[ARM] pxa: Add support for suspend on PalmTX, T5 and LD
[deliverable/linux.git] / arch / arm / mm / mmu.c
1 /*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17
18 #include <asm/cputype.h>
19 #include <asm/mach-types.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/tlb.h>
25 #include <asm/highmem.h>
26
27 #include <asm/mach/arch.h>
28 #include <asm/mach/map.h>
29
30 #include "mm.h"
31
32 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
33
34 /*
35 * empty_zero_page is a special page that is used for
36 * zero-initialized data and COW.
37 */
38 struct page *empty_zero_page;
39 EXPORT_SYMBOL(empty_zero_page);
40
41 /*
42 * The pmd table for the upper-most set of pages.
43 */
44 pmd_t *top_pmd;
45
46 #define CPOLICY_UNCACHED 0
47 #define CPOLICY_BUFFERED 1
48 #define CPOLICY_WRITETHROUGH 2
49 #define CPOLICY_WRITEBACK 3
50 #define CPOLICY_WRITEALLOC 4
51
52 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
53 static unsigned int ecc_mask __initdata = 0;
54 pgprot_t pgprot_user;
55 pgprot_t pgprot_kernel;
56
57 EXPORT_SYMBOL(pgprot_user);
58 EXPORT_SYMBOL(pgprot_kernel);
59
60 struct cachepolicy {
61 const char policy[16];
62 unsigned int cr_mask;
63 unsigned int pmd;
64 unsigned int pte;
65 };
66
67 static struct cachepolicy cache_policies[] __initdata = {
68 {
69 .policy = "uncached",
70 .cr_mask = CR_W|CR_C,
71 .pmd = PMD_SECT_UNCACHED,
72 .pte = L_PTE_MT_UNCACHED,
73 }, {
74 .policy = "buffered",
75 .cr_mask = CR_C,
76 .pmd = PMD_SECT_BUFFERED,
77 .pte = L_PTE_MT_BUFFERABLE,
78 }, {
79 .policy = "writethrough",
80 .cr_mask = 0,
81 .pmd = PMD_SECT_WT,
82 .pte = L_PTE_MT_WRITETHROUGH,
83 }, {
84 .policy = "writeback",
85 .cr_mask = 0,
86 .pmd = PMD_SECT_WB,
87 .pte = L_PTE_MT_WRITEBACK,
88 }, {
89 .policy = "writealloc",
90 .cr_mask = 0,
91 .pmd = PMD_SECT_WBWA,
92 .pte = L_PTE_MT_WRITEALLOC,
93 }
94 };
95
96 /*
97 * These are useful for identifying cache coherency
98 * problems by allowing the cache or the cache and
99 * writebuffer to be turned off. (Note: the write
100 * buffer should not be on and the cache off).
101 */
102 static void __init early_cachepolicy(char **p)
103 {
104 int i;
105
106 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
107 int len = strlen(cache_policies[i].policy);
108
109 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
110 cachepolicy = i;
111 cr_alignment &= ~cache_policies[i].cr_mask;
112 cr_no_alignment &= ~cache_policies[i].cr_mask;
113 *p += len;
114 break;
115 }
116 }
117 if (i == ARRAY_SIZE(cache_policies))
118 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
119 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
120 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
121 cachepolicy = CPOLICY_WRITEBACK;
122 }
123 flush_cache_all();
124 set_cr(cr_alignment);
125 }
126 __early_param("cachepolicy=", early_cachepolicy);
127
128 static void __init early_nocache(char **__unused)
129 {
130 char *p = "buffered";
131 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
132 early_cachepolicy(&p);
133 }
134 __early_param("nocache", early_nocache);
135
136 static void __init early_nowrite(char **__unused)
137 {
138 char *p = "uncached";
139 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
140 early_cachepolicy(&p);
141 }
142 __early_param("nowb", early_nowrite);
143
144 static void __init early_ecc(char **p)
145 {
146 if (memcmp(*p, "on", 2) == 0) {
147 ecc_mask = PMD_PROTECTION;
148 *p += 2;
149 } else if (memcmp(*p, "off", 3) == 0) {
150 ecc_mask = 0;
151 *p += 3;
152 }
153 }
154 __early_param("ecc=", early_ecc);
155
156 static int __init noalign_setup(char *__unused)
157 {
158 cr_alignment &= ~CR_A;
159 cr_no_alignment &= ~CR_A;
