
158
159 if (mi->bank[i].start <= phys_initrd_start &&
160 end <= bank_end)
161 initrd_node = mi->bank[i].node;
162 }
163 }
164
165 if (initrd_node == -1) {
166 printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond "
167 "physical memory - disabling initrd\n",
168 phys_initrd_start, end);
169 phys_initrd_start = phys_initrd_size = 0;
170 }
171 #endif
172
173 return initrd_node;
174 }
175
176 /*
177 * Reserve the various regions of node 0
178 */
179 static __init void reserve_node_zero(pg_data_t *pgdat)
180 {
181 unsigned long res_size = 0;
182
183 /*
184 * Register the kernel text and data with bootmem.
185 * Note that this can only be in node 0.
186 */
187 #ifdef CONFIG_XIP_KERNEL
188 reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start);
189 #else
190 reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext);
191 #endif
192
193 /*
194 * Reserve the page tables. These are already in use,
195 * and can only be in node 0.
196 */
197 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
198 PTRS_PER_PGD * sizeof(pgd_t));
199
200 /*
201 * Hmm... This should go elsewhere, but we really really need to
202 * stop things allocating the low memory; ideally we need a better
203 * implementation of GFP_DMA which does not assume that DMA-able
204 * memory starts at zero.
205 */
206 if (machine_is_integrator() || machine_is_cintegrator())
207 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
208
209 /*
210 * These should likewise go elsewhere. They pre-reserve the
211 * screen memory region at the start of main system memory.
212 */
213 if (machine_is_edb7211())
214 res_size = 0x00020000;
215 if (machine_is_p720t())
216 res_size = 0x00014000;
217
218 #ifdef CONFIG_SA1111
219 /*
220 * Because of the SA1111 DMA bug, we want to preserve our
221 * precious DMA-able memory...
222 */
223 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
224 #endif
225 if (res_size)
226 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size);
227 }
228
229 static unsigned long __init
230 bootmem_init_node(int node, int initrd_node, struct meminfo *mi)
231 {
232 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
233 unsigned long start_pfn, end_pfn, boot_pfn;
234 unsigned int boot_pages;
235 pg_data_t *pgdat;
236 int i;
237
238 start_pfn = -1UL;
239 end_pfn = 0;
240
241 /*
242 * Calculate the pfn range, and map the memory banks for this node.
243 */
244 for_each_nodebank(i, mi, node) {
245 unsigned long start, end;
246 struct map_desc map;
247
248 start = mi->bank[i].start >> PAGE_SHIFT;
249 end = (mi->bank[i].start + mi->bank[i].size) >> PAGE_SHIFT;
250
251 if (start_pfn > start)
252 start_pfn = start;
253 if (end_pfn < end)
254 end_pfn = end;
255
256 map.pfn = __phys_to_pfn(mi->bank[i].start);
257 map.virtual = __phys_to_virt(mi->bank[i].start);
258 map.length = mi->bank[i].size;
259 map.type = MT_MEMORY;
260
261 create_mapping(&map);
262 }
263
264 /*
265 * If there is no memory in this node, ignore it.
266 */
267 if (end_pfn == 0)
268 return end_pfn;
269
270 /*
271 * Allocate the bootmem bitmap page.
272 */
273 boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
274 boot_pfn = find_bootmap_pfn(node, mi, boot_pages);
275
276 /*
277 * Initialise the bootmem allocator for this node, handing the
278 * memory banks over to bootmem.
279 */
280 node_set_online(node);
281 pgdat = NODE_DATA(node);
282 init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn);
283
284 for_each_nodebank(i, mi, node)
285 free_bootmem_node(pgdat, mi->bank[i].start, mi->bank[i].size);
286
287 /*
288 * Reserve the bootmem bitmap for this node.
289 */
290 reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT,
291 boot_pages << PAGE_SHIFT);
292
293 #ifdef CONFIG_BLK_DEV_INITRD
294 /*
295 * If the initrd is in this node, reserve its memory.
