Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6
[deliverable/linux.git] / arch / arm / mm / proc-xscale.S
1 /*
2 * linux/arch/arm/mm/proc-xscale.S
3 *
4 * Author: Nicolas Pitre
5 * Created: November 2000
6 * Copyright: (C) 2000, 2001 MontaVista Software Inc.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * MMU functions for the Intel XScale CPUs
13 *
14 * 2001 Aug 21:
15 * some contributions by Brett Gaines <brett.w.gaines@intel.com>
16 * Copyright 2001 by Intel Corp.
17 *
18 * 2001 Sep 08:
19 * Completely revisited, many important fixes
20 * Nicolas Pitre <nico@cam.org>
21 */
22
23 #include <linux/linkage.h>
24 #include <linux/init.h>
25 #include <asm/assembler.h>
26 #include <asm/elf.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgtable-hwdef.h>
29 #include <asm/page.h>
30 #include <asm/ptrace.h>
31 #include "proc-macros.S"
32
33 /*
34 * This is the maximum size of an area which will be flushed. If the area
35 * is larger than this, then we flush the whole cache
36 */
37 #define MAX_AREA_SIZE 32768
38
39 /*
40 * the cache line size of the I and D cache
41 */
42 #define CACHELINESIZE 32
43
44 /*
45 * the size of the data cache
46 */
47 #define CACHESIZE 32768
48
49 /*
50 * Virtual address used to allocate the cache when flushed
51 *
52 * This must be an address range which is _never_ used. It should
53 * apparently have a mapping in the corresponding page table for
54 * compatibility with future CPUs that _could_ require it. For instance we
55 * don't care.
56 *
57 * This must be aligned on a 2*CACHESIZE boundary. The code selects one of
58 * the 2 areas in alternance each time the clean_d_cache macro is used.
59 * Without this the XScale core exhibits cache eviction problems and no one
60 * knows why.
61 *
62 * Reminder: the vector table is located at 0xffff0000-0xffff0fff.
63 */
64 #define CLEAN_ADDR 0xfffe0000
65
66 /*
67 * This macro is used to wait for a CP15 write and is needed
68 * when we have to ensure that the last operation to the co-pro
69 * was completed before continuing with operation.
70 */
71 .macro cpwait, rd
72 mrc p15, 0, \rd, c2, c0, 0 @ arbitrary read of cp15
73 mov \rd, \rd @ wait for completion
74 sub pc, pc, #4 @ flush instruction pipeline
75 .endm
76
77 .macro cpwait_ret, lr, rd
78 mrc p15, 0, \rd, c2, c0, 0 @ arbitrary read of cp15
79 sub pc, \lr, \rd, LSR #32 @ wait for completion and
80 @ flush instruction pipeline
81 .endm
82
83 /*
84 * This macro cleans the entire dcache using line allocate.
85 * The main loop has been unrolled to reduce loop overhead.
86 * rd and rs are two scratch registers.
87 */
88 .macro clean_d_cache, rd, rs
89 ldr \rs, =clean_addr
90 ldr \rd, [\rs]
91 eor \rd, \rd, #CACHESIZE
92 str \rd, [\rs]
93 add \rs, \rd, #CACHESIZE
94 1: mcr p15, 0, \rd, c7, c2, 5 @ allocate D cache line
95 add \rd, \rd, #CACHELINESIZE
96 mcr p15, 0, \rd, c7, c2, 5 @ allocate D cache line
97 add \rd, \rd, #CACHELINESIZE
98 mcr p15, 0, \rd, c7, c2, 5 @ allocate D cache line
99 add \rd, \rd, #CACHELINESIZE
100 mcr p15, 0, \rd, c7, c2, 5 @ allocate D cache line
101 add \rd, \rd, #CACHELINESIZE
102 teq \rd, \rs
103 bne 1b
104 .endm
105
106 .data
107 clean_addr: .word CLEAN_ADDR
108
109 .text
110
111 /*
112 * cpu_xscale_proc_init()
113 *
114 * Nothing too exciting at the moment
115 */
116 ENTRY(cpu_xscale_proc_init)
117 @ enable write buffer coalescing. Some bootloader disable it
118 mrc p15, 0, r1, c1, c0, 1
119 bic r1, r1, #1
120 mcr p15, 0, r1, c1, c0, 1
121 mov pc, lr
122
123 /*
124 * cpu_xscale_proc_fin()
125 */
126 ENTRY(cpu_xscale_proc_fin)
127 str lr, [sp, #-4]!