160 set_cr(cr_alignment);
161 return 1;
162 }
163 __setup("noalign", noalign_setup);
164
165 #ifndef CONFIG_SMP
166 void adjust_cr(unsigned long mask, unsigned long set)
167 {
168 unsigned long flags;
169
170 mask &= ~CR_A;
171
172 set &= mask;
173
174 local_irq_save(flags);
175
176 cr_no_alignment = (cr_no_alignment & ~mask) | set;
177 cr_alignment = (cr_alignment & ~mask) | set;
178
179 set_cr((get_cr() & ~mask) | set);
180
181 local_irq_restore(flags);
182 }
183 #endif
184
185 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
186 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
187
188 static struct mem_type mem_types[] = {
189 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
190 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
191 L_PTE_SHARED,
192 .prot_l1 = PMD_TYPE_TABLE,
193 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
194 .domain = DOMAIN_IO,
195 },
196 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
197 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
198 .prot_l1 = PMD_TYPE_TABLE,
199 .prot_sect = PROT_SECT_DEVICE,
200 .domain = DOMAIN_IO,
201 },
202 [MT_DEVICE_CACHED] = { /* ioremap_cached */
203 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
204 .prot_l1 = PMD_TYPE_TABLE,
205 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
206 .domain = DOMAIN_IO,
207 },
208 [MT_DEVICE_WC] = { /* ioremap_wc */
209 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
210 .prot_l1 = PMD_TYPE_TABLE,
211 .prot_sect = PROT_SECT_DEVICE,
212 .domain = DOMAIN_IO,
213 },
214 [MT_UNCACHED] = {
215 .prot_pte = PROT_PTE_DEVICE,
216 .prot_l1 = PMD_TYPE_TABLE,
217 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
218 .domain = DOMAIN_IO,
219 },
220 [MT_CACHECLEAN] = {
221 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
222 .domain = DOMAIN_KERNEL,
223 },
224 [MT_MINICLEAN] = {
225 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
226 .domain = DOMAIN_KERNEL,
227 },
228 [MT_LOW_VECTORS] = {
229 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
230 L_PTE_EXEC,
231 .prot_l1 = PMD_TYPE_TABLE,
232 .domain = DOMAIN_USER,
233 },
234 [MT_HIGH_VECTORS] = {
235 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
236 L_PTE_USER | L_PTE_EXEC,
237 .prot_l1 = PMD_TYPE_TABLE,
238 .domain = DOMAIN_USER,
239 },
240 [MT_MEMORY] = {
241 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
242 .domain = DOMAIN_KERNEL,
243 },
244 [MT_ROM] = {
245 .prot_sect = PMD_TYPE_SECT,
246 .domain = DOMAIN_KERNEL,
247 },
248 [MT_MEMORY_NONCACHED] = {
249 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
250 .domain = DOMAIN_KERNEL,
251 },
252 };
253
254 const struct mem_type *get_mem_type(unsigned int type)
255 {
256 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
257 }
258
259 /*
260 * Adjust the PMD section entries according to the CPU in use.
261 */
262 static void __init build_mem_type_table(void)
263 {
264 struct cachepolicy *cp;
265 unsigned int cr = get_cr();
266 unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
267 int cpu_arch = cpu_architecture();
268 int i;
269
270 if (cpu_arch < CPU_ARCH_ARMv6) {
271 #if defined(CONFIG_CPU_DCACHE_DISABLE)
272 if (cachepolicy > CPOLICY_BUFFERED)
273 cachepolicy = CPOLICY_BUFFERED;
274 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
275 if (cachepolicy > CPOLICY_WRITETHROUGH)
276 cachepolicy = CPOLICY_WRITETHROUGH;
277 #endif
278 }
279 if (cpu_arch < CPU_ARCH_ARMv5) {
280 if (cachepolicy >= CPOLICY_WRITEALLOC)
281 cachepolicy = CPOLICY_WRITEBACK;
282 ecc_mask = 0;
283 }
284 #ifdef CONFIG_SMP
285 cachepolicy = CPOLICY_WRITEALLOC;
286 #endif
287
288 /*
289 * Strip out features not present on earlier architectures.
