arm64: Use static keys for CPU features
[deliverable/linux.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2 * Contains CPU feature definitions
3 *
4 * Copyright (C) 2015 ARM Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 #include <linux/types.h>
24 #include <asm/cpu.h>
25 #include <asm/cpufeature.h>
26 #include <asm/cpu_ops.h>
27 #include <asm/mmu_context.h>
28 #include <asm/processor.h>
29 #include <asm/sysreg.h>
30 #include <asm/virt.h>
31
32 unsigned long elf_hwcap __read_mostly;
33 EXPORT_SYMBOL_GPL(elf_hwcap);
34
35 #ifdef CONFIG_COMPAT
36 #define COMPAT_ELF_HWCAP_DEFAULT \
37 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
38 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
39 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
40 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
41 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
42 COMPAT_HWCAP_LPAE)
43 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
44 unsigned int compat_elf_hwcap2 __read_mostly;
45 #endif
46
47 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
48
49 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
50 EXPORT_SYMBOL(cpu_hwcap_keys);
51
52 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
53 { \
54 .sign = SIGNED, \
55 .strict = STRICT, \
56 .type = TYPE, \
57 .shift = SHIFT, \
58 .width = WIDTH, \
59 .safe_val = SAFE_VAL, \
60 }
61
62 /* Define a feature with unsigned values */
63 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
64 __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
65
66 /* Define a feature with a signed value */
67 #define S_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
68 __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
69
70 #define ARM64_FTR_END \
71 { \
72 .width = 0, \
73 }
74
75 /* meta feature for alternatives */
76 static bool __maybe_unused
77 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
78
79
80 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
81 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
82 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
83 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
84 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
85 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
86 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
87 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
88 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
89 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
90 ARM64_FTR_END,
91 };
92
93 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
94 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
95 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
96 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
97 S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
98 S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
99 /* Linux doesn't care about the EL3 */
100 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
101 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
102 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
103 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
104 ARM64_FTR_END,
105 };
106
107 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
108 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
109 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
110 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
111 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
112 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
113 /* Linux shouldn't care about secure memory */
114 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
115 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
116 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
117 /*
118 * Differing PARange is fine as long as all peripherals and memory are mapped
119 * within the minimum PARange of all CPUs
120 */
121 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
122 ARM64_FTR_END,
123 };
124
125 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
126 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
127 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
128 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
129 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
130 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
131 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
132 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
133 ARM64_FTR_END,
134 };
135
136 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
137 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
138 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
139 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
140 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
141 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
142 ARM64_FTR_END,
143 };
144
145 static const struct arm64_ftr_bits ftr_ctr[] = {
146 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RAO */
147 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
148 ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0), /* CWG */
149 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
150 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
151 /*
152 * Linux can handle differing I-cache policies. Userspace JITs will
153 * make use of *minLine
154 */
155 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0), /* L1Ip */
156 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0), /* RAZ */
157 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
158 ARM64_FTR_END,
159 };
160
161 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
162 .name = "SYS_CTR_EL0",
163 .ftr_bits = ftr_ctr
164 };
165
166 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
167 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0xf), /* InnerShr */
168 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0), /* FCSE */
169 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
170 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0), /* TCM */
171 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* ShareLvl */
172 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0xf), /* OuterShr */
173 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
174 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
175 ARM64_FTR_END,
176 };
177
178 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
179 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
180 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
181 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
182 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
183 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
184 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
185 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
186 ARM64_FTR_END,
187 };
188
189 static const struct arm64_ftr_bits ftr_mvfr2[] = {
190 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
191 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* FPMisc */
192 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* SIMDMisc */
193 ARM64_FTR_END,
194 };
195
196 static const struct arm64_ftr_bits ftr_dczid[] = {
197 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0), /* RAZ */
198 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