128 mov r0, #PSR_F_BIT|PSR_I_BIT|SVC_MODE
129 msr cpsr_c, r0
130 bl xscale_flush_kern_cache_all @ clean caches
131 mrc p15, 0, r0, c1, c0, 0 @ ctrl register
132 bic r0, r0, #0x1800 @ ...IZ...........
133 bic r0, r0, #0x0006 @ .............CA.
134 mcr p15, 0, r0, c1, c0, 0 @ disable caches
135 ldr pc, [sp], #4
136
137 /*
138 * cpu_xscale_reset(loc)
139 *
140 * Perform a soft reset of the system. Put the CPU into the
141 * same state as it would be if it had been reset, and branch
142 * to what would be the reset vector.
143 *
144 * loc: location to jump to for soft reset
145 *
146 * Beware PXA270 erratum E7.
147 */
148 .align 5
149 ENTRY(cpu_xscale_reset)
150 mov r1, #PSR_F_BIT|PSR_I_BIT|SVC_MODE
151 msr cpsr_c, r1 @ reset CPSR
152 mcr p15, 0, r1, c10, c4, 1 @ unlock I-TLB
153 mcr p15, 0, r1, c8, c5, 0 @ invalidate I-TLB
154 mrc p15, 0, r1, c1, c0, 0 @ ctrl register
155 bic r1, r1, #0x0086 @ ........B....CA.
156 bic r1, r1, #0x3900 @ ..VIZ..S........
157 sub pc, pc, #4 @ flush pipeline
158 @ *** cache line aligned ***
159 mcr p15, 0, r1, c1, c0, 0 @ ctrl register
160 bic r1, r1, #0x0001 @ ...............M
161 mcr p15, 0, ip, c7, c7, 0 @ invalidate I,D caches & BTB
162 mcr p15, 0, r1, c1, c0, 0 @ ctrl register
163 @ CAUTION: MMU turned off from this point. We count on the pipeline
164 @ already containing those two last instructions to survive.
165 mcr p15, 0, ip, c8, c7, 0 @ invalidate I & D TLBs
166 mov pc, r0
167
168 /*
169 * cpu_xscale_do_idle()
170 *
171 * Cause the processor to idle
172 *
173 * For now we do nothing but go to idle mode for every case
174 *
175 * XScale supports clock switching, but using idle mode support
176 * allows external hardware to react to system state changes.
177 */
178 .align 5
179
180 ENTRY(cpu_xscale_do_idle)
181 mov r0, #1
182 mcr p14, 0, r0, c7, c0, 0 @ Go to IDLE
183 mov pc, lr
184
185 /* ================================= CACHE ================================ */
186
187 /*
188 * flush_user_cache_all()
189 *
190 * Invalidate all cache entries in a particular address
191 * space.
192 */
193 ENTRY(xscale_flush_user_cache_all)
194 /* FALLTHROUGH */
195
196 /*
197 * flush_kern_cache_all()
198 *
199 * Clean and invalidate the entire cache.
200 */
201 ENTRY(xscale_flush_kern_cache_all)
202 mov r2, #VM_EXEC
203 mov ip, #0
204 __flush_whole_cache:
205 clean_d_cache r0, r1
206 tst r2, #VM_EXEC
207 mcrne p15, 0, ip, c7, c5, 0 @ Invalidate I cache & BTB
208 mcrne p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer
209 mov pc, lr
210
211 /*
212 * flush_user_cache_range(start, end, vm_flags)
213 *
214 * Invalidate a range of cache entries in the specified
215 * address space.
216 *
217 * - start - start address (may not be aligned)
218 * - end - end address (exclusive, may not be aligned)
219 * - vma - vma_area_struct describing address space
220 */
221 .align 5
222 ENTRY(xscale_flush_user_cache_range)
223 mov ip, #0
224 sub r3, r1, r0 @ calculate total size
225 cmp r3, #MAX_AREA_SIZE
226 bhs __flush_whole_cache
227
228 1: tst r2, #VM_EXEC
229 mcrne p15, 0, r0, c7, c5, 1 @ Invalidate I cache line
230 mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line
231 mcr p15, 0, r0, c7, c6, 1 @ Invalidate D cache line
232 add r0, r0, #CACHELINESIZE
233 cmp r0, r1
234 blo 1b
235 tst r2, #VM_EXEC
236 mcrne p15, 0, ip, c7, c5, 6 @ Invalidate BTB
237 mcrne p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer
238 mov pc, lr
239
240 /*
241 * coherent_kern_range(start, end)
242 *
243 * Ensure coherency between the Icache and the Dcache in the
244 * region described by start. If you have non-snooping
245 * Harvard caches, you need to implement this function.