290 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
291 * without extended page tables don't have the 'Shared' bit.
292 */
293 if (cpu_arch < CPU_ARCH_ARMv5)
294 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
295 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
296 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
297 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
298 mem_types[i].prot_sect &= ~PMD_SECT_S;
299
300 /*
301 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
302 * "update-able on write" bit on ARM610). However, Xscale and
303 * Xscale3 require this bit to be cleared.
304 */
305 if (cpu_is_xscale() || cpu_is_xsc3()) {
306 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
307 mem_types[i].prot_sect &= ~PMD_BIT4;
308 mem_types[i].prot_l1 &= ~PMD_BIT4;
309 }
310 } else if (cpu_arch < CPU_ARCH_ARMv6) {
311 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
312 if (mem_types[i].prot_l1)
313 mem_types[i].prot_l1 |= PMD_BIT4;
314 if (mem_types[i].prot_sect)
315 mem_types[i].prot_sect |= PMD_BIT4;
316 }
317 }
318
319 /*
320 * Mark the device areas according to the CPU/architecture.
321 */
322 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
323 if (!cpu_is_xsc3()) {
324 /*
325 * Mark device regions on ARMv6+ as execute-never
326 * to prevent speculative instruction fetches.
327 */
328 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
329 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
330 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
331 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
332 }
333 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
334 /*
335 * For ARMv7 with TEX remapping,
336 * - shared device is SXCB=1100
337 * - nonshared device is SXCB=0100
338 * - write combine device mem is SXCB=0001
339 * (Uncached Normal memory)
340 */
341 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
342 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
343 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
344 } else if (cpu_is_xsc3()) {
345 /*
346 * For Xscale3,
347 * - shared device is TEXCB=00101
348 * - nonshared device is TEXCB=01000
349 * - write combine device mem is TEXCB=00100
350 * (Inner/Outer Uncacheable in xsc3 parlance)
351 */
352 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
353 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
354 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
355 } else {
356 /*
357 * For ARMv6 and ARMv7 without TEX remapping,
358 * - shared device is TEXCB=00001
359 * - nonshared device is TEXCB=01000
360 * - write combine device mem is TEXCB=00100
361 * (Uncached Normal in ARMv6 parlance).
362 */
363 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
364 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
365 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
366 }
367 } else {
368 /*
369 * On others, write combining is "Uncached/Buffered"
370 */
371 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
372 }
373
374 /*
375 * Now deal with the memory-type mappings
376 */
377 cp = &cache_policies[cachepolicy];
378 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
379
380 #ifndef CONFIG_SMP
381 /*
382 * Only use write-through for non-SMP systems
383 */
384 if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
385 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
386 #endif
387
388 /*
389 * Enable CPU-specific coherency if supported.
390 * (Only available on XSC3 at the moment.)
391 */
392 if (arch_is_coherent() && cpu_is_xsc3())
393 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
394
395 /*
396 * ARMv6 and above have extended page tables.
397 */
398 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
399 /*
400 * Mark cache clean areas and XIP ROM read only
401 * from SVC mode and no access from userspace.