199 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
200 ARM64_FTR_END,
201 };
202
203
204 static const struct arm64_ftr_bits ftr_id_isar5[] = {
205 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
206 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0), /* RAZ */
207 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
208 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
209 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
210 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
211 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
212 ARM64_FTR_END,
213 };
214
215 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
216 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
217 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* ac2 */
218 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
219 ARM64_FTR_END,
220 };
221
222 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
223 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0), /* RAZ */
224 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* State3 */
225 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* State2 */
226 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* State1 */
227 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* State0 */
228 ARM64_FTR_END,
229 };
230
231 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
232 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
233 S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
234 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
235 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
236 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
237 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
238 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
239 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
240 ARM64_FTR_END,
241 };
242
243 /*
244 * Common ftr bits for a 32bit register with all hidden, strict
245 * attributes, with 4bit feature fields and a default safe value of
246 * 0. Covers the following 32bit registers:
247 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
248 */
249 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
250 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
251 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
252 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
253 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
254 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
255 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
256 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
257 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
258 ARM64_FTR_END,
259 };
260
261 static const struct arm64_ftr_bits ftr_generic[] = {
262 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
263 ARM64_FTR_END,
264 };
265
266 static const struct arm64_ftr_bits ftr_generic32[] = {
267 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
268 ARM64_FTR_END,
269 };
270
271 static const struct arm64_ftr_bits ftr_aa64raz[] = {
272 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
273 ARM64_FTR_END,
274 };
275
276 #define ARM64_FTR_REG(id, table) { \
277 .sys_id = id, \
278 .reg = &(struct arm64_ftr_reg){ \
279 .name = #id, \
280 .ftr_bits = &((table)[0]), \
281 }}
282
283 static const struct __ftr_reg_entry {
284 u32 sys_id;
285 struct arm64_ftr_reg *reg;
286 } arm64_ftr_regs[] = {
287
288 /* Op1 = 0, CRn = 0, CRm = 1 */
289 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
290 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
291 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
292 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
293 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
294 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
295 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
296
297 /* Op1 = 0, CRn = 0, CRm = 2 */
298 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
299 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
300 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
301 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
302 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
303 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
304 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
305
306 /* Op1 = 0, CRn = 0, CRm = 3 */
307 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
308 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
309 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
310
311 /* Op1 = 0, CRn = 0, CRm = 4 */
312 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
313 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
314
315 /* Op1 = 0, CRn = 0, CRm = 5 */
316 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
317 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
318
319 /* Op1 = 0, CRn = 0, CRm = 6 */
320 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
321 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
322
323 /* Op1 = 0, CRn = 0, CRm = 7 */
324 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
325 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
326 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
327
328 /* Op1 = 3, CRn = 0, CRm = 0 */
329 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
330 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
331
332 /* Op1 = 3, CRn = 14, CRm = 0 */
333 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
334 };
335
336 static int search_cmp_ftr_reg(const void *id, const void *regp)
337 {
338 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
339 }
340
341 /*
342 * get_arm64_ftr_reg - Lookup a feature register entry using its
343 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
344 * ascending order of sys_id , we use binary search to find a matching
345 * entry.
346 *
347 * returns - Upon success, matching ftr_reg entry for id.
348 * - NULL on failure. It is upto the caller to decide
349 * the impact of a failure.
350 */
351 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
352 {
353 const struct __ftr_reg_entry *ret;
354
355 ret = bsearch((const void *)(unsigned long)sys_id,
356 arm64_ftr_regs,
357 ARRAY_SIZE(arm64_ftr_regs),
358 sizeof(arm64_ftr_regs[0]),
359 search_cmp_ftr_reg);
360 if (ret)
361 return ret->reg;
362 return NULL;
363 }
364
365 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
366 s64 ftr_val)
367 {
368 u64 mask = arm64_ftr_mask(ftrp);
369
370 reg &= ~mask;
371 reg |= (ftr_val << ftrp->shift) & mask;
372 return reg;
373 }
374
375 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
376 s64 cur)
377 {
378 s64 ret = 0;
379
380 switch (ftrp->type) {
381 case FTR_EXACT:
382 ret = ftrp->safe_val;
383 break;
384 case FTR_LOWER_SAFE:
385 ret = new < cur ? new : cur;
386 break;
387 case FTR_HIGHER_SAFE:
388 ret = new > cur ? new : cur;
389 break;
390 default:
391 BUG();
392 }
393
394 return ret;
395 }
396
397 static void __init sort_ftr_regs(void)
398 {
399 int i;
400
401 /* Check that the array is sorted so that we can do the binary search */
402 for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
403 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
404 }
405
406 /*
407 * Initialise the CPU feature register from Boot CPU values.