246 *
247 * - start - virtual start address
248 * - end - virtual end address
249 *
250 * Note: single I-cache line invalidation isn't used here since
251 * it also trashes the mini I-cache used by JTAG debuggers.
252 */
253 ENTRY(xscale_coherent_kern_range)
254 bic r0, r0, #CACHELINESIZE - 1
255 1: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
256 add r0, r0, #CACHELINESIZE
257 cmp r0, r1
258 blo 1b
259 mov r0, #0
260 mcr p15, 0, r0, c7, c5, 0 @ Invalidate I cache & BTB
261 mcr p15, 0, r0, c7, c10, 4 @ Drain Write (& Fill) Buffer
262 mov pc, lr
263
264 /*
265 * coherent_user_range(start, end)
266 *
267 * Ensure coherency between the Icache and the Dcache in the
268 * region described by start. If you have non-snooping
269 * Harvard caches, you need to implement this function.
270 *
271 * - start - virtual start address
272 * - end - virtual end address
273 */
274 ENTRY(xscale_coherent_user_range)
275 bic r0, r0, #CACHELINESIZE - 1
276 1: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
277 mcr p15, 0, r0, c7, c5, 1 @ Invalidate I cache entry
278 add r0, r0, #CACHELINESIZE
279 cmp r0, r1
280 blo 1b
281 mov r0, #0
282 mcr p15, 0, r0, c7, c5, 6 @ Invalidate BTB
283 mcr p15, 0, r0, c7, c10, 4 @ Drain Write (& Fill) Buffer
284 mov pc, lr
285
286 /*
287 * flush_kern_dcache_page(void *page)
288 *
289 * Ensure no D cache aliasing occurs, either with itself or
290 * the I cache
291 *
292 * - addr - page aligned address
293 */
294 ENTRY(xscale_flush_kern_dcache_page)
295 add r1, r0, #PAGE_SZ
296 1: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
297 mcr p15, 0, r0, c7, c6, 1 @ invalidate D entry
298 add r0, r0, #CACHELINESIZE
299 cmp r0, r1
300 blo 1b
301 mov r0, #0
302 mcr p15, 0, r0, c7, c5, 0 @ Invalidate I cache & BTB
303 mcr p15, 0, r0, c7, c10, 4 @ Drain Write (& Fill) Buffer
304 mov pc, lr
305
306 /*
307 * dma_inv_range(start, end)
308 *
309 * Invalidate (discard) the specified virtual address range.
310 * May not write back any entries. If 'start' or 'end'
311 * are not cache line aligned, those lines must be written
312 * back.
313 *
314 * - start - virtual start address
315 * - end - virtual end address
316 */
317 ENTRY(xscale_dma_inv_range)
318 tst r0, #CACHELINESIZE - 1
319 bic r0, r0, #CACHELINESIZE - 1
320 mcrne p15, 0, r0, c7, c10, 1 @ clean D entry
321 tst r1, #CACHELINESIZE - 1
322 mcrne p15, 0, r1, c7, c10, 1 @ clean D entry
323 1: mcr p15, 0, r0, c7, c6, 1 @ invalidate D entry
324 add r0, r0, #CACHELINESIZE
325 cmp r0, r1
326 blo 1b
327 mcr p15, 0, r0, c7, c10, 4 @ Drain Write (& Fill) Buffer
328 mov pc, lr
329
330 /*
331 * dma_clean_range(start, end)
332 *
333 * Clean the specified virtual address range.
334 *
335 * - start - virtual start address
336 * - end - virtual end address
337 */
338 ENTRY(xscale_dma_clean_range)
339 bic r0, r0, #CACHELINESIZE - 1
340 1: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
341 add r0, r0, #CACHELINESIZE
342 cmp r0, r1
343 blo 1b
344 mcr p15, 0, r0, c7, c10, 4 @ Drain Write (& Fill) Buffer
345 mov pc, lr
346
347 /*
348 * dma_flush_range(start, end)
349 *
350 * Clean and invalidate the specified virtual address range.