296 */
297 if (node == initrd_node) {
298 reserve_bootmem_node(pgdat, phys_initrd_start,
299 phys_initrd_size);
300 initrd_start = __phys_to_virt(phys_initrd_start);
301 initrd_end = initrd_start + phys_initrd_size;
302 }
303 #endif
304
305 /*
306 * Finally, reserve any node zero regions.
307 */
308 if (node == 0)
309 reserve_node_zero(pgdat);
310
311 /*
312 * initialise the zones within this node.
313 */
314 memset(zone_size, 0, sizeof(zone_size));
315 memset(zhole_size, 0, sizeof(zhole_size));
316
317 /*
318 * The size of this node has already been determined. If we need
319 * to do anything fancy with the allocation of this memory to the
320 * zones, now is the time to do it.
321 */
322 zone_size[0] = end_pfn - start_pfn;
323
324 /*
325 * For each bank in this node, calculate the size of the holes.
326 * holes = node_size - sum(bank_sizes_in_node)
327 */
328 zhole_size[0] = zone_size[0];
329 for_each_nodebank(i, mi, node)
330 zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT;
331
332 /*
333 * Adjust the sizes according to any special requirements for
334 * this machine type.
335 */
336 arch_adjust_zones(node, zone_size, zhole_size);
337
338 free_area_init_node(node, pgdat, zone_size, start_pfn, zhole_size);
339
340 return end_pfn;
341 }
342
343 static void __init bootmem_init(struct meminfo *mi)
344 {
345 unsigned long addr, memend_pfn = 0;
346 int node, initrd_node, i;
347
348 /*
349 * Invalidate the node number for empty or invalid memory banks
350 */
351 for (i = 0; i < mi->nr_banks; i++)
352 if (mi->bank[i].size == 0 || mi->bank[i].node >= MAX_NUMNODES)
353 mi->bank[i].node = -1;
354
355 memcpy(&meminfo, mi, sizeof(meminfo));
356
357 /*
358 * Clear out all the mappings below the kernel image.
359 */
360 for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE)
361 pmd_clear(pmd_off_k(addr));
362 #ifdef CONFIG_XIP_KERNEL
363 /* The XIP kernel is mapped in the module area -- skip over it */
364 addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
365 #endif
366 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
367 pmd_clear(pmd_off_k(addr));
368
369 /*
370 * Clear out all the kernel space mappings, except for the first
371 * memory bank, up to the end of the vmalloc region.
372 */
373 for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size);
374 addr < VMALLOC_END; addr += PGDIR_SIZE)
375 pmd_clear(pmd_off_k(addr));
376
377 /*
378 * Locate which node contains the ramdisk image, if any.
379 */
380 initrd_node = check_initrd(mi);
381
382 /*
383 * Run through each node initialising the bootmem allocator.
384 */
385 for_each_node(node) {
386 unsigned long end_pfn;
387
388 end_pfn = bootmem_init_node(node, initrd_node, mi);
389
390 /*
391 * Remember the highest memory PFN.
392 */
393 if (end_pfn > memend_pfn)
394 memend_pfn = end_pfn;
395 }
396
397 high_memory = __va(memend_pfn << PAGE_SHIFT);
398
399 /*
400 * This doesn't seem to be used by the Linux memory manager any
401 * more, but is used by ll_rw_block. If we can get rid of it, we
402 * also get rid of some of the stuff above as well.
403 *
404 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
405 * the system, not the maximum PFN.
406 */
407 max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET;
408 }
409
410 /*
411 * Set up device the mappings. Since we clear out the page tables for all
412 * mappings above VMALLOC_END, we will remove any debug device mappings.
413 * This means you have to be careful how you debug this function, or any
414 * called function. This means you can't use any function or debugging
415 * method which may touch any device, otherwise the kernel _will_ crash.
