ARM: 6222/1: add memory types for the TCMs
[deliverable/linux.git] / arch / arm / mm / mmu.c
1 /*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/sort.h>
18
19 #include <asm/cputype.h>
20 #include <asm/mach-types.h>
21 #include <asm/sections.h>
22 #include <asm/cachetype.h>
23 #include <asm/setup.h>
24 #include <asm/sizes.h>
25 #include <asm/smp_plat.h>
26 #include <asm/tlb.h>
27 #include <asm/highmem.h>
28
29 #include <asm/mach/arch.h>
30 #include <asm/mach/map.h>
31
32 #include "mm.h"
33
34 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
35
36 /*
37 * empty_zero_page is a special page that is used for
38 * zero-initialized data and COW.
39 */
40 struct page *empty_zero_page;
41 EXPORT_SYMBOL(empty_zero_page);
42
43 /*
44 * The pmd table for the upper-most set of pages.
45 */
46 pmd_t *top_pmd;
47
48 #define CPOLICY_UNCACHED 0
49 #define CPOLICY_BUFFERED 1
50 #define CPOLICY_WRITETHROUGH 2
51 #define CPOLICY_WRITEBACK 3
52 #define CPOLICY_WRITEALLOC 4
53
54 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
55 static unsigned int ecc_mask __initdata = 0;
56 pgprot_t pgprot_user;
57 pgprot_t pgprot_kernel;
58
59 EXPORT_SYMBOL(pgprot_user);
60 EXPORT_SYMBOL(pgprot_kernel);
61
62 struct cachepolicy {
63 const char policy[16];
64 unsigned int cr_mask;
65 unsigned int pmd;
66 unsigned int pte;
67 };
68
69 static struct cachepolicy cache_policies[] __initdata = {
70 {
71 .policy = "uncached",
72 .cr_mask = CR_W|CR_C,
73 .pmd = PMD_SECT_UNCACHED,
74 .pte = L_PTE_MT_UNCACHED,
75 }, {
76 .policy = "buffered",
77 .cr_mask = CR_C,
78 .pmd = PMD_SECT_BUFFERED,
79 .pte = L_PTE_MT_BUFFERABLE,
80 }, {
81 .policy = "writethrough",
82 .cr_mask = 0,
83 .pmd = PMD_SECT_WT,
84 .pte = L_PTE_MT_WRITETHROUGH,
85 }, {
86 .policy = "writeback",
87 .cr_mask = 0,
88 .pmd = PMD_SECT_WB,
89 .pte = L_PTE_MT_WRITEBACK,
90 }, {
91 .policy = "writealloc",
92 .cr_mask = 0,
93 .pmd = PMD_SECT_WBWA,
94 .pte = L_PTE_MT_WRITEALLOC,
95 }
96 };
97
98 /*
99 * These are useful for identifying cache coherency
100 * problems by allowing the cache or the cache and
101 * writebuffer to be turned off. (Note: the write
102 * buffer should not be on and the cache off).
103 */
104 static int __init early_cachepolicy(char *p)
105 {
106 int i;
107
108 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
109 int len = strlen(cache_policies[i].policy);
110
111 if (memcmp(p, cache_policies[i].policy, len) == 0) {
112 cachepolicy = i;
113 cr_alignment &= ~cache_policies[i].cr_mask;
114 cr_no_alignment &= ~cache_policies[i].cr_mask;
115 break;
116 }
117 }
118 if (i == ARRAY_SIZE(cache_policies))
119 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
120 /*
121 * This restriction is partly to do with the way we boot; it is
122 * unpredictable to have memory mapped using two different sets of
123 * memory attributes (shared, type, and cache attribs). We can not
124 * change these attributes once the initial assembly has setup the
125 * page tables.
