Merge ../bleed-2.6
[deliverable/linux.git] / arch / arm / mm / mm-armv.c
1 /*
2 * linux/arch/arm/mm/mm-armv.c
3 *
4 * Copyright (C) 1998-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * Page table sludge for ARM v3 and v4 processor architectures.
11 */
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/bootmem.h>
17 #include <linux/highmem.h>
18 #include <linux/nodemask.h>
19
20 #include <asm/pgalloc.h>
21 #include <asm/page.h>
22 #include <asm/io.h>
23 #include <asm/setup.h>
24 #include <asm/tlbflush.h>
25
26 #include <asm/mach/map.h>
27
28 #define CPOLICY_UNCACHED 0
29 #define CPOLICY_BUFFERED 1
30 #define CPOLICY_WRITETHROUGH 2
31 #define CPOLICY_WRITEBACK 3
32 #define CPOLICY_WRITEALLOC 4
33
34 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
35 static unsigned int ecc_mask __initdata = 0;
36 pgprot_t pgprot_kernel;
37
38 EXPORT_SYMBOL(pgprot_kernel);
39
40 pmd_t *top_pmd;
41
42 struct cachepolicy {
43 const char policy[16];
44 unsigned int cr_mask;
45 unsigned int pmd;
46 unsigned int pte;
47 };
48
49 static struct cachepolicy cache_policies[] __initdata = {
50 {
51 .policy = "uncached",
52 .cr_mask = CR_W|CR_C,
53 .pmd = PMD_SECT_UNCACHED,
54 .pte = 0,
55 }, {
56 .policy = "buffered",
57 .cr_mask = CR_C,
58 .pmd = PMD_SECT_BUFFERED,
59 .pte = PTE_BUFFERABLE,
60 }, {
61 .policy = "writethrough",
62 .cr_mask = 0,
63 .pmd = PMD_SECT_WT,
64 .pte = PTE_CACHEABLE,
65 }, {
66 .policy = "writeback",
67 .cr_mask = 0,
68 .pmd = PMD_SECT_WB,
69 .pte = PTE_BUFFERABLE|PTE_CACHEABLE,
70 }, {
71 .policy = "writealloc",
72 .cr_mask = 0,
73 .pmd = PMD_SECT_WBWA,
74 .pte = PTE_BUFFERABLE|PTE_CACHEABLE,
75 }
76 };
77
78 /*
79 * These are useful for identifing cache coherency
80 * problems by allowing the cache or the cache and
81 * writebuffer to be turned off. (Note: the write
82 * buffer should not be on and the cache off).
83 */
84 static void __init early_cachepolicy(char **p)
85 {
86 int i;
87
88 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
89 int len = strlen(cache_policies[i].policy);
90
91 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
92 cachepolicy = i;
93 cr_alignment &= ~cache_policies[i].cr_mask;
94 cr_no_alignment &= ~cache_policies[i].cr_mask;
95 *p += len;
96 break;
97 }
98 }
99 if (i == ARRAY_SIZE(cache_policies))
100 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
101 flush_cache_all();
102 set_cr(cr_alignment);
103 }
104
105 static void __init early_nocache(char **__unused)
106 {
107 char *p = "buffered";
108 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
109 early_cachepolicy(&p);
110 }
111
112 static void __init early_nowrite(char **__unused)
113 {
114 char *p = "uncached";
115 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
116 early_cachepolicy(&p);
117 }
118
119 static void __init early_ecc(char **p)
120 {
121 if (memcmp(*p, "on", 2) == 0) {
122 ecc_mask = PMD_PROTECTION;
123 *p += 2;
124 } else if (memcmp(*p, "off", 3) == 0) {
125 ecc_mask = 0;
126 *p += 3;
127 }
128 }