351 *
352 * - start - virtual start address
353 * - end - virtual end address
354 */
355 ENTRY(xscale_dma_flush_range)
356 bic r0, r0, #CACHELINESIZE - 1
357 1: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
358 mcr p15, 0, r0, c7, c6, 1 @ invalidate D entry
359 add r0, r0, #CACHELINESIZE
360 cmp r0, r1
361 blo 1b
362 mcr p15, 0, r0, c7, c10, 4 @ Drain Write (& Fill) Buffer
363 mov pc, lr
364
365 ENTRY(xscale_cache_fns)
366 .long xscale_flush_kern_cache_all
367 .long xscale_flush_user_cache_all
368 .long xscale_flush_user_cache_range
369 .long xscale_coherent_kern_range
370 .long xscale_coherent_user_range
371 .long xscale_flush_kern_dcache_page
372 .long xscale_dma_inv_range
373 .long xscale_dma_clean_range
374 .long xscale_dma_flush_range
375
376 /*
377 * On stepping A0/A1 of the 80200, invalidating D-cache by line doesn't
378 * clear the dirty bits, which means that if we invalidate a dirty line,
379 * the dirty data can still be written back to external memory later on.
380 *
381 * The recommended workaround is to always do a clean D-cache line before
382 * doing an invalidate D-cache line, so on the affected processors,
383 * dma_inv_range() is implemented as dma_flush_range().
384 *
385 * See erratum #25 of "Intel 80200 Processor Specification Update",
386 * revision January 22, 2003, available at:
387 * http://www.intel.com/design/iio/specupdt/273415.htm
388 */
389 ENTRY(xscale_80200_A0_A1_cache_fns)
390 .long xscale_flush_kern_cache_all
391 .long xscale_flush_user_cache_all
392 .long xscale_flush_user_cache_range
393 .long xscale_coherent_kern_range
394 .long xscale_coherent_user_range
395 .long xscale_flush_kern_dcache_page
396 .long xscale_dma_flush_range
397 .long xscale_dma_clean_range
398 .long xscale_dma_flush_range
399
400 ENTRY(cpu_xscale_dcache_clean_area)
401 1: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
402 add r0, r0, #CACHELINESIZE
403 subs r1, r1, #CACHELINESIZE
404 bhi 1b
405 mov pc, lr
406
407 /* =============================== PageTable ============================== */
408
409 #define PTE_CACHE_WRITE_ALLOCATE 0
410
411 /*
412 * cpu_xscale_switch_mm(pgd)
413 *
414 * Set the translation base pointer to be as described by pgd.
415 *
416 * pgd: new page tables
417 */
418 .align 5
419 ENTRY(cpu_xscale_switch_mm)
420 clean_d_cache r1, r2
421 mcr p15, 0, ip, c7, c5, 0 @ Invalidate I cache & BTB
422 mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer
423 mcr p15, 0, r0, c2, c0, 0 @ load page table pointer
424 mcr p15, 0, ip, c8, c7, 0 @ invalidate I & D TLBs
425 cpwait_ret lr, ip
426
427 /*
428 * cpu_xscale_set_pte_ext(ptep, pte, ext)
429 *
430 * Set a PTE and flush it out
431 *
432 * Errata 40: must set memory to write-through for user read-only pages.
433 */
434 .align 5
435 ENTRY(cpu_xscale_set_pte_ext)
436 str r1, [r0], #-2048 @ linux version
437
438 bic r2, r1, #0xff0
439 orr r2, r2, #PTE_TYPE_EXT @ extended page
440
441 eor r3, r1, #L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_WRITE | L_PTE_DIRTY
442
443 tst r3, #L_PTE_USER @ User?
444 orrne r2, r2, #PTE_EXT_AP_URO_SRW @ yes -> user r/o, system r/w
445
446 tst r3, #L_PTE_WRITE | L_PTE_DIRTY @ Write and Dirty?
447 orreq r2, r2, #PTE_EXT_AP_UNO_SRW @ yes -> user n/a, system r/w
448 @ combined with user -> user r/w
449
450 @
451 @ Handle the X bit. We want to set this bit for the minicache
452 @ (U = E = B = W = 0, C = 1) or when write allocate is enabled,
453 @ and we have a writeable, cacheable region. If we ignore the
454 @ U and E bits, we can allow user space to use the minicache as
455 @ well.
456 @
457 @ X = (C & ~W & ~B) | (C & W & B & write_allocate)
458 @
459 eor ip, r1, #L_PTE_CACHEABLE
460 tst ip, #L_PTE_CACHEABLE | L_PTE_WRITE | L_PTE_BUFFERABLE
461 #if PTE_CACHE_WRITE_ALLOCATE
462 eorne ip, r1, #L_PTE_CACHEABLE | L_PTE_WRITE | L_PTE_BUFFERABLE
463 tstne ip, #L_PTE_CACHEABLE | L_PTE_WRITE | L_PTE_BUFFERABLE
464 #endif
465 orreq r2, r2, #PTE_EXT_TEX(1)
466
467 @
468 @ Erratum 40: The B bit must be cleared for a user read-only
469 @ cacheable page.