126 */
127 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
128 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
129 cachepolicy = CPOLICY_WRITEBACK;
130 }
131 flush_cache_all();
132 set_cr(cr_alignment);
133 return 0;
134 }
135 early_param("cachepolicy", early_cachepolicy);
136
137 static int __init early_nocache(char *__unused)
138 {
139 char *p = "buffered";
140 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
141 early_cachepolicy(p);
142 return 0;
143 }
144 early_param("nocache", early_nocache);
145
146 static int __init early_nowrite(char *__unused)
147 {
148 char *p = "uncached";
149 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
150 early_cachepolicy(p);
151 return 0;
152 }
153 early_param("nowb", early_nowrite);
154
155 static int __init early_ecc(char *p)
156 {
157 if (memcmp(p, "on", 2) == 0)
158 ecc_mask = PMD_PROTECTION;
159 else if (memcmp(p, "off", 3) == 0)
160 ecc_mask = 0;
161 return 0;
162 }
163 early_param("ecc", early_ecc);
164
165 static int __init noalign_setup(char *__unused)
166 {
167 cr_alignment &= ~CR_A;
168 cr_no_alignment &= ~CR_A;
169 set_cr(cr_alignment);
170 return 1;
171 }
172 __setup("noalign", noalign_setup);
173
174 #ifndef CONFIG_SMP
175 void adjust_cr(unsigned long mask, unsigned long set)
176 {
177 unsigned long flags;
178
179 mask &= ~CR_A;
180
181 set &= mask;
182
183 local_irq_save(flags);
184
185 cr_no_alignment = (cr_no_alignment & ~mask) | set;
186 cr_alignment = (cr_alignment & ~mask) | set;
187
188 set_cr((get_cr() & ~mask) | set);
189
190 local_irq_restore(flags);
191 }
192 #endif
193
194 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
195 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
196
197 static struct mem_type mem_types[] = {
198 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
199 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
200 L_PTE_SHARED,
201 .prot_l1 = PMD_TYPE_TABLE,
202 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
203 .domain = DOMAIN_IO,
204 },
205 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
206 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
207 .prot_l1 = PMD_TYPE_TABLE,
208 .prot_sect = PROT_SECT_DEVICE,
209 .domain = DOMAIN_IO,
210 },
211 [MT_DEVICE_CACHED] = { /* ioremap_cached */
212 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
213 .prot_l1 = PMD_TYPE_TABLE,
214 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
215 .domain = DOMAIN_IO,
216 },
217 [MT_DEVICE_WC] = { /* ioremap_wc */
218 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
219 .prot_l1 = PMD_TYPE_TABLE,
220 .prot_sect = PROT_SECT_DEVICE,
221 .domain = DOMAIN_IO,
222 },
223 [MT_UNCACHED] = {
224 .prot_pte = PROT_PTE_DEVICE,
225 .prot_l1 = PMD_TYPE_TABLE,
226 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
227 .domain = DOMAIN_IO,
228 },
229 [MT_CACHECLEAN] = {
230 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
231 .domain = DOMAIN_KERNEL,
232 },
233 [MT_MINICLEAN] = {
234 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
235 .domain = DOMAIN_KERNEL,
236 },
237 [MT_LOW_VECTORS] = {
238 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
239 L_PTE_EXEC,
240 .prot_l1 = PMD_TYPE_TABLE,
241 .domain = DOMAIN_USER,
242 },
243 [MT_HIGH_VECTORS] = {
244 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
245 L_PTE_USER | L_PTE_EXEC,
246 .prot_l1 = PMD_TYPE_TABLE,
247 .domain = DOMAIN_USER,
248 },
249 [MT_MEMORY] = {
250 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
251 .domain = DOMAIN_KERNEL,
252 },
253 [MT_ROM] = {
254 .prot_sect = PMD_TYPE_SECT,
255 .domain = DOMAIN_KERNEL,
256 },
257 [MT_MEMORY_NONCACHED] = {
258 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
259 .domain = DOMAIN_KERNEL,
260 },
261 [MT_MEMORY_DTCM] = {
262 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG |
263 L_PTE_DIRTY | L_PTE_WRITE,
264 .prot_l1 = PMD_TYPE_TABLE,
265 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
266 .domain = DOMAIN_KERNEL,
267 },
268 [MT_MEMORY_ITCM] = {
269 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
270 L_PTE_USER | L_PTE_EXEC,
271 .prot_l1 = PMD_TYPE_TABLE,
272 .domain = DOMAIN_IO,
273 },
274 };
275
276 const struct mem_type *get_mem_type(unsigned int type)
277 {
278 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
279 }
280 EXPORT_SYMBOL(get_mem_type);
281
282 /*
283 * Adjust the PMD section entries according to the CPU in use.