402 */
403 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
404 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
405 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
406
407 #ifdef CONFIG_SMP
408 /*
409 * Mark memory with the "shared" attribute for SMP systems
410 */
411 user_pgprot |= L_PTE_SHARED;
412 kern_pgprot |= L_PTE_SHARED;
413 vecs_pgprot |= L_PTE_SHARED;
414 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
415 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
416 #endif
417 }
418
419 /*
420 * Non-cacheable Normal - intended for memory areas that must
421 * not cause dirty cache line writebacks when used
422 */
423 if (cpu_arch >= CPU_ARCH_ARMv6) {
424 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
425 /* Non-cacheable Normal is XCB = 001 */
426 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
427 PMD_SECT_BUFFERED;
428 } else {
429 /* For both ARMv6 and non-TEX-remapping ARMv7 */
430 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
431 PMD_SECT_TEX(1);
432 }
433 } else {
434 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
435 }
436
437 for (i = 0; i < 16; i++) {
438 unsigned long v = pgprot_val(protection_map[i]);
439 protection_map[i] = __pgprot(v | user_pgprot);
440 }
441
442 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
443 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
444
445 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
446 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
447 L_PTE_DIRTY | L_PTE_WRITE |
448 L_PTE_EXEC | kern_pgprot);
449
450 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
451 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
452 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
453 mem_types[MT_ROM].prot_sect |= cp->pmd;
454
455 switch (cp->pmd) {
456 case PMD_SECT_WT:
457 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
458 break;
459 case PMD_SECT_WB:
460 case PMD_SECT_WBWA:
461 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
462 break;
463 }
464 printk("Memory policy: ECC %sabled, Data cache %s\n",
465 ecc_mask ? "en" : "dis", cp->policy);
466
467 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
468 struct mem_type *t = &mem_types[i];
469 if (t->prot_l1)
470 t->prot_l1 |= PMD_DOMAIN(t->domain);
471 if (t->prot_sect)
472 t->prot_sect |= PMD_DOMAIN(t->domain);
473 }
474 }
475
476 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
477
478 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
479 unsigned long end, unsigned long pfn,
480 const struct mem_type *type)
481 {
482 pte_t *pte;
483
484 if (pmd_none(*pmd)) {
485 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
486 __pmd_populate(pmd, __pa(pte) | type->prot_l1);
487 }
488
489 pte = pte_offset_kernel(pmd, addr);
490 do {
491 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
492 pfn++;
493 } while (pte++, addr += PAGE_SIZE, addr != end);
494 }
495
496 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
497 unsigned long end, unsigned long phys,
498 const struct mem_type *type)
499 {
500 pmd_t *pmd = pmd_offset(pgd, addr);
501
502 /*
503 * Try a section mapping - end, addr and phys must all be aligned
504 * to a section boundary. Note that PMDs refer to the individual
505 * L1 entries, whereas PGDs refer to a group of L1 entries making
506 * up one logical pointer to an L2 table.
507 */
508 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
509 pmd_t *p = pmd;
510
511 if (addr & SECTION_SIZE)
512 pmd++;
513
514 do {
515 *pmd = __pmd(phys | type->prot_sect);
516 phys += SECTION_SIZE;
517 } while (pmd++, addr += SECTION_SIZE, addr != end);
518
519 flush_pmd_entry(p);
520 } else {
521 /*
522 * No need to loop; pte's aren't interested in the
523 * individual L1 entries.
524 */
525 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
526 }
527 }
528
529 static void __init create_36bit_mapping(struct map_desc *md,
530 const struct mem_type *type)
531 {
532 unsigned long phys, addr, length, end;
533 pgd_t *pgd;
534
535 addr = md->virtual;
536 phys = (unsigned long)__pfn_to_phys(md->pfn);
537 length = PAGE_ALIGN(md->length);
538
539 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
540 printk(KERN_ERR "MM: CPU does not support supersection "
541 "mapping for 0x%08llx at 0x%08lx\n",
542 __pfn_to_phys((u64)md->pfn), addr);
543 return;
544 }
545
546 /* N.B. ARMv6 supersections are only defined to work with domain 0.
547 * Since domain assignments can in fact be arbitrary, the
548 * 'domain == 0' check below is required to insure that ARMv6
549 * supersections are only allocated for domain 0 regardless
550 * of the actual domain assignments in use.
551 */
552 if (type->domain) {
553 printk(KERN_ERR "MM: invalid domain in supersection "
554 "mapping for 0x%08llx at 0x%08lx\n",
555 __pfn_to_phys((u64)md->pfn), addr);
556 return;
557 }
558
559 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
560 printk(KERN_ERR "MM: cannot create mapping for "
561 "0x%08llx at 0x%08lx invalid alignment\n",
562 __pfn_to_phys((u64)md->pfn), addr);
563 return;
564 }
565
566 /*
567 * Shift bits [35:32] of address into bits [23:20] of PMD
568 * (See ARMv6 spec).