470 @
471 @ B = B & ~(U & C & ~W)
472 @
473 and ip, r1, #L_PTE_USER | L_PTE_WRITE | L_PTE_CACHEABLE
474 teq ip, #L_PTE_USER | L_PTE_CACHEABLE
475 biceq r2, r2, #PTE_BUFFERABLE
476
477 tst r3, #L_PTE_PRESENT | L_PTE_YOUNG @ Present and Young?
478 movne r2, #0 @ no -> fault
479
480 str r2, [r0] @ hardware version
481 mov ip, #0
482 mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line
483 mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer
484 mov pc, lr
485
486
487 .ltorg
488
489 .align
490
491 __INIT
492
493 .type __xscale_setup, #function
494 __xscale_setup:
495 mcr p15, 0, ip, c7, c7, 0 @ invalidate I, D caches & BTB
496 mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer
497 mcr p15, 0, ip, c8, c7, 0 @ invalidate I, D TLBs
498 mov r0, #1 << 6 @ cp6 for IOP3xx and Bulverde
499 orr r0, r0, #1 << 13 @ Its undefined whether this
500 mcr p15, 0, r0, c15, c1, 0 @ affects USR or SVC modes
501
502 adr r5, xscale_crval
503 ldmia r5, {r5, r6}
504 mrc p15, 0, r0, c1, c0, 0 @ get control register
505 bic r0, r0, r5
506 orr r0, r0, r6
507 mov pc, lr
508 .size __xscale_setup, . - __xscale_setup
509
510 /*
511 * R
512 * .RVI ZFRS BLDP WCAM
513 * ..11 1.01 .... .101
514 *
515 */
516 .type xscale_crval, #object
517 xscale_crval:
518 crval clear=0x00003b07, mmuset=0x00003905, ucset=0x00001900
519
520 __INITDATA
521
522 /*
523 * Purpose : Function pointers used to access above functions - all calls
524 * come through these
525 */
526
527 .type xscale_processor_functions, #object
528 ENTRY(xscale_processor_functions)
529 .word v5t_early_abort
530 .word cpu_xscale_proc_init
531 .word cpu_xscale_proc_fin
532 .word cpu_xscale_reset
533 .word cpu_xscale_do_idle
534 .word cpu_xscale_dcache_clean_area
535 .word cpu_xscale_switch_mm
536 .word cpu_xscale_set_pte_ext
537 .size xscale_processor_functions, . - xscale_processor_functions
538
539 .section ".rodata"
540
541 .type cpu_arch_name, #object
542 cpu_arch_name:
543 .asciz "armv5te"
544 .size cpu_arch_name, . - cpu_arch_name
545
546 .type cpu_elf_name, #object
547 cpu_elf_name:
548 .asciz "v5"
549 .size cpu_elf_name, . - cpu_elf_name
550
551 .type cpu_80200_A0_A1_name, #object
552 cpu_80200_A0_A1_name:
553 .asciz "XScale-80200 A0/A1"
554 .size cpu_80200_A0_A1_name, . - cpu_80200_A0_A1_name
555
556 .type cpu_80200_name, #object
557 cpu_80200_name:
558 .asciz "XScale-80200"
559 .size cpu_80200_name, . - cpu_80200_name
560
561 .type cpu_80219_name, #object
562 cpu_80219_name:
563 .asciz "XScale-80219"
564 .size cpu_80219_name, . - cpu_80219_name
565
566 .type cpu_8032x_name, #object
567 cpu_8032x_name:
568 .asciz "XScale-IOP8032x Family"
569 .size cpu_8032x_name, . - cpu_8032x_name
570
571 .type cpu_8033x_name, #object
572 cpu_8033x_name:
573 .asciz "XScale-IOP8033x Family"
574 .size cpu_8033x_name, . - cpu_8033x_name
575
576 .type cpu_pxa250_name, #object
577 cpu_pxa250_name:
578 .asciz "XScale-PXA250"
579 .size cpu_pxa250_name, . - cpu_pxa250_name
580
581 .type cpu_pxa210_name, #object
582 cpu_pxa210_name:
583 .asciz "XScale-PXA210"
584 .size cpu_pxa210_name, . - cpu_pxa210_name
585
586 .type cpu_ixp42x_name, #object
587 cpu_ixp42x_name:
588 .asciz "XScale-IXP42x Family"
589 .size cpu_ixp42x_name, . - cpu_ixp42x_name
590
591 .type cpu_ixp43x_name, #object
592 cpu_ixp43x_name:
593 .asciz "XScale-IXP43x Family"
594 .size cpu_ixp43x_name, . - cpu_ixp43x_name
595
596 .type cpu_ixp46x_name, #object
597 cpu_ixp46x_name:
598 .asciz "XScale-IXP46x Family"
599 .size cpu_ixp46x_name, . - cpu_ixp46x_name
600
601 .type cpu_ixp2400_name, #object
602 cpu_ixp2400_name:
603 .asciz "XScale-IXP2400"
604 .size cpu_ixp2400_name, . - cpu_ixp2400_name
605
606 .type cpu_ixp2800_name, #object
607 cpu_ixp2800_name:
608 .asciz "XScale-IXP2800"
609 .size cpu_ixp2800_name, . - cpu_ixp2800_name
610
611 .type cpu_pxa255_name, #object
612 cpu_pxa255_name:
613 .asciz "XScale-PXA255"
614 .size cpu_pxa255_name, . - cpu_pxa255_name
615
616 .type cpu_pxa270_name, #object
617 cpu_pxa270_name:
618 .asciz "XScale-PXA270"
619 .size cpu_pxa270_name, . - cpu_pxa270_name
620
621 .align
622
623 .section ".proc.info.init", #alloc, #execinstr
624
625 .type __80200_A0_A1_proc_info,#object
626 __80200_A0_A1_proc_info:
627 .long 0x69052000
628 .long 0xfffffffe
629 .long PMD_TYPE_SECT | \
630 PMD_SECT_BUFFERABLE | \
631 PMD_SECT_CACHEABLE | \
632 PMD_SECT_AP_WRITE | \
633 PMD_SECT_AP_READ
634 .long PMD_TYPE_SECT | \
635 PMD_SECT_AP_WRITE | \
636 PMD_SECT_AP_READ
637 b __xscale_setup
638 .long cpu_arch_name
639 .long cpu_elf_name
640 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
641 .long cpu_80200_name
642 .long xscale_processor_functions
643 .long v4wbi_tlb_fns
644 .long xscale_mc_user_fns
645 .long xscale_80200_A0_A1_cache_fns
646 .size __80200_A0_A1_proc_info, . - __80200_A0_A1_proc_info
647
648 .type __80200_proc_info,#object
649 __80200_proc_info:
650 .long 0x69052000
651 .long 0xfffffff0
652 .long PMD_TYPE_SECT | \
653 PMD_SECT_BUFFERABLE | \
654 PMD_SECT_CACHEABLE | \
655 PMD_SECT_AP_WRITE | \
656 PMD_SECT_AP_READ
657 .long PMD_TYPE_SECT | \
658 PMD_SECT_AP_WRITE | \
659 PMD_SECT_AP_READ
660 b __xscale_setup
661 .long cpu_arch_name
662 .long cpu_elf_name
663 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
664 .long cpu_80200_name
665 .long xscale_processor_functions
666 .long v4wbi_tlb_fns
667 .long xscale_mc_user_fns
668 .long xscale_cache_fns
669 .size __80200_proc_info, . - __80200_proc_info
670
671 .type __80219_proc_info,#object
672 __80219_proc_info:
673 .long 0x69052e20
674 .long 0xffffffe0
675 .long PMD_TYPE_SECT | \
676 PMD_SECT_BUFFERABLE | \
677 PMD_SECT_CACHEABLE | \
678 PMD_SECT_AP_WRITE | \
679 PMD_SECT_AP_READ
680 .long PMD_TYPE_SECT | \
681 PMD_SECT_AP_WRITE | \
682 PMD_SECT_AP_READ
683 b __xscale_setup
684 .long cpu_arch_name
685 .long cpu_elf_name
686 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
687 .long cpu_80219_name
688 .long xscale_processor_functions
689 .long v4wbi_tlb_fns
690 .long xscale_mc_user_fns
691 .long xscale_cache_fns
692 .size __80219_proc_info, . - __80219_proc_info
693
694 .type __8032x_proc_info,#object
695 __8032x_proc_info:
696 .long 0x69052420
697 .long 0xfffff7e0
698 .long PMD_TYPE_SECT | \
699 PMD_SECT_BUFFERABLE | \
700 PMD_SECT_CACHEABLE | \
701 PMD_SECT_AP_WRITE | \
702 PMD_SECT_AP_READ
703 .long PMD_TYPE_SECT | \
704 PMD_SECT_AP_WRITE | \
705 PMD_SECT_AP_READ
706 b __xscale_setup
707 .long cpu_arch_name
708 .long cpu_elf_name
709 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
710 .long cpu_8032x_name
711 .long xscale_processor_functions