284 */
285 static void __init build_mem_type_table(void)
286 {
287 struct cachepolicy *cp;
288 unsigned int cr = get_cr();
289 unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
290 int cpu_arch = cpu_architecture();
291 int i;
292
293 if (cpu_arch < CPU_ARCH_ARMv6) {
294 #if defined(CONFIG_CPU_DCACHE_DISABLE)
295 if (cachepolicy > CPOLICY_BUFFERED)
296 cachepolicy = CPOLICY_BUFFERED;
297 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
298 if (cachepolicy > CPOLICY_WRITETHROUGH)
299 cachepolicy = CPOLICY_WRITETHROUGH;
300 #endif
301 }
302 if (cpu_arch < CPU_ARCH_ARMv5) {
303 if (cachepolicy >= CPOLICY_WRITEALLOC)
304 cachepolicy = CPOLICY_WRITEBACK;
305 ecc_mask = 0;
306 }
307 #ifdef CONFIG_SMP
308 cachepolicy = CPOLICY_WRITEALLOC;
309 #endif
310
311 /*
312 * Strip out features not present on earlier architectures.
313 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
314 * without extended page tables don't have the 'Shared' bit.
315 */
316 if (cpu_arch < CPU_ARCH_ARMv5)
317 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
318 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
319 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
320 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
321 mem_types[i].prot_sect &= ~PMD_SECT_S;
322
323 /*
324 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
325 * "update-able on write" bit on ARM610). However, Xscale and
326 * Xscale3 require this bit to be cleared.
327 */
328 if (cpu_is_xscale() || cpu_is_xsc3()) {
329 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
330 mem_types[i].prot_sect &= ~PMD_BIT4;
331 mem_types[i].prot_l1 &= ~PMD_BIT4;
332 }
333 } else if (cpu_arch < CPU_ARCH_ARMv6) {
334 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
335 if (mem_types[i].prot_l1)
336 mem_types[i].prot_l1 |= PMD_BIT4;
337 if (mem_types[i].prot_sect)
338 mem_types[i].prot_sect |= PMD_BIT4;
339 }
340 }
341
342 /*
343 * Mark the device areas according to the CPU/architecture.
344 */
345 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
346 if (!cpu_is_xsc3()) {
347 /*
348 * Mark device regions on ARMv6+ as execute-never
349 * to prevent speculative instruction fetches.
350 */
351 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
352 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
353 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
354 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
355 }
356 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
357 /*
358 * For ARMv7 with TEX remapping,
359 * - shared device is SXCB=1100
360 * - nonshared device is SXCB=0100
361 * - write combine device mem is SXCB=0001
362 * (Uncached Normal memory)
363 */
364 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
365 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
366 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
367 } else if (cpu_is_xsc3()) {
368 /*
369 * For Xscale3,
370 * - shared device is TEXCB=00101
371 * - nonshared device is TEXCB=01000
372 * - write combine device mem is TEXCB=00100
373 * (Inner/Outer Uncacheable in xsc3 parlance)
374 */
375 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
376 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
377 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
378 } else {
379 /*
380 * For ARMv6 and ARMv7 without TEX remapping,
381 * - shared device is TEXCB=00001
382 * - nonshared device is TEXCB=01000
383 * - write combine device mem is TEXCB=00100
384 * (Uncached Normal in ARMv6 parlance).
385 */
386 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
387 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
388 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
389 }
390 } else {
391 /*
392 * On others, write combining is "Uncached/Buffered"
393 */
394 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
395 }
396
397 /*
398 * Now deal with the memory-type mappings
399 */
400 cp = &cache_policies[cachepolicy];
401 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
402
403 #ifndef CONFIG_SMP
404 /*
405 * Only use write-through for non-SMP systems
406 */
407 if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
408 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
409 #endif
410
411 /*
412 * Enable CPU-specific coherency if supported.
413 * (Only available on XSC3 at the moment.)
414 */
415 if (arch_is_coherent() && cpu_is_xsc3())
416 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
417
418 /*
419 * ARMv6 and above have extended page tables.
420 */
421 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
422 /*
423 * Mark cache clean areas and XIP ROM read only
424 * from SVC mode and no access from userspace.