408 * Also initiliases the strict_mask for the register.
409 */
410 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
411 {
412 u64 val = 0;
413 u64 strict_mask = ~0x0ULL;
414 const struct arm64_ftr_bits *ftrp;
415 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
416
417 BUG_ON(!reg);
418
419 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
420 s64 ftr_new = arm64_ftr_value(ftrp, new);
421
422 val = arm64_ftr_set_value(ftrp, val, ftr_new);
423 if (!ftrp->strict)
424 strict_mask &= ~arm64_ftr_mask(ftrp);
425 }
426 reg->sys_val = val;
427 reg->strict_mask = strict_mask;
428 }
429
430 void __init init_cpu_features(struct cpuinfo_arm64 *info)
431 {
432 /* Before we start using the tables, make sure it is sorted */
433 sort_ftr_regs();
434
435 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
436 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
437 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
438 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
439 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
440 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
441 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
442 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
443 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
444 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
445 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
446 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
447
448 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
449 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
450 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
451 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
452 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
453 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
454 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
455 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
456 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
457 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
458 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
459 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
460 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
461 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
462 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
463 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
464 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
465 }
466
467 }
468
469 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
470 {
471 const struct arm64_ftr_bits *ftrp;
472
473 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
474 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
475 s64 ftr_new = arm64_ftr_value(ftrp, new);
476
477 if (ftr_cur == ftr_new)
478 continue;
479 /* Find a safe value */
480 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
481 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
482 }
483
484 }
485
486 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
487 {
488 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
489
490 BUG_ON(!regp);
491 update_cpu_ftr_reg(regp, val);
492 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
493 return 0;
494 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
495 regp->name, boot, cpu, val);
496 return 1;
497 }
498
499 /*
500 * Update system wide CPU feature registers with the values from a
501 * non-boot CPU. Also performs SANITY checks to make sure that there
502 * aren't any insane variations from that of the boot CPU.
503 */
504 void update_cpu_features(int cpu,
505 struct cpuinfo_arm64 *info,
506 struct cpuinfo_arm64 *boot)
507 {
508 int taint = 0;
509
510 /*
511 * The kernel can handle differing I-cache policies, but otherwise
512 * caches should look identical. Userspace JITs will make use of
513 * *minLine.
514 */
515 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
516 info->reg_ctr, boot->reg_ctr);
517
518 /*
519 * Userspace may perform DC ZVA instructions. Mismatched block sizes
520 * could result in too much or too little memory being zeroed if a
521 * process is preempted and migrated between CPUs.
522 */
523 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
524 info->reg_dczid, boot->reg_dczid);
525
526 /* If different, timekeeping will be broken (especially with KVM) */
527 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
528 info->reg_cntfrq, boot->reg_cntfrq);
529
530 /*
531 * The kernel uses self-hosted debug features and expects CPUs to
532 * support identical debug features. We presently need CTX_CMPs, WRPs,
533 * and BRPs to be identical.
534 * ID_AA64DFR1 is currently RES0.
535 */
536 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
537 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
538 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
539 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
540 /*
541 * Even in big.LITTLE, processors should be identical instruction-set
542 * wise.
543 */
544 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
545 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
546 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
547 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
548
549 /*
550 * Differing PARange support is fine as long as all peripherals and
551 * memory are mapped within the minimum PARange of all CPUs.
552 * Linux should not care about secure memory.
553 */
554 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
555 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
556 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
557 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
558 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
559 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
560
561 /*
562 * EL3 is not our concern.
563 * ID_AA64PFR1 is currently RES0.
564 */
565 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
566 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
567 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
568 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
569
570 /*
571 * If we have AArch32, we care about 32-bit features for compat.
572 * If the system doesn't support AArch32, don't update them.