569 */
570 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
571
572 pgd = pgd_offset_k(addr);
573 end = addr + length;
574 do {
575 pmd_t *pmd = pmd_offset(pgd, addr);
576 int i;
577
578 for (i = 0; i < 16; i++)
579 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
580
581 addr += SUPERSECTION_SIZE;
582 phys += SUPERSECTION_SIZE;
583 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
584 } while (addr != end);
585 }
586
587 /*
588 * Create the page directory entries and any necessary
589 * page tables for the mapping specified by `md'. We
590 * are able to cope here with varying sizes and address
591 * offsets, and we take full advantage of sections and
592 * supersections.
593 */
594 void __init create_mapping(struct map_desc *md)
595 {
596 unsigned long phys, addr, length, end;
597 const struct mem_type *type;
598 pgd_t *pgd;
599
600 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
601 printk(KERN_WARNING "BUG: not creating mapping for "
602 "0x%08llx at 0x%08lx in user region\n",
603 __pfn_to_phys((u64)md->pfn), md->virtual);
604 return;
605 }
606
607 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
608 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
609 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
610 "overlaps vmalloc space\n",
611 __pfn_to_phys((u64)md->pfn), md->virtual);
612 }
613
614 type = &mem_types[md->type];
615
616 /*
617 * Catch 36-bit addresses
618 */
619 if (md->pfn >= 0x100000) {
620 create_36bit_mapping(md, type);
621 return;
622 }
623
624 addr = md->virtual & PAGE_MASK;
625 phys = (unsigned long)__pfn_to_phys(md->pfn);
626 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
627
628 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
629 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
630 "be mapped using pages, ignoring.\n",
631 __pfn_to_phys(md->pfn), addr);
632 return;
633 }
634
635 pgd = pgd_offset_k(addr);
636 end = addr + length;
637 do {
638 unsigned long next = pgd_addr_end(addr, end);
639
640 alloc_init_section(pgd, addr, next, phys, type);
641
642 phys += next - addr;
643 addr = next;
644 } while (pgd++, addr != end);
645 }
646
647 /*
648 * Create the architecture specific mappings
649 */
650 void __init iotable_init(struct map_desc *io_desc, int nr)
651 {
652 int i;
653
654 for (i = 0; i < nr; i++)
655 create_mapping(io_desc + i);
656 }
657
658 static unsigned long __initdata vmalloc_reserve = SZ_128M;
659
660 /*
661 * vmalloc=size forces the vmalloc area to be exactly 'size'
662 * bytes. This can be used to increase (or decrease) the vmalloc
663 * area - the default is 128m.
664 */
665 static void __init early_vmalloc(char **arg)
666 {
667 vmalloc_reserve = memparse(*arg, arg);
668
669 if (vmalloc_reserve < SZ_16M) {
670 vmalloc_reserve = SZ_16M;
671 printk(KERN_WARNING
672 "vmalloc area too small, limiting to %luMB\n",
673 vmalloc_reserve >> 20);
674 }
675
676 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
677 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
678 printk(KERN_WARNING
679 "vmalloc area is too big, limiting to %luMB\n",
680 vmalloc_reserve >> 20);
681 }
682 }
683 __early_param("vmalloc=", early_vmalloc);
684
685 #define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
686
687 static void __init sanity_check_meminfo(void)
688 {
689 int i, j;
690
691 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
692 struct membank *bank = &meminfo.bank[j];
693 *bank = meminfo.bank[i];
694
695 #ifdef CONFIG_HIGHMEM
696 /*
697 * Split those memory banks which are partially overlapping
698 * the vmalloc area greatly simplifying things later.
699 */
700 if (__va(bank->start) < VMALLOC_MIN &&
701 bank->size > VMALLOC_MIN - __va(bank->start)) {
702 if (meminfo.nr_banks >= NR_BANKS) {
703 printk(KERN_CRIT "NR_BANKS too low, "
704 "ignoring high memory\n");
705 } else if (cache_is_vipt_aliasing()) {
706 printk(KERN_CRIT "HIGHMEM is not yet supported "
707 "with VIPT aliasing cache, "
708 "ignoring high memory\n");
709 } else {
710 memmove(bank + 1, bank,
711 (meminfo.nr_banks - i) * sizeof(*bank));
712 meminfo.nr_banks++;
713 i++;
714 bank[1].size -= VMALLOC_MIN - __va(bank->start);
715 bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
716 j++;
717 }
718 bank->size = VMALLOC_MIN - __va(bank->start);
719 }
720 #else
721 /*
722 * Check whether this memory bank would entirely overlap
723 * the vmalloc area.