425 */
426 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
427 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
428 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
429
430 #ifdef CONFIG_SMP
431 /*
432 * Mark memory with the "shared" attribute for SMP systems
433 */
434 user_pgprot |= L_PTE_SHARED;
435 kern_pgprot |= L_PTE_SHARED;
436 vecs_pgprot |= L_PTE_SHARED;
437 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
438 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
439 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
440 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
441 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
442 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
443 #endif
444 }
445
446 /*
447 * Non-cacheable Normal - intended for memory areas that must
448 * not cause dirty cache line writebacks when used
449 */
450 if (cpu_arch >= CPU_ARCH_ARMv6) {
451 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
452 /* Non-cacheable Normal is XCB = 001 */
453 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
454 PMD_SECT_BUFFERED;
455 } else {
456 /* For both ARMv6 and non-TEX-remapping ARMv7 */
457 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
458 PMD_SECT_TEX(1);
459 }
460 } else {
461 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
462 }
463
464 for (i = 0; i < 16; i++) {
465 unsigned long v = pgprot_val(protection_map[i]);
466 protection_map[i] = __pgprot(v | user_pgprot);
467 }
468
469 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
470 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
471
472 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
473 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
474 L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
475
476 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
477 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
478 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
479 mem_types[MT_ROM].prot_sect |= cp->pmd;
480
481 switch (cp->pmd) {
482 case PMD_SECT_WT:
483 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
484 break;
485 case PMD_SECT_WB:
486 case PMD_SECT_WBWA:
487 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
488 break;
489 }
490 printk("Memory policy: ECC %sabled, Data cache %s\n",
491 ecc_mask ? "en" : "dis", cp->policy);
492
493 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
494 struct mem_type *t = &mem_types[i];
495 if (t->prot_l1)
496 t->prot_l1 |= PMD_DOMAIN(t->domain);
497 if (t->prot_sect)
498 t->prot_sect |= PMD_DOMAIN(t->domain);
499 }
500 }
501
502 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
503
504 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
505 unsigned long end, unsigned long pfn,
506 const struct mem_type *type)
507 {
508 pte_t *pte;
509
510 if (pmd_none(*pmd)) {
511 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
512 __pmd_populate(pmd, __pa(pte) | type->prot_l1);
513 }
514
515 pte = pte_offset_kernel(pmd, addr);
516 do {
517 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
518 pfn++;
519 } while (pte++, addr += PAGE_SIZE, addr != end);
520 }
521
522 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
523 unsigned long end, unsigned long phys,
524 const struct mem_type *type)
525 {
526 pmd_t *pmd = pmd_offset(pgd, addr);
527
528 /*
529 * Try a section mapping - end, addr and phys must all be aligned
530 * to a section boundary. Note that PMDs refer to the individual
531 * L1 entries, whereas PGDs refer to a group of L1 entries making
532 * up one logical pointer to an L2 table.
533 */
534 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
535 pmd_t *p = pmd;
536
537 if (addr & SECTION_SIZE)
538 pmd++;
539
540 do {
541 *pmd = __pmd(phys | type->prot_sect);
542 phys += SECTION_SIZE;
543 } while (pmd++, addr += SECTION_SIZE, addr != end);
544
545 flush_pmd_entry(p);
546 } else {
547 /*
548 * No need to loop; pte's aren't interested in the
549 * individual L1 entries.
550 */
551 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
552 }
553 }
554
555 static void __init create_36bit_mapping(struct map_desc *md,
556 const struct mem_type *type)
557 {
558 unsigned long phys, addr, length, end;
559 pgd_t *pgd;
560
561 addr = md->virtual;
562 phys = (unsigned long)__pfn_to_phys(md->pfn);
563 length = PAGE_ALIGN(md->length);
564
565 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
566 printk(KERN_ERR "MM: CPU does not support supersection "
567 "mapping for 0x%08llx at 0x%08lx\n",
568 __pfn_to_phys((u64)md->pfn), addr);
569 return;
570 }
571
572 /* N.B. ARMv6 supersections are only defined to work with domain 0.
573 * Since domain assignments can in fact be arbitrary, the
574 * 'domain == 0' check below is required to insure that ARMv6
575 * supersections are only allocated for domain 0 regardless
576 * of the actual domain assignments in use.