416 */
417 static void __init devicemaps_init(struct machine_desc *mdesc)
418 {
419 struct map_desc map;
420 unsigned long addr;
421 void *vectors;
422
423 /*
424 * Allocate the vector page early.
425 */
426 vectors = alloc_bootmem_low_pages(PAGE_SIZE);
427 BUG_ON(!vectors);
428
429 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
430 pmd_clear(pmd_off_k(addr));
431
432 /*
433 * Map the kernel if it is XIP.
434 * It is always first in the modulearea.
435 */
436 #ifdef CONFIG_XIP_KERNEL
437 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
438 map.virtual = MODULE_START;
439 map.length = ((unsigned long)&_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
440 map.type = MT_ROM;
441 create_mapping(&map);
442 #endif
443
444 /*
445 * Map the cache flushing regions.
446 */
447 #ifdef FLUSH_BASE
448 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
449 map.virtual = FLUSH_BASE;
450 map.length = SZ_1M;
451 map.type = MT_CACHECLEAN;
452 create_mapping(&map);
453 #endif
454 #ifdef FLUSH_BASE_MINICACHE
455 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
456 map.virtual = FLUSH_BASE_MINICACHE;
457 map.length = SZ_1M;
458 map.type = MT_MINICLEAN;
459 create_mapping(&map);
460 #endif
461
462 /*
463 * Create a mapping for the machine vectors at the high-vectors
464 * location (0xffff0000). If we aren't using high-vectors, also
465 * create a mapping at the low-vectors virtual address.
466 */
467 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
468 map.virtual = 0xffff0000;
469 map.length = PAGE_SIZE;
470 map.type = MT_HIGH_VECTORS;
471 create_mapping(&map);
472
473 if (!vectors_high()) {
474 map.virtual = 0;
475 map.type = MT_LOW_VECTORS;
476 create_mapping(&map);
477 }
478
479 /*
480 * Ask the machine support to map in the statically mapped devices.
481 */
482 if (mdesc->map_io)
483 mdesc->map_io();
484
485 /*
486 * Finally flush the caches and tlb to ensure that we're in a
487 * consistent state wrt the writebuffer. This also ensures that
488 * any write-allocated cache lines in the vector page are written
489 * back. After this point, we can start to touch devices again.
490 */
491 local_flush_tlb_all();
492 flush_cache_all();
493 }
494
495 /*
496 * paging_init() sets up the page tables, initialises the zone memory
497 * maps, and sets up the zero page, bad page and bad page tables.
498 */
499 void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
500 {
501 void *zero_page;
502
503 build_mem_type_table();
504 bootmem_init(mi);
505 devicemaps_init(mdesc);
506
507 top_pmd = pmd_off_k(0xffff0000);
508
509 /*
510 * allocate the zero page. Note that we count on this going ok.
511 */
512 zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
513 memzero(zero_page, PAGE_SIZE);
514 empty_zero_page = virt_to_page(zero_page);
515 flush_dcache_page(empty_zero_page);
516 }
517
518 static inline void free_area(unsigned long addr, unsigned long end, char *s)
519 {
520 unsigned int size = (end - addr) >> 10;
521
522 for (; addr < end; addr += PAGE_SIZE) {
523 struct page *page = virt_to_page(addr);
524 ClearPageReserved(page);
525 init_page_count(page);
526 free_page(addr);
527 totalram_pages++;
528 }
529
530 if (size && s)
531 printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
532 }
533
534 static inline void
535 free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
536 {
537 struct page *start_pg, *end_pg;
538 unsigned long pg, pgend;
539
540 /*
541 * Convert start_pfn/end_pfn to a struct page pointer.
542 */
543 start_pg = pfn_to_page(start_pfn);
544 end_pg = pfn_to_page(end_pfn);
545
546 /*
547 * Convert to physical addresses, and
548 * round start upwards and end downwards.
549 */
550 pg = PAGE_ALIGN(__pa(start_pg));
551 pgend = __pa(end_pg) & PAGE_MASK;
552
553 /*
554 * If there are free pages between these,
555 * free the section of the memmap array.