573 */
574 if (id_aa64pfr0_32bit_el0(read_system_reg(SYS_ID_AA64PFR0_EL1)) &&
575 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
576
577 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
578 info->reg_id_dfr0, boot->reg_id_dfr0);
579 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
580 info->reg_id_isar0, boot->reg_id_isar0);
581 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
582 info->reg_id_isar1, boot->reg_id_isar1);
583 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
584 info->reg_id_isar2, boot->reg_id_isar2);
585 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
586 info->reg_id_isar3, boot->reg_id_isar3);
587 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
588 info->reg_id_isar4, boot->reg_id_isar4);
589 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
590 info->reg_id_isar5, boot->reg_id_isar5);
591
592 /*
593 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
594 * ACTLR formats could differ across CPUs and therefore would have to
595 * be trapped for virtualization anyway.
596 */
597 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
598 info->reg_id_mmfr0, boot->reg_id_mmfr0);
599 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
600 info->reg_id_mmfr1, boot->reg_id_mmfr1);
601 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
602 info->reg_id_mmfr2, boot->reg_id_mmfr2);
603 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
604 info->reg_id_mmfr3, boot->reg_id_mmfr3);
605 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
606 info->reg_id_pfr0, boot->reg_id_pfr0);
607 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
608 info->reg_id_pfr1, boot->reg_id_pfr1);
609 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
610 info->reg_mvfr0, boot->reg_mvfr0);
611 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
612 info->reg_mvfr1, boot->reg_mvfr1);
613 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
614 info->reg_mvfr2, boot->reg_mvfr2);
615 }
616
617 /*
618 * Mismatched CPU features are a recipe for disaster. Don't even
619 * pretend to support them.
620 */
621 WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
622 "Unsupported CPU feature variation.\n");
623 }
624
625 u64 read_system_reg(u32 id)
626 {
627 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
628
629 /* We shouldn't get a request for an unsupported register */
630 BUG_ON(!regp);
631 return regp->sys_val;
632 }
633
634 /*
635 * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
636 * Read the system register on the current CPU
637 */
638 static u64 __raw_read_system_reg(u32 sys_id)
639 {
640 switch (sys_id) {
641 case SYS_ID_PFR0_EL1: return read_cpuid(ID_PFR0_EL1);
642 case SYS_ID_PFR1_EL1: return read_cpuid(ID_PFR1_EL1);
643 case SYS_ID_DFR0_EL1: return read_cpuid(ID_DFR0_EL1);
644 case SYS_ID_MMFR0_EL1: return read_cpuid(ID_MMFR0_EL1);
645 case SYS_ID_MMFR1_EL1: return read_cpuid(ID_MMFR1_EL1);
646 case SYS_ID_MMFR2_EL1: return read_cpuid(ID_MMFR2_EL1);
647 case SYS_ID_MMFR3_EL1: return read_cpuid(ID_MMFR3_EL1);
648 case SYS_ID_ISAR0_EL1: return read_cpuid(ID_ISAR0_EL1);
649 case SYS_ID_ISAR1_EL1: return read_cpuid(ID_ISAR1_EL1);
650 case SYS_ID_ISAR2_EL1: return read_cpuid(ID_ISAR2_EL1);
651 case SYS_ID_ISAR3_EL1: return read_cpuid(ID_ISAR3_EL1);
652 case SYS_ID_ISAR4_EL1: return read_cpuid(ID_ISAR4_EL1);
653 case SYS_ID_ISAR5_EL1: return read_cpuid(ID_ISAR4_EL1);
654 case SYS_MVFR0_EL1: return read_cpuid(MVFR0_EL1);
655 case SYS_MVFR1_EL1: return read_cpuid(MVFR1_EL1);
656 case SYS_MVFR2_EL1: return read_cpuid(MVFR2_EL1);
657
658 case SYS_ID_AA64PFR0_EL1: return read_cpuid(ID_AA64PFR0_EL1);
659 case SYS_ID_AA64PFR1_EL1: return read_cpuid(ID_AA64PFR0_EL1);
660 case SYS_ID_AA64DFR0_EL1: return read_cpuid(ID_AA64DFR0_EL1);
661 case SYS_ID_AA64DFR1_EL1: return read_cpuid(ID_AA64DFR0_EL1);
662 case SYS_ID_AA64MMFR0_EL1: return read_cpuid(ID_AA64MMFR0_EL1);
663 case SYS_ID_AA64MMFR1_EL1: return read_cpuid(ID_AA64MMFR1_EL1);
664 case SYS_ID_AA64MMFR2_EL1: return read_cpuid(ID_AA64MMFR2_EL1);