129
130 __early_param("nocache", early_nocache);
131 __early_param("nowb", early_nowrite);
132 __early_param("cachepolicy=", early_cachepolicy);
133 __early_param("ecc=", early_ecc);
134
135 static int __init noalign_setup(char *__unused)
136 {
137 cr_alignment &= ~CR_A;
138 cr_no_alignment &= ~CR_A;
139 set_cr(cr_alignment);
140 return 1;
141 }
142
143 __setup("noalign", noalign_setup);
144
145 #define FIRST_KERNEL_PGD_NR (FIRST_USER_PGD_NR + USER_PTRS_PER_PGD)
146
147 static inline pmd_t *pmd_off(pgd_t *pgd, unsigned long virt)
148 {
149 return pmd_offset(pgd, virt);
150 }
151
152 static inline pmd_t *pmd_off_k(unsigned long virt)
153 {
154 return pmd_off(pgd_offset_k(virt), virt);
155 }
156
157 /*
158 * need to get a 16k page for level 1
159 */
160 pgd_t *get_pgd_slow(struct mm_struct *mm)
161 {
162 pgd_t *new_pgd, *init_pgd;
163 pmd_t *new_pmd, *init_pmd;
164 pte_t *new_pte, *init_pte;
165
166 new_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 2);
167 if (!new_pgd)
168 goto no_pgd;
169
170 memzero(new_pgd, FIRST_KERNEL_PGD_NR * sizeof(pgd_t));
171
172 /*
173 * Copy over the kernel and IO PGD entries
174 */
175 init_pgd = pgd_offset_k(0);
176 memcpy(new_pgd + FIRST_KERNEL_PGD_NR, init_pgd + FIRST_KERNEL_PGD_NR,
177 (PTRS_PER_PGD - FIRST_KERNEL_PGD_NR) * sizeof(pgd_t));
178
179 clean_dcache_area(new_pgd, PTRS_PER_PGD * sizeof(pgd_t));
180
181 if (!vectors_high()) {
182 /*
183 * This lock is here just to satisfy pmd_alloc and pte_lock
184 */
185 spin_lock(&mm->page_table_lock);
186
187 /*
188 * On ARM, first page must always be allocated since it
189 * contains the machine vectors.
190 */
191 new_pmd = pmd_alloc(mm, new_pgd, 0);
192 if (!new_pmd)
193 goto no_pmd;
194
195 new_pte = pte_alloc_map(mm, new_pmd, 0);
196 if (!new_pte)
197 goto no_pte;
198
199 init_pmd = pmd_offset(init_pgd, 0);
200 init_pte = pte_offset_map_nested(init_pmd, 0);
201 set_pte(new_pte, *init_pte);
202 pte_unmap_nested(init_pte);
203 pte_unmap(new_pte);
204
205 spin_unlock(&mm->page_table_lock);
206 }
207
208 return new_pgd;
209
210 no_pte:
211 spin_unlock(&mm->page_table_lock);
212 pmd_free(new_pmd);
213 free_pages((unsigned long)new_pgd, 2);
214 return NULL;
215
216 no_pmd:
217 spin_unlock(&mm->page_table_lock);
218 free_pages((unsigned long)new_pgd, 2);
219 return NULL;
220
221 no_pgd:
222 return NULL;
223 }
224
225 void free_pgd_slow(pgd_t *pgd)
226 {
227 pmd_t *pmd;
228 struct page *pte;
229
230 if (!pgd)
231 return;
232
233 /* pgd is always present and good */
234 pmd = pmd_off(pgd, 0);
235 if (pmd_none(*pmd))
236 goto free;
237 if (pmd_bad(*pmd)) {
238 pmd_ERROR(*pmd);
239 pmd_clear(pmd);
240 goto free;
241 }
242
243 pte = pmd_page(*pmd);
244 pmd_clear(pmd);
245 dec_page_state(nr_page_table_pages);
246 pte_free(pte);
247 pmd_free(pmd);
248 free:
249 free_pages((unsigned long) pgd, 2);
250 }
251
252 /*
253 * Create a SECTION PGD between VIRT and PHYS in domain
254 * DOMAIN with protection PROT. This operates on half-
255 * pgdir entry increments.