577 */
578 if (type->domain) {
579 printk(KERN_ERR "MM: invalid domain in supersection "
580 "mapping for 0x%08llx at 0x%08lx\n",
581 __pfn_to_phys((u64)md->pfn), addr);
582 return;
583 }
584
585 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
586 printk(KERN_ERR "MM: cannot create mapping for "
587 "0x%08llx at 0x%08lx invalid alignment\n",
588 __pfn_to_phys((u64)md->pfn), addr);
589 return;
590 }
591
592 /*
593 * Shift bits [35:32] of address into bits [23:20] of PMD
594 * (See ARMv6 spec).
595 */
596 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
597
598 pgd = pgd_offset_k(addr);
599 end = addr + length;
600 do {
601 pmd_t *pmd = pmd_offset(pgd, addr);
602 int i;
603
604 for (i = 0; i < 16; i++)
605 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
606
607 addr += SUPERSECTION_SIZE;
608 phys += SUPERSECTION_SIZE;
609 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
610 } while (addr != end);
611 }
612
613 /*
614 * Create the page directory entries and any necessary
615 * page tables for the mapping specified by `md'. We
616 * are able to cope here with varying sizes and address
617 * offsets, and we take full advantage of sections and
618 * supersections.
619 */
620 static void __init create_mapping(struct map_desc *md)
621 {
622 unsigned long phys, addr, length, end;
623 const struct mem_type *type;
624 pgd_t *pgd;
625
626 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
627 printk(KERN_WARNING "BUG: not creating mapping for "
628 "0x%08llx at 0x%08lx in user region\n",
629 __pfn_to_phys((u64)md->pfn), md->virtual);
630 return;
631 }
632
633 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
634 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
635 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
636 "overlaps vmalloc space\n",
637 __pfn_to_phys((u64)md->pfn), md->virtual);
638 }
639
640 type = &mem_types[md->type];
641
642 /*
643 * Catch 36-bit addresses
644 */
645 if (md->pfn >= 0x100000) {
646 create_36bit_mapping(md, type);
647 return;
648 }
649
650 addr = md->virtual & PAGE_MASK;
651 phys = (unsigned long)__pfn_to_phys(md->pfn);
652 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
653
654 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
655 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
656 "be mapped using pages, ignoring.\n",
657 __pfn_to_phys(md->pfn), addr);
658 return;
659 }
660
661 pgd = pgd_offset_k(addr);
662 end = addr + length;
663 do {
664 unsigned long next = pgd_addr_end(addr, end);
665
666 alloc_init_section(pgd, addr, next, phys, type);
667
668 phys += next - addr;
669 addr = next;
670 } while (pgd++, addr != end);
671 }
672
673 /*
674 * Create the architecture specific mappings
675 */
676 void __init iotable_init(struct map_desc *io_desc, int nr)
677 {
678 int i;
679
680 for (i = 0; i < nr; i++)
681 create_mapping(io_desc + i);
682 }
683
684 static unsigned long __initdata vmalloc_reserve = SZ_128M;
685
686 /*
687 * vmalloc=size forces the vmalloc area to be exactly 'size'
688 * bytes. This can be used to increase (or decrease) the vmalloc
689 * area - the default is 128m.
690 */
691 static int __init early_vmalloc(char *arg)
692 {
693 vmalloc_reserve = memparse(arg, NULL);
694
695 if (vmalloc_reserve < SZ_16M) {
696 vmalloc_reserve = SZ_16M;
697 printk(KERN_WARNING
698 "vmalloc area too small, limiting to %luMB\n",
699 vmalloc_reserve >> 20);
700 }
701
702 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
703 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
704 printk(KERN_WARNING
705 "vmalloc area is too big, limiting to %luMB\n",
706 vmalloc_reserve >> 20);
707 }
708 return 0;
709 }
710 early_param("vmalloc", early_vmalloc);
711
712 #define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
713
714 static void __init sanity_check_meminfo(void)
715 {
716 int i, j, highmem = 0;
717
718 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
719 struct membank *bank = &meminfo.bank[j];
720 *bank = meminfo.bank[i];
721
722 #ifdef CONFIG_HIGHMEM
723 if (__va(bank->start) > VMALLOC_MIN ||
724 __va(bank->start) < (void *)PAGE_OFFSET)
725 highmem = 1;
726
727 bank->highmem = highmem;
728
729 /*
730 * Split those memory banks which are partially overlapping
731 * the vmalloc area greatly simplifying things later.