712 .long v4wbi_tlb_fns
713 .long xscale_mc_user_fns
714 .long xscale_cache_fns
715 .size __8032x_proc_info, . - __8032x_proc_info
716
717 .type __8033x_proc_info,#object
718 __8033x_proc_info:
719 .long 0x69054010
720 .long 0xfffffd30
721 .long PMD_TYPE_SECT | \
722 PMD_SECT_BUFFERABLE | \
723 PMD_SECT_CACHEABLE | \
724 PMD_SECT_AP_WRITE | \
725 PMD_SECT_AP_READ
726 .long PMD_TYPE_SECT | \
727 PMD_SECT_AP_WRITE | \
728 PMD_SECT_AP_READ
729 b __xscale_setup
730 .long cpu_arch_name
731 .long cpu_elf_name
732 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
733 .long cpu_8033x_name
734 .long xscale_processor_functions
735 .long v4wbi_tlb_fns
736 .long xscale_mc_user_fns
737 .long xscale_cache_fns
738 .size __8033x_proc_info, . - __8033x_proc_info
739
740 .type __pxa250_proc_info,#object
741 __pxa250_proc_info:
742 .long 0x69052100
743 .long 0xfffff7f0
744 .long PMD_TYPE_SECT | \
745 PMD_SECT_BUFFERABLE | \
746 PMD_SECT_CACHEABLE | \
747 PMD_SECT_AP_WRITE | \
748 PMD_SECT_AP_READ
749 .long PMD_TYPE_SECT | \
750 PMD_SECT_AP_WRITE | \
751 PMD_SECT_AP_READ
752 b __xscale_setup
753 .long cpu_arch_name
754 .long cpu_elf_name
755 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
756 .long cpu_pxa250_name
757 .long xscale_processor_functions
758 .long v4wbi_tlb_fns
759 .long xscale_mc_user_fns
760 .long xscale_cache_fns
761 .size __pxa250_proc_info, . - __pxa250_proc_info
762
763 .type __pxa210_proc_info,#object
764 __pxa210_proc_info:
765 .long 0x69052120
766 .long 0xfffff3f0
767 .long PMD_TYPE_SECT | \
768 PMD_SECT_BUFFERABLE | \
769 PMD_SECT_CACHEABLE | \
770 PMD_SECT_AP_WRITE | \
771 PMD_SECT_AP_READ
772 .long PMD_TYPE_SECT | \
773 PMD_SECT_AP_WRITE | \
774 PMD_SECT_AP_READ
775 b __xscale_setup
776 .long cpu_arch_name
777 .long cpu_elf_name
778 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
779 .long cpu_pxa210_name
780 .long xscale_processor_functions
781 .long v4wbi_tlb_fns
782 .long xscale_mc_user_fns
783 .long xscale_cache_fns
784 .size __pxa210_proc_info, . - __pxa210_proc_info
785
786 .type __ixp2400_proc_info, #object
787 __ixp2400_proc_info:
788 .long 0x69054190
789 .long 0xfffffff0
790 .long PMD_TYPE_SECT | \
791 PMD_SECT_BUFFERABLE | \
792 PMD_SECT_CACHEABLE | \
793 PMD_SECT_AP_WRITE | \
794 PMD_SECT_AP_READ
795 .long PMD_TYPE_SECT | \
796 PMD_SECT_AP_WRITE | \
797 PMD_SECT_AP_READ
798 b __xscale_setup
799 .long cpu_arch_name
800 .long cpu_elf_name
801 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
802 .long cpu_ixp2400_name
803 .long xscale_processor_functions
804 .long v4wbi_tlb_fns
805 .long xscale_mc_user_fns
806 .long xscale_cache_fns
807 .size __ixp2400_proc_info, . - __ixp2400_proc_info
808
809 .type __ixp2800_proc_info, #object
810 __ixp2800_proc_info:
811 .long 0x690541a0
812 .long 0xfffffff0
813 .long PMD_TYPE_SECT | \
814 PMD_SECT_BUFFERABLE | \
815 PMD_SECT_CACHEABLE | \
816 PMD_SECT_AP_WRITE | \
817 PMD_SECT_AP_READ
818 .long PMD_TYPE_SECT | \
819 PMD_SECT_AP_WRITE | \
820 PMD_SECT_AP_READ
821 b __xscale_setup
822 .long cpu_arch_name
823 .long cpu_elf_name
824 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
825 .long cpu_ixp2800_name
826 .long xscale_processor_functions
827 .long v4wbi_tlb_fns
828 .long xscale_mc_user_fns
829 .long xscale_cache_fns