556 */
557 if (pg < pgend)
558 free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
559 }
560
561 /*
562 * The mem_map array can get very big. Free the unused area of the memory map.
563 */
564 static void __init free_unused_memmap_node(int node, struct meminfo *mi)
565 {
566 unsigned long bank_start, prev_bank_end = 0;
567 unsigned int i;
568
569 /*
570 * [FIXME] This relies on each bank being in address order. This
571 * may not be the case, especially if the user has provided the
572 * information on the command line.
573 */
574 for_each_nodebank(i, mi, node) {
575 bank_start = mi->bank[i].start >> PAGE_SHIFT;
576 if (bank_start < prev_bank_end) {
577 printk(KERN_ERR "MEM: unordered memory banks. "
578 "Not freeing memmap.\n");
579 break;
580 }
581
582 /*
583 * If we had a previous bank, and there is a space
584 * between the current bank and the previous, free it.
585 */
586 if (prev_bank_end && prev_bank_end != bank_start)
587 free_memmap(node, prev_bank_end, bank_start);
588
589 prev_bank_end = (mi->bank[i].start +
590 mi->bank[i].size) >> PAGE_SHIFT;
591 }
592 }
593
594 /*
595 * mem_init() marks the free areas in the mem_map and tells us how much
596 * memory is free. This is done after various parts of the system have
597 * claimed their memory after the kernel image.
598 */
599 void __init mem_init(void)
600 {
601 unsigned int codepages, datapages, initpages;
602 int i, node;
603
604 codepages = &_etext - &_text;
605 datapages = &_end - &__data_start;
606 initpages = &__init_end - &__init_begin;
607
608 #ifndef CONFIG_DISCONTIGMEM
609 max_mapnr = virt_to_page(high_memory) - mem_map;
610 #endif
611
612 /* this will put all unused low memory onto the freelists */
613 for_each_online_node(node) {
614 pg_data_t *pgdat = NODE_DATA(node);
615
616 free_unused_memmap_node(node, &meminfo);
617
618 if (pgdat->node_spanned_pages != 0)
619 totalram_pages += free_all_bootmem_node(pgdat);
620 }
621
622 #ifdef CONFIG_SA1111
623 /* now that our DMA memory is actually so designated, we can free it */
624 free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL);
625 #endif
626
627 /*
628 * Since our memory may not be contiguous, calculate the
629 * real number of pages we have in this system
630 */
631 printk(KERN_INFO "Memory:");
632
633 num_physpages = 0;
634 for (i = 0; i < meminfo.nr_banks; i++) {
635 num_physpages += meminfo.bank[i].size >> PAGE_SHIFT;
636 printk(" %ldMB", meminfo.bank[i].size >> 20);
637 }
638
639 printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
640 printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
641 "%dK data, %dK init)\n",
642 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
643 codepages >> 10, datapages >> 10, initpages >> 10);
644
645 if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
646 extern int sysctl_overcommit_memory;
647 /*
648 * On a machine this small we won't get
649 * anywhere without overcommit, so turn
650 * it on by default.
651 */
652 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
653 }
654 }
655
656 void free_initmem(void)
657 {
658 if (!machine_is_integrator() && !machine_is_cintegrator()) {
659 free_area((unsigned long)(&__init_begin),
660 (unsigned long)(&__init_end),
661 "init");
662 }
663 }
664
665 #ifdef CONFIG_BLK_DEV_INITRD
666
667 static int keep_initrd;
668
669 void free_initrd_mem(unsigned long start, unsigned long end)
670 {
671 if (!keep_initrd)
672 free_area(start, end, "initrd");
673 }
674
675 static int __init keepinitrd_setup(char *__unused)
676 {
677 keep_initrd = 1;
678 return 1;
679 }
680
681 __setup("keepinitrd", keepinitrd_setup);
682 #endif
This page took 0.048494 seconds and 6 git commands to generate.