732 */
733 if (__va(bank->start) < VMALLOC_MIN &&
734 bank->size > VMALLOC_MIN - __va(bank->start)) {
735 if (meminfo.nr_banks >= NR_BANKS) {
736 printk(KERN_CRIT "NR_BANKS too low, "
737 "ignoring high memory\n");
738 } else {
739 memmove(bank + 1, bank,
740 (meminfo.nr_banks - i) * sizeof(*bank));
741 meminfo.nr_banks++;
742 i++;
743 bank[1].size -= VMALLOC_MIN - __va(bank->start);
744 bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
745 bank[1].highmem = highmem = 1;
746 j++;
747 }
748 bank->size = VMALLOC_MIN - __va(bank->start);
749 }
750 #else
751 bank->highmem = highmem;
752
753 /*
754 * Check whether this memory bank would entirely overlap
755 * the vmalloc area.
756 */
757 if (__va(bank->start) >= VMALLOC_MIN ||
758 __va(bank->start) < (void *)PAGE_OFFSET) {
759 printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
760 "(vmalloc region overlap).\n",
761 bank->start, bank->start + bank->size - 1);
762 continue;
763 }
764
765 /*
766 * Check whether this memory bank would partially overlap
767 * the vmalloc area.
768 */
769 if (__va(bank->start + bank->size) > VMALLOC_MIN ||
770 __va(bank->start + bank->size) < __va(bank->start)) {
771 unsigned long newsize = VMALLOC_MIN - __va(bank->start);
772 printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
773 "to -%.8lx (vmalloc region overlap).\n",
774 bank->start, bank->start + bank->size - 1,
775 bank->start + newsize - 1);
776 bank->size = newsize;
777 }
778 #endif
779 j++;
780 }
781 #ifdef CONFIG_HIGHMEM
782 if (highmem) {
783 const char *reason = NULL;
784
785 if (cache_is_vipt_aliasing()) {
786 /*
787 * Interactions between kmap and other mappings
788 * make highmem support with aliasing VIPT caches
789 * rather difficult.
790 */
791 reason = "with VIPT aliasing cache";
792 #ifdef CONFIG_SMP
793 } else if (tlb_ops_need_broadcast()) {
794 /*
795 * kmap_high needs to occasionally flush TLB entries,
796 * however, if the TLB entries need to be broadcast
797 * we may deadlock:
798 * kmap_high(irqs off)->flush_all_zero_pkmaps->
799 * flush_tlb_kernel_range->smp_call_function_many
800 * (must not be called with irqs off)
801 */
802 reason = "without hardware TLB ops broadcasting";
803 #endif
804 }
805 if (reason) {
806 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
807 reason);
808 while (j > 0 && meminfo.bank[j - 1].highmem)
809 j--;
810 }
811 }
812 #endif
813 meminfo.nr_banks = j;
814 }
815
816 static inline void prepare_page_table(void)
817 {
818 unsigned long addr;
819
820 /*
821 * Clear out all the mappings below the kernel image.
822 */
823 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
824 pmd_clear(pmd_off_k(addr));
825
826 #ifdef CONFIG_XIP_KERNEL
827 /* The XIP kernel is mapped in the module area -- skip over it */
828 addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
829 #endif
830 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
831 pmd_clear(pmd_off_k(addr));
832
833 /*
834 * Clear out all the kernel space mappings, except for the first
835 * memory bank, up to the end of the vmalloc region.
836 */
837 for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
838 addr < VMALLOC_END; addr += PGDIR_SIZE)
839 pmd_clear(pmd_off_k(addr));
840 }
841
842 /*
843 * Reserve the various regions of node 0
844 */
845 void __init reserve_node_zero(pg_data_t *pgdat)
846 {
847 unsigned long res_size = 0;
848
849 /*
850 * Register the kernel text and data with bootmem.
851 * Note that this can only be in node 0.