830 .size __ixp2800_proc_info, . - __ixp2800_proc_info
831
832 .type __ixp42x_proc_info, #object
833 __ixp42x_proc_info:
834 .long 0x690541c0
835 .long 0xffffffc0
836 .long PMD_TYPE_SECT | \
837 PMD_SECT_BUFFERABLE | \
838 PMD_SECT_CACHEABLE | \
839 PMD_SECT_AP_WRITE | \
840 PMD_SECT_AP_READ
841 .long PMD_TYPE_SECT | \
842 PMD_SECT_AP_WRITE | \
843 PMD_SECT_AP_READ
844 b __xscale_setup
845 .long cpu_arch_name
846 .long cpu_elf_name
847 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
848 .long cpu_ixp42x_name
849 .long xscale_processor_functions
850 .long v4wbi_tlb_fns
851 .long xscale_mc_user_fns
852 .long xscale_cache_fns
853 .size __ixp42x_proc_info, . - __ixp42x_proc_info
854
855 .type __ixp43x_proc_info, #object
856 __ixp43x_proc_info:
857 .long 0x69054040
858 .long 0xfffffff0
859 .long PMD_TYPE_SECT | \
860 PMD_SECT_BUFFERABLE | \
861 PMD_SECT_CACHEABLE | \
862 PMD_SECT_AP_WRITE | \
863 PMD_SECT_AP_READ
864 .long PMD_TYPE_SECT | \
865 PMD_SECT_AP_WRITE | \
866 PMD_SECT_AP_READ
867 b __xscale_setup
868 .long cpu_arch_name
869 .long cpu_elf_name
870 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
871 .long cpu_ixp43x_name
872 .long xscale_processor_functions
873 .long v4wbi_tlb_fns
874 .long xscale_mc_user_fns
875 .long xscale_cache_fns
876 .size __ixp43x_proc_info, . - __ixp43x_proc_info
877
878 .type __ixp46x_proc_info, #object
879 __ixp46x_proc_info:
880 .long 0x69054200
881 .long 0xffffff00
882 .long PMD_TYPE_SECT | \
883 PMD_SECT_BUFFERABLE | \
884 PMD_SECT_CACHEABLE | \
885 PMD_SECT_AP_WRITE | \
886 PMD_SECT_AP_READ
887 .long PMD_TYPE_SECT | \
888 PMD_SECT_AP_WRITE | \
889 PMD_SECT_AP_READ
890 b __xscale_setup
891 .long cpu_arch_name
892 .long cpu_elf_name
893 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
894 .long cpu_ixp46x_name
895 .long xscale_processor_functions
896 .long v4wbi_tlb_fns
897 .long xscale_mc_user_fns
898 .long xscale_cache_fns
899 .size __ixp46x_proc_info, . - __ixp46x_proc_info
900
901 .type __pxa255_proc_info,#object
902 __pxa255_proc_info:
903 .long 0x69052d00
904 .long 0xfffffff0
905 .long PMD_TYPE_SECT | \
906 PMD_SECT_BUFFERABLE | \
907 PMD_SECT_CACHEABLE | \
908 PMD_SECT_AP_WRITE | \
909 PMD_SECT_AP_READ
910 .long PMD_TYPE_SECT | \
911 PMD_SECT_AP_WRITE | \
912 PMD_SECT_AP_READ
913 b __xscale_setup
914 .long cpu_arch_name
915 .long cpu_elf_name
916 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
917 .long cpu_pxa255_name
918 .long xscale_processor_functions
919 .long v4wbi_tlb_fns
920 .long xscale_mc_user_fns
921 .long xscale_cache_fns
922 .size __pxa255_proc_info, . - __pxa255_proc_info
923
924 .type __pxa270_proc_info,#object
925 __pxa270_proc_info:
926 .long 0x69054110
927 .long 0xfffffff0
928 .long PMD_TYPE_SECT | \
929 PMD_SECT_BUFFERABLE | \
930 PMD_SECT_CACHEABLE | \
931 PMD_SECT_AP_WRITE | \
932 PMD_SECT_AP_READ
933 .long PMD_TYPE_SECT | \
934 PMD_SECT_AP_WRITE | \
935 PMD_SECT_AP_READ
936 b __xscale_setup
937 .long cpu_arch_name
938 .long cpu_elf_name
939 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
940 .long cpu_pxa270_name
941 .long xscale_processor_functions
942 .long v4wbi_tlb_fns
943 .long xscale_mc_user_fns
944 .long xscale_cache_fns
945 .size __pxa270_proc_info, . - __pxa270_proc_info
946
This page took 0.057558 seconds and 6 git commands to generate.