665 case SYS_ID_AA64ISAR0_EL1: return read_cpuid(ID_AA64ISAR0_EL1);
666 case SYS_ID_AA64ISAR1_EL1: return read_cpuid(ID_AA64ISAR1_EL1);
667
668 case SYS_CNTFRQ_EL0: return read_cpuid(CNTFRQ_EL0);
669 case SYS_CTR_EL0: return read_cpuid(CTR_EL0);
670 case SYS_DCZID_EL0: return read_cpuid(DCZID_EL0);
671 default:
672 BUG();
673 return 0;
674 }
675 }
676
677 #include <linux/irqchip/arm-gic-v3.h>
678
679 static bool
680 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
681 {
682 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
683
684 return val >= entry->min_field_value;
685 }
686
687 static bool
688 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
689 {
690 u64 val;
691
692 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
693 if (scope == SCOPE_SYSTEM)
694 val = read_system_reg(entry->sys_reg);
695 else
696 val = __raw_read_system_reg(entry->sys_reg);
697
698 return feature_matches(val, entry);
699 }
700
701 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
702 {
703 bool has_sre;
704
705 if (!has_cpuid_feature(entry, scope))
706 return false;
707
708 has_sre = gic_enable_sre();
709 if (!has_sre)
710 pr_warn_once("%s present but disabled by higher exception level\n",
711 entry->desc);
712
713 return has_sre;
714 }
715
716 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
717 {
718 u32 midr = read_cpuid_id();
719 u32 rv_min, rv_max;
720
721 /* Cavium ThunderX pass 1.x and 2.x */
722 rv_min = 0;
723 rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
724
725 return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
726 }
727
728 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
729 {
730 return is_kernel_in_hyp_mode();
731 }
732
733 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
734 int __unused)
735 {
736 phys_addr_t idmap_addr = virt_to_phys(__hyp_idmap_text_start);
737
738 /*
739 * Activate the lower HYP offset only if:
740 * - the idmap doesn't clash with it,
741 * - the kernel is not running at EL2.
742 */
743 return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
744 }
745
746 static const struct arm64_cpu_capabilities arm64_features[] = {
747 {
748 .desc = "GIC system register CPU interface",
749 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
750 .def_scope = SCOPE_SYSTEM,
751 .matches = has_useable_gicv3_cpuif,
752 .sys_reg = SYS_ID_AA64PFR0_EL1,
753 .field_pos = ID_AA64PFR0_GIC_SHIFT,
754 .sign = FTR_UNSIGNED,
755 .min_field_value = 1,
756 },
757 #ifdef CONFIG_ARM64_PAN
758 {
759 .desc = "Privileged Access Never",
760 .capability = ARM64_HAS_PAN,
761 .def_scope = SCOPE_SYSTEM,
762 .matches = has_cpuid_feature,
763 .sys_reg = SYS_ID_AA64MMFR1_EL1,
764 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
765 .sign = FTR_UNSIGNED,
766 .min_field_value = 1,
767 .enable = cpu_enable_pan,
768 },
769 #endif /* CONFIG_ARM64_PAN */
770 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
771 {
772 .desc = "LSE atomic instructions",
773 .capability = ARM64_HAS_LSE_ATOMICS,
774 .def_scope = SCOPE_SYSTEM,
775 .matches = has_cpuid_feature,
776 .sys_reg = SYS_ID_AA64ISAR0_EL1,
777 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
778 .sign = FTR_UNSIGNED,
779 .min_field_value = 2,
780 },
781 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
782 {
783 .desc = "Software prefetching using PRFM",
784 .capability = ARM64_HAS_NO_HW_PREFETCH,
785 .def_scope = SCOPE_SYSTEM,
786 .matches = has_no_hw_prefetch,
787 },
788 #ifdef CONFIG_ARM64_UAO
789 {
790 .desc = "User Access Override",
791 .capability = ARM64_HAS_UAO,
792 .def_scope = SCOPE_SYSTEM,
793 .matches = has_cpuid_feature,
794 .sys_reg = SYS_ID_AA64MMFR2_EL1,
795 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
796 .min_field_value = 1,
797 .enable = cpu_enable_uao,
798 },
799 #endif /* CONFIG_ARM64_UAO */
800 #ifdef CONFIG_ARM64_PAN
801 {
802 .capability = ARM64_ALT_PAN_NOT_UAO,
803 .def_scope = SCOPE_SYSTEM,
804 .matches = cpufeature_pan_not_uao,
805 },
806 #endif /* CONFIG_ARM64_PAN */
807 {
808 .desc = "Virtualization Host Extensions",
809 .capability = ARM64_HAS_VIRT_HOST_EXTN,