852 */
853 #ifdef CONFIG_XIP_KERNEL
854 reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
855 BOOTMEM_DEFAULT);
856 #else
857 reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
858 BOOTMEM_DEFAULT);
859 #endif
860
861 /*
862 * Reserve the page tables. These are already in use,
863 * and can only be in node 0.
864 */
865 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
866 PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
867
868 /*
869 * Hmm... This should go elsewhere, but we really really need to
870 * stop things allocating the low memory; ideally we need a better
871 * implementation of GFP_DMA which does not assume that DMA-able
872 * memory starts at zero.
873 */
874 if (machine_is_integrator() || machine_is_cintegrator())
875 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
876
877 /*
878 * These should likewise go elsewhere. They pre-reserve the
879 * screen memory region at the start of main system memory.
880 */
881 if (machine_is_edb7211())
882 res_size = 0x00020000;
883 if (machine_is_p720t())
884 res_size = 0x00014000;
885
886 /* H1940, RX3715 and RX1950 need to reserve this for suspend */
887
888 if (machine_is_h1940() || machine_is_rx3715()
889 || machine_is_rx1950()) {
890 reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
891 BOOTMEM_DEFAULT);
892 reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
893 BOOTMEM_DEFAULT);
894 }
895
896 if (machine_is_palmld() || machine_is_palmtx()) {
897 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
898 BOOTMEM_EXCLUSIVE);
899 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
900 BOOTMEM_EXCLUSIVE);
901 }
902
903 if (machine_is_treo680() || machine_is_centro()) {
904 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
905 BOOTMEM_EXCLUSIVE);
906 reserve_bootmem_node(pgdat, 0xa2000000, 0x1000,
907 BOOTMEM_EXCLUSIVE);
908 }
909
910 if (machine_is_palmt5())
911 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
912 BOOTMEM_EXCLUSIVE);
913
914 /*
915 * U300 - This platform family can share physical memory
916 * between two ARM cpus, one running Linux and the other
917 * running another OS.
918 */
919 if (machine_is_u300()) {
920 #ifdef CONFIG_MACH_U300_SINGLE_RAM
921 #if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) && \
922 CONFIG_MACH_U300_2MB_ALIGNMENT_FIX
923 res_size = 0x00100000;
924 #endif
925 #endif
926 }
927
928 #ifdef CONFIG_SA1111
929 /*
930 * Because of the SA1111 DMA bug, we want to preserve our
931 * precious DMA-able memory...
932 */
933 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
934 #endif
935 if (res_size)
936 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
937 BOOTMEM_DEFAULT);
938 }
939
940 /*
941 * Set up device the mappings. Since we clear out the page tables for all
942 * mappings above VMALLOC_END, we will remove any debug device mappings.
943 * This means you have to be careful how you debug this function, or any
944 * called function. This means you can't use any function or debugging
945 * method which may touch any device, otherwise the kernel _will_ crash.
946 */
947 static void __init devicemaps_init(struct machine_desc *mdesc)
948 {
949 struct map_desc map;
950 unsigned long addr;
951 void *vectors;
952
953 /*
954 * Allocate the vector page early.
955 */
956 vectors = alloc_bootmem_low_pages(PAGE_SIZE);
957
958 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
959 pmd_clear(pmd_off_k(addr));
960
961 /*
962 * Map the kernel if it is XIP.
963 * It is always first in the modulearea.
964 */
965 #ifdef CONFIG_XIP_KERNEL
966 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
967 map.virtual = MODULES_VADDR;
968 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
969 map.type = MT_ROM;
970 create_mapping(&map);
971 #endif
972
973 /*
974 * Map the cache flushing regions.
975 */
976 #ifdef FLUSH_BASE
977 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
978 map.virtual = FLUSH_BASE;
979 map.length = SZ_1M;
980 map.type = MT_CACHECLEAN;
981 create_mapping(&map);
982 #endif
983 #ifdef FLUSH_BASE_MINICACHE
984 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
985 map.virtual = FLUSH_BASE_MINICACHE;
986 map.length = SZ_1M;
987 map.type = MT_MINICLEAN;
988 create_mapping(&map);
989 #endif
990
991 /*
992 * Create a mapping for the machine vectors at the high-vectors
993 * location (0xffff0000). If we aren't using high-vectors, also
994 * create a mapping at the low-vectors virtual address.