256 */
257 static inline void
258 alloc_init_section(unsigned long virt, unsigned long phys, int prot)
259 {
260 pmd_t *pmdp = pmd_off_k(virt);
261
262 if (virt & (1 << 20))
263 pmdp++;
264
265 *pmdp = __pmd(phys | prot);
266 flush_pmd_entry(pmdp);
267 }
268
269 /*
270 * Create a SUPER SECTION PGD between VIRT and PHYS with protection PROT
271 */
272 static inline void
273 alloc_init_supersection(unsigned long virt, unsigned long phys, int prot)
274 {
275 int i;
276
277 for (i = 0; i < 16; i += 1) {
278 alloc_init_section(virt, phys, prot | PMD_SECT_SUPER);
279
280 virt += (PGDIR_SIZE / 2);
281 }
282 }
283
284 /*
285 * Add a PAGE mapping between VIRT and PHYS in domain
286 * DOMAIN with protection PROT. Note that due to the
287 * way we map the PTEs, we must allocate two PTE_SIZE'd
288 * blocks - one for the Linux pte table, and one for
289 * the hardware pte table.
290 */
291 static inline void
292 alloc_init_page(unsigned long virt, unsigned long phys, unsigned int prot_l1, pgprot_t prot)
293 {
294 pmd_t *pmdp = pmd_off_k(virt);
295 pte_t *ptep;
296
297 if (pmd_none(*pmdp)) {
298 ptep = alloc_bootmem_low_pages(2 * PTRS_PER_PTE *
299 sizeof(pte_t));
300
301 __pmd_populate(pmdp, __pa(ptep) | prot_l1);
302 }
303 ptep = pte_offset_kernel(pmdp, virt);
304
305 set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot));
306 }
307
308 struct mem_types {
309 unsigned int prot_pte;
310 unsigned int prot_l1;
311 unsigned int prot_sect;
312 unsigned int domain;
313 };
314
315 static struct mem_types mem_types[] __initdata = {
316 [MT_DEVICE] = {
317 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
318 L_PTE_WRITE,
319 .prot_l1 = PMD_TYPE_TABLE,
320 .prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED |
321 PMD_SECT_AP_WRITE,
322 .domain = DOMAIN_IO,
323 },
324 [MT_CACHECLEAN] = {
325 .prot_sect = PMD_TYPE_SECT,
326 .domain = DOMAIN_KERNEL,
327 },
328 [MT_MINICLEAN] = {
329 .prot_sect = PMD_TYPE_SECT | PMD_SECT_MINICACHE,
330 .domain = DOMAIN_KERNEL,
331 },
332 [MT_LOW_VECTORS] = {
333 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
334 L_PTE_EXEC,
335 .prot_l1 = PMD_TYPE_TABLE,
336 .domain = DOMAIN_USER,
337 },
338 [MT_HIGH_VECTORS] = {
339 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
340 L_PTE_USER | L_PTE_EXEC,
341 .prot_l1 = PMD_TYPE_TABLE,
342 .domain = DOMAIN_USER,
343 },
344 [MT_MEMORY] = {
345 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
346 .domain = DOMAIN_KERNEL,
347 },
348 [MT_ROM] = {
349 .prot_sect = PMD_TYPE_SECT,
350 .domain = DOMAIN_KERNEL,
351 },
352 [MT_IXP2000_DEVICE] = { /* IXP2400 requires XCB=101 for on-chip I/O */
353 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
354 L_PTE_WRITE,
355 .prot_l1 = PMD_TYPE_TABLE,
356 .prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED |
357 PMD_SECT_AP_WRITE | PMD_SECT_BUFFERABLE |
358 PMD_SECT_TEX(1),
359 .domain = DOMAIN_IO,
360 }
361 };
362
363 /*
364 * Adjust the PMD section entries according to the CPU in use.
365 */
366 void __init build_mem_type_table(void)
367 {
368 struct cachepolicy *cp;
369 unsigned int cr = get_cr();
370 unsigned int user_pgprot;
371 int cpu_arch = cpu_architecture();
372 int i;
373
374 #if defined(CONFIG_CPU_DCACHE_DISABLE)
375 if (cachepolicy > CPOLICY_BUFFERED)
376 cachepolicy = CPOLICY_BUFFERED;
377 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
378 if (cachepolicy > CPOLICY_WRITETHROUGH)
379 cachepolicy = CPOLICY_WRITETHROUGH;
380 #endif
381 if (cpu_arch < CPU_ARCH_ARMv5) {
382 if (cachepolicy >= CPOLICY_WRITEALLOC)
383 cachepolicy = CPOLICY_WRITEBACK;
384 ecc_mask = 0;
385 }
386
387 if (cpu_arch <= CPU_ARCH_ARMv5TEJ) {
388 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
389 if (mem_types[i].prot_l1)
390 mem_types[i].prot_l1 |= PMD_BIT4;
391 if (mem_types[i].prot_sect)
392 mem_types[i].prot_sect |= PMD_BIT4;
393 }
394 }
395
396 cp = &cache_policies[cachepolicy];
397 user_pgprot = cp->pte;
398
399 /*
400 * ARMv6 and above have extended page tables.