810 .def_scope = SCOPE_SYSTEM,
811 .matches = runs_at_el2,
812 },
813 {
814 .desc = "32-bit EL0 Support",
815 .capability = ARM64_HAS_32BIT_EL0,
816 .def_scope = SCOPE_SYSTEM,
817 .matches = has_cpuid_feature,
818 .sys_reg = SYS_ID_AA64PFR0_EL1,
819 .sign = FTR_UNSIGNED,
820 .field_pos = ID_AA64PFR0_EL0_SHIFT,
821 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
822 },
823 {
824 .desc = "Reduced HYP mapping offset",
825 .capability = ARM64_HYP_OFFSET_LOW,
826 .def_scope = SCOPE_SYSTEM,
827 .matches = hyp_offset_low,
828 },
829 {},
830 };
831
832 #define HWCAP_CAP(reg, field, s, min_value, type, cap) \
833 { \
834 .desc = #cap, \
835 .def_scope = SCOPE_SYSTEM, \
836 .matches = has_cpuid_feature, \
837 .sys_reg = reg, \
838 .field_pos = field, \
839 .sign = s, \
840 .min_field_value = min_value, \
841 .hwcap_type = type, \
842 .hwcap = cap, \
843 }
844
845 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
846 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
847 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
848 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
849 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
850 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
851 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
852 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
853 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
854 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
855 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
856 {},
857 };
858
859 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
860 #ifdef CONFIG_COMPAT
861 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
862 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
863 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
864 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
865 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
866 #endif
867 {},
868 };
869
870 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
871 {
872 switch (cap->hwcap_type) {
873 case CAP_HWCAP:
874 elf_hwcap |= cap->hwcap;
875 break;
876 #ifdef CONFIG_COMPAT
877 case CAP_COMPAT_HWCAP:
878 compat_elf_hwcap |= (u32)cap->hwcap;
879 break;
880 case CAP_COMPAT_HWCAP2:
881 compat_elf_hwcap2 |= (u32)cap->hwcap;
882 break;
883 #endif
884 default:
885 WARN_ON(1);
886 break;
887 }
888 }
889
890 /* Check if we have a particular HWCAP enabled */
891 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
892 {
893 bool rc;
894
895 switch (cap->hwcap_type) {
896 case CAP_HWCAP:
897 rc = (elf_hwcap & cap->hwcap) != 0;
898 break;
899 #ifdef CONFIG_COMPAT
900 case CAP_COMPAT_HWCAP:
901 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
902 break;
903 case CAP_COMPAT_HWCAP2:
904 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
905 break;
906 #endif
907 default:
908 WARN_ON(1);
909 rc = false;
910 }
911
912 return rc;
913 }
914
915 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
916 {
917 for (; hwcaps->matches; hwcaps++)
918 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
919 cap_set_elf_hwcap(hwcaps);
920 }
921
922 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
923 const char *info)
924 {
925 for (; caps->matches; caps++) {
926 if (!caps->matches(caps, caps->def_scope))
927 continue;
928
929 if (!cpus_have_cap(caps->capability) && caps->desc)
930 pr_info("%s %s\n", info, caps->desc);
931 cpus_set_cap(caps->capability);
932 }
933 }
934
935 /*
936 * Run through the enabled capabilities and enable() it on all active
937 * CPUs
938 */
939 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
940 {
941 for (; caps->matches; caps++)
942 if (caps->enable && cpus_have_cap(caps->capability))
943 on_each_cpu(caps->enable, NULL, true);
944 }
945
946 /*
947 * Flag to indicate if we have computed the system wide
948 * capabilities based on the boot time active CPUs. This
949 * will be used to determine if a new booting CPU should
950 * go through the verification process to make sure that it
951 * supports the system capabilities, without using a hotplug
952 * notifier.