724 */
725 if (__va(bank->start) >= VMALLOC_MIN ||
726 __va(bank->start) < (void *)PAGE_OFFSET) {
727 printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
728 "(vmalloc region overlap).\n",
729 bank->start, bank->start + bank->size - 1);
730 continue;
731 }
732
733 /*
734 * Check whether this memory bank would partially overlap
735 * the vmalloc area.
736 */
737 if (__va(bank->start + bank->size) > VMALLOC_MIN ||
738 __va(bank->start + bank->size) < __va(bank->start)) {
739 unsigned long newsize = VMALLOC_MIN - __va(bank->start);
740 printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
741 "to -%.8lx (vmalloc region overlap).\n",
742 bank->start, bank->start + bank->size - 1,
743 bank->start + newsize - 1);
744 bank->size = newsize;
745 }
746 #endif
747 j++;
748 }
749 meminfo.nr_banks = j;
750 }
751
752 static inline void prepare_page_table(void)
753 {
754 unsigned long addr;
755
756 /*
757 * Clear out all the mappings below the kernel image.
758 */
759 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
760 pmd_clear(pmd_off_k(addr));
761
762 #ifdef CONFIG_XIP_KERNEL
763 /* The XIP kernel is mapped in the module area -- skip over it */
764 addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
765 #endif
766 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
767 pmd_clear(pmd_off_k(addr));
768
769 /*
770 * Clear out all the kernel space mappings, except for the first
771 * memory bank, up to the end of the vmalloc region.
772 */
773 for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
774 addr < VMALLOC_END; addr += PGDIR_SIZE)
775 pmd_clear(pmd_off_k(addr));
776 }
777
778 /*
779 * Reserve the various regions of node 0
780 */
781 void __init reserve_node_zero(pg_data_t *pgdat)
782 {
783 unsigned long res_size = 0;
784
785 /*
786 * Register the kernel text and data with bootmem.
787 * Note that this can only be in node 0.
788 */
789 #ifdef CONFIG_XIP_KERNEL
790 reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
791 BOOTMEM_DEFAULT);
792 #else
793 reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
794 BOOTMEM_DEFAULT);
795 #endif
796
797 /*
798 * Reserve the page tables. These are already in use,
799 * and can only be in node 0.
800 */
801 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
802 PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
803
804 /*
805 * Hmm... This should go elsewhere, but we really really need to
806 * stop things allocating the low memory; ideally we need a better
807 * implementation of GFP_DMA which does not assume that DMA-able
808 * memory starts at zero.
809 */
810 if (machine_is_integrator() || machine_is_cintegrator())
811 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
812
813 /*
814 * These should likewise go elsewhere. They pre-reserve the
815 * screen memory region at the start of main system memory.
816 */
817 if (machine_is_edb7211())
818 res_size = 0x00020000;
819 if (machine_is_p720t())
820 res_size = 0x00014000;
821
822 /* H1940 and RX3715 need to reserve this for suspend */
823
824 if (machine_is_h1940() || machine_is_rx3715()) {
825 reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
826 BOOTMEM_DEFAULT);
827 reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
828 BOOTMEM_DEFAULT);
829 }
830
831 if (machine_is_palmld() || machine_is_palmtx()) {
832 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
833 BOOTMEM_EXCLUSIVE);
834 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
835 BOOTMEM_EXCLUSIVE);
836 }
837
838 if (machine_is_palmt5())
839 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
840 BOOTMEM_EXCLUSIVE);
841
842 #ifdef CONFIG_SA1111
843 /*
844 * Because of the SA1111 DMA bug, we want to preserve our
845 * precious DMA-able memory...
846 */
847 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
848 #endif
849 if (res_size)
850 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
851 BOOTMEM_DEFAULT);
852 }
853
854 /*
855 * Set up device the mappings. Since we clear out the page tables for all
856 * mappings above VMALLOC_END, we will remove any debug device mappings.
857 * This means you have to be careful how you debug this function, or any
858 * called function. This means you can't use any function or debugging
859 * method which may touch any device, otherwise the kernel _will_ crash.