995 */
996 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
997 map.virtual = 0xffff0000;
998 map.length = PAGE_SIZE;
999 map.type = MT_HIGH_VECTORS;
1000 create_mapping(&map);
1001
1002 if (!vectors_high()) {
1003 map.virtual = 0;
1004 map.type = MT_LOW_VECTORS;
1005 create_mapping(&map);
1006 }
1007
1008 /*
1009 * Ask the machine support to map in the statically mapped devices.
1010 */
1011 if (mdesc->map_io)
1012 mdesc->map_io();
1013
1014 /*
1015 * Finally flush the caches and tlb to ensure that we're in a
1016 * consistent state wrt the writebuffer. This also ensures that
1017 * any write-allocated cache lines in the vector page are written
1018 * back. After this point, we can start to touch devices again.
1019 */
1020 local_flush_tlb_all();
1021 flush_cache_all();
1022 }
1023
1024 static void __init kmap_init(void)
1025 {
1026 #ifdef CONFIG_HIGHMEM
1027 pmd_t *pmd = pmd_off_k(PKMAP_BASE);
1028 pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
1029 BUG_ON(!pmd_none(*pmd) || !pte);
1030 __pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
1031 pkmap_page_table = pte + PTRS_PER_PTE;
1032 #endif
1033 }
1034
1035 static inline void map_memory_bank(struct membank *bank)
1036 {
1037 struct map_desc map;
1038
1039 map.pfn = bank_pfn_start(bank);
1040 map.virtual = __phys_to_virt(bank_phys_start(bank));
1041 map.length = bank_phys_size(bank);
1042 map.type = MT_MEMORY;
1043
1044 create_mapping(&map);
1045 }
1046
1047 static void __init map_lowmem(void)
1048 {
1049 struct meminfo *mi = &meminfo;
1050 int i;
1051
1052 /* Map all the lowmem memory banks. */
1053 for (i = 0; i < mi->nr_banks; i++) {
1054 struct membank *bank = &mi->bank[i];
1055
1056 if (!bank->highmem)
1057 map_memory_bank(bank);
1058 }
1059 }
1060
1061 static int __init meminfo_cmp(const void *_a, const void *_b)
1062 {
1063 const struct membank *a = _a, *b = _b;
1064 long cmp = bank_pfn_start(a) - bank_pfn_start(b);
1065 return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
1066 }
1067
1068 /*
1069 * paging_init() sets up the page tables, initialises the zone memory
1070 * maps, and sets up the zero page, bad page and bad page tables.
1071 */
1072 void __init paging_init(struct machine_desc *mdesc)
1073 {
1074 void *zero_page;
1075
1076 sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
1077
1078 build_mem_type_table();
1079 sanity_check_meminfo();
1080 prepare_page_table();
1081 map_lowmem();
1082 bootmem_init();
1083 devicemaps_init(mdesc);
1084 kmap_init();
1085
1086 top_pmd = pmd_off_k(0xffff0000);
1087
1088 /*
1089 * allocate the zero page. Note that this always succeeds and
1090 * returns a zeroed result.
1091 */
1092 zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
1093 empty_zero_page = virt_to_page(zero_page);
1094 __flush_dcache_page(NULL, empty_zero_page);
1095 }
1096
1097 /*
1098 * In order to soft-boot, we need to insert a 1:1 mapping in place of
1099 * the user-mode pages. This will then ensure that we have predictable
1100 * results when turning the mmu off
1101 */
1102 void setup_mm_for_reboot(char mode)
1103 {
1104 unsigned long base_pmdval;
1105 pgd_t *pgd;
1106 int i;
1107
1108 /*
1109 * We need to access to user-mode page tables here. For kernel threads
1110 * we don't have any user-mode mappings so we use the context that we
1111 * "borrowed".
1112 */
1113 pgd = current->active_mm->pgd;
1114
1115 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1116 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1117 base_pmdval |= PMD_BIT4;
1118
1119 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1120 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1121 pmd_t *pmd;
1122
1123 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1124 pmd[0] = __pmd(pmdval);
1125 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1126 flush_pmd_entry(pmd);
1127 }
1128
1129 local_flush_tlb_all();
1130 }
This page took 0.072785 seconds and 5 git commands to generate.