401 */
402 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
403 /*
404 * bit 4 becomes XN which we must clear for the
405 * kernel memory mapping.
406 */
407 mem_types[MT_MEMORY].prot_sect &= ~PMD_BIT4;
408 mem_types[MT_ROM].prot_sect &= ~PMD_BIT4;
409 /*
410 * Mark cache clean areas and XIP ROM read only
411 * from SVC mode and no access from userspace.
412 */
413 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
414 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
415 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
416
417 /*
418 * Mark the device area as "shared device"
419 */
420 mem_types[MT_DEVICE].prot_pte |= L_PTE_BUFFERABLE;
421 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
422
423 /*
424 * User pages need to be mapped with the ASID
425 * (iow, non-global)
426 */
427 user_pgprot |= L_PTE_ASID;
428 }
429
430 if (cpu_arch >= CPU_ARCH_ARMv5) {
431 mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE;
432 mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE;
433 } else {
434 mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte;
435 mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte;
436 mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);
437 }
438
439 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
440 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
441 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
442 mem_types[MT_ROM].prot_sect |= cp->pmd;
443
444 for (i = 0; i < 16; i++) {
445 unsigned long v = pgprot_val(protection_map[i]);
446 v = (v & ~(PTE_BUFFERABLE|PTE_CACHEABLE)) | user_pgprot;
447 protection_map[i] = __pgprot(v);
448 }
449
450 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
451 L_PTE_DIRTY | L_PTE_WRITE |
452 L_PTE_EXEC | cp->pte);
453
454 switch (cp->pmd) {
455 case PMD_SECT_WT:
456 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
457 break;
458 case PMD_SECT_WB:
459 case PMD_SECT_WBWA:
460 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
461 break;
462 }
463 printk("Memory policy: ECC %sabled, Data cache %s\n",
464 ecc_mask ? "en" : "dis", cp->policy);
465 }
466
467 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
468
469 /*
470 * Create the page directory entries and any necessary
471 * page tables for the mapping specified by `md'. We
472 * are able to cope here with varying sizes and address
473 * offsets, and we take full advantage of sections and
474 * supersections.
475 */
476 void __init create_mapping(struct map_desc *md)
477 {
478 unsigned long virt, length;
479 int prot_sect, prot_l1, domain;
480 pgprot_t prot_pte;
481 unsigned long off = (u32)__pfn_to_phys(md->pfn);
482
483 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
484 printk(KERN_WARNING "BUG: not creating mapping for "
485 "0x%016llx at 0x%08lx in user region\n",
486 __pfn_to_phys((u64)md->pfn), md->virtual);
487 return;
488 }
489
490 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
491 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
492 printk(KERN_WARNING "BUG: mapping for 0x%016llx at 0x%08lx "
493 "overlaps vmalloc space\n",
494 __pfn_to_phys((u64)md->pfn), md->virtual);
495 }
496
497 domain = mem_types[md->type].domain;
498 prot_pte = __pgprot(mem_types[md->type].prot_pte);
499 prot_l1 = mem_types[md->type].prot_l1 | PMD_DOMAIN(domain);
500 prot_sect = mem_types[md->type].prot_sect | PMD_DOMAIN(domain);
501
502 /*
503 * Catch 36-bit addresses
504 */
505 if(md->pfn >= 0x100000) {
506 if(domain) {
507 printk(KERN_ERR "MM: invalid domain in supersection "
508 "mapping for 0x%016llx at 0x%08lx\n",
509 __pfn_to_phys((u64)md->pfn), md->virtual);
510 return;
511 }
512 if((md->virtual | md->length | __pfn_to_phys(md->pfn))
513 & ~SUPERSECTION_MASK) {
514 printk(KERN_ERR "MM: cannot create mapping for "
515 "0x%016llx at 0x%08lx invalid alignment\n",
516 __pfn_to_phys((u64)md->pfn), md->virtual);
517 return;
518 }
519
520 /*
521 * Shift bits [35:32] of address into bits [23:20] of PMD
522 * (See ARMv6 spec).