860 */
861 static void __init devicemaps_init(struct machine_desc *mdesc)
862 {
863 struct map_desc map;
864 unsigned long addr;
865 void *vectors;
866
867 /*
868 * Allocate the vector page early.
869 */
870 vectors = alloc_bootmem_low_pages(PAGE_SIZE);
871
872 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
873 pmd_clear(pmd_off_k(addr));
874
875 /*
876 * Map the kernel if it is XIP.
877 * It is always first in the modulearea.
878 */
879 #ifdef CONFIG_XIP_KERNEL
880 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
881 map.virtual = MODULES_VADDR;
882 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
883 map.type = MT_ROM;
884 create_mapping(&map);
885 #endif
886
887 /*
888 * Map the cache flushing regions.
889 */
890 #ifdef FLUSH_BASE
891 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
892 map.virtual = FLUSH_BASE;
893 map.length = SZ_1M;
894 map.type = MT_CACHECLEAN;
895 create_mapping(&map);
896 #endif
897 #ifdef FLUSH_BASE_MINICACHE
898 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
899 map.virtual = FLUSH_BASE_MINICACHE;
900 map.length = SZ_1M;
901 map.type = MT_MINICLEAN;
902 create_mapping(&map);
903 #endif
904
905 /*
906 * Create a mapping for the machine vectors at the high-vectors
907 * location (0xffff0000). If we aren't using high-vectors, also
908 * create a mapping at the low-vectors virtual address.
909 */
910 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
911 map.virtual = 0xffff0000;
912 map.length = PAGE_SIZE;
913 map.type = MT_HIGH_VECTORS;
914 create_mapping(&map);
915
916 if (!vectors_high()) {
917 map.virtual = 0;
918 map.type = MT_LOW_VECTORS;
919 create_mapping(&map);
920 }
921
922 /*
923 * Ask the machine support to map in the statically mapped devices.
924 */
925 if (mdesc->map_io)
926 mdesc->map_io();
927
928 /*
929 * Finally flush the caches and tlb to ensure that we're in a
930 * consistent state wrt the writebuffer. This also ensures that
931 * any write-allocated cache lines in the vector page are written
932 * back. After this point, we can start to touch devices again.
933 */
934 local_flush_tlb_all();
935 flush_cache_all();
936 }
937
938 static void __init kmap_init(void)
939 {
940 #ifdef CONFIG_HIGHMEM
941 pmd_t *pmd = pmd_off_k(PKMAP_BASE);
942 pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
943 BUG_ON(!pmd_none(*pmd) || !pte);
944 __pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
945 pkmap_page_table = pte + PTRS_PER_PTE;
946 #endif
947 }
948
949 /*
950 * paging_init() sets up the page tables, initialises the zone memory
951 * maps, and sets up the zero page, bad page and bad page tables.
952 */
953 void __init paging_init(struct machine_desc *mdesc)
954 {
955 void *zero_page;
956
957 build_mem_type_table();
958 sanity_check_meminfo();
959 prepare_page_table();
960 bootmem_init();
961 devicemaps_init(mdesc);
962 kmap_init();
963
964 top_pmd = pmd_off_k(0xffff0000);
965
966 /*
967 * allocate the zero page. Note that this always succeeds and
968 * returns a zeroed result.
969 */
970 zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
971 empty_zero_page = virt_to_page(zero_page);
972 flush_dcache_page(empty_zero_page);
973 }
974
975 /*
976 * In order to soft-boot, we need to insert a 1:1 mapping in place of
977 * the user-mode pages. This will then ensure that we have predictable
978 * results when turning the mmu off
979 */
980 void setup_mm_for_reboot(char mode)
981 {
982 unsigned long base_pmdval;
983 pgd_t *pgd;
984 int i;
985
986 if (current->mm && current->mm->pgd)
987 pgd = current->mm->pgd;
988 else
989 pgd = init_mm.pgd;
990
991 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
992 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
993 base_pmdval |= PMD_BIT4;
994
995 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
996 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
997 pmd_t *pmd;
998
999 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1000 pmd[0] = __pmd(pmdval);
1001 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1002 flush_pmd_entry(pmd);
1003 }
1004 }
This page took 0.057577 seconds and 5 git commands to generate.