523 */
524 off |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
525 }
526
527 virt = md->virtual;
528 off -= virt;
529 length = md->length;
530
531 if (mem_types[md->type].prot_l1 == 0 &&
532 (virt & 0xfffff || (virt + off) & 0xfffff || (virt + length) & 0xfffff)) {
533 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
534 "be mapped using pages, ignoring.\n",
535 __pfn_to_phys(md->pfn), md->virtual);
536 return;
537 }
538
539 while ((virt & 0xfffff || (virt + off) & 0xfffff) && length >= PAGE_SIZE) {
540 alloc_init_page(virt, virt + off, prot_l1, prot_pte);
541
542 virt += PAGE_SIZE;
543 length -= PAGE_SIZE;
544 }
545
546 /* N.B. ARMv6 supersections are only defined to work with domain 0.
547 * Since domain assignments can in fact be arbitrary, the
548 * 'domain == 0' check below is required to insure that ARMv6
549 * supersections are only allocated for domain 0 regardless
550 * of the actual domain assignments in use.
551 */
552 if (cpu_architecture() >= CPU_ARCH_ARMv6 && domain == 0) {
553 /*
554 * Align to supersection boundary if !high pages.
555 * High pages have already been checked for proper
556 * alignment above and they will fail the SUPSERSECTION_MASK
557 * check because of the way the address is encoded into
558 * offset.
559 */
560 if (md->pfn <= 0x100000) {
561 while ((virt & ~SUPERSECTION_MASK ||
562 (virt + off) & ~SUPERSECTION_MASK) &&
563 length >= (PGDIR_SIZE / 2)) {
564 alloc_init_section(virt, virt + off, prot_sect);
565
566 virt += (PGDIR_SIZE / 2);
567 length -= (PGDIR_SIZE / 2);
568 }
569 }
570
571 while (length >= SUPERSECTION_SIZE) {
572 alloc_init_supersection(virt, virt + off, prot_sect);
573
574 virt += SUPERSECTION_SIZE;
575 length -= SUPERSECTION_SIZE;
576 }
577 }
578
579 /*
580 * A section mapping covers half a "pgdir" entry.
581 */
582 while (length >= (PGDIR_SIZE / 2)) {
583 alloc_init_section(virt, virt + off, prot_sect);
584
585 virt += (PGDIR_SIZE / 2);
586 length -= (PGDIR_SIZE / 2);
587 }
588
589 while (length >= PAGE_SIZE) {
590 alloc_init_page(virt, virt + off, prot_l1, prot_pte);
591
592 virt += PAGE_SIZE;
593 length -= PAGE_SIZE;
594 }
595 }
596
597 /*
598 * In order to soft-boot, we need to insert a 1:1 mapping in place of
599 * the user-mode pages. This will then ensure that we have predictable
600 * results when turning the mmu off
601 */
602 void setup_mm_for_reboot(char mode)
603 {
604 unsigned long base_pmdval;
605 pgd_t *pgd;
606 int i;
607
608 if (current->mm && current->mm->pgd)
609 pgd = current->mm->pgd;
610 else
611 pgd = init_mm.pgd;
612
613 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
614 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ)
615 base_pmdval |= PMD_BIT4;
616
617 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
618 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
619 pmd_t *pmd;
620
621 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
622 pmd[0] = __pmd(pmdval);
623 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
624 flush_pmd_entry(pmd);
625 }
626 }
627
628 /*
629 * Create the architecture specific mappings
630 */
631 void __init iotable_init(struct map_desc *io_desc, int nr)
632 {
633 int i;
634
635 for (i = 0; i < nr; i++)
636 create_mapping(io_desc + i);
637 }
This page took 0.062988 seconds and 5 git commands to generate.