953 */
954 static bool sys_caps_initialised;
955
956 static inline void set_sys_caps_initialised(void)
957 {
958 sys_caps_initialised = true;
959 }
960
961 /*
962 * Check for CPU features that are used in early boot
963 * based on the Boot CPU value.
964 */
965 static void check_early_cpu_features(void)
966 {
967 verify_cpu_run_el();
968 verify_cpu_asid_bits();
969 }
970
971 static void
972 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
973 {
974
975 for (; caps->matches; caps++)
976 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
977 pr_crit("CPU%d: missing HWCAP: %s\n",
978 smp_processor_id(), caps->desc);
979 cpu_die_early();
980 }
981 }
982
983 static void
984 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
985 {
986 for (; caps->matches; caps++) {
987 if (!cpus_have_cap(caps->capability))
988 continue;
989 /*
990 * If the new CPU misses an advertised feature, we cannot proceed
991 * further, park the cpu.
992 */
993 if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
994 pr_crit("CPU%d: missing feature: %s\n",
995 smp_processor_id(), caps->desc);
996 cpu_die_early();
997 }
998 if (caps->enable)
999 caps->enable(NULL);
1000 }
1001 }
1002
1003 /*
1004 * Run through the enabled system capabilities and enable() it on this CPU.
1005 * The capabilities were decided based on the available CPUs at the boot time.
1006 * Any new CPU should match the system wide status of the capability. If the
1007 * new CPU doesn't have a capability which the system now has enabled, we
1008 * cannot do anything to fix it up and could cause unexpected failures. So
1009 * we park the CPU.
1010 */
1011 void verify_local_cpu_capabilities(void)
1012 {
1013
1014 check_early_cpu_features();
1015
1016 /*
1017 * If we haven't computed the system capabilities, there is nothing
1018 * to verify.
1019 */
1020 if (!sys_caps_initialised)
1021 return;
1022
1023 verify_local_cpu_errata();
1024 verify_local_cpu_features(arm64_features);
1025 verify_local_elf_hwcaps(arm64_elf_hwcaps);
1026 if (system_supports_32bit_el0())
1027 verify_local_elf_hwcaps(compat_elf_hwcaps);
1028 }
1029
1030 static void __init setup_feature_capabilities(void)
1031 {
1032 update_cpu_capabilities(arm64_features, "detected feature:");
1033 enable_cpu_capabilities(arm64_features);
1034 }
1035
1036 /*
1037 * Check if the current CPU has a given feature capability.
1038 * Should be called from non-preemptible context.
1039 */
1040 bool this_cpu_has_cap(unsigned int cap)
1041 {
1042 const struct arm64_cpu_capabilities *caps;
1043
1044 if (WARN_ON(preemptible()))
1045 return false;
1046
1047 for (caps = arm64_features; caps->desc; caps++)
1048 if (caps->capability == cap && caps->matches)
1049 return caps->matches(caps, SCOPE_LOCAL_CPU);
1050
1051 return false;
1052 }
1053
1054 void __init setup_cpu_features(void)
1055 {
1056 u32 cwg;
1057 int cls;
1058
1059 /* Set the CPU feature capabilies */
1060 setup_feature_capabilities();
1061 enable_errata_workarounds();
1062 setup_elf_hwcaps(arm64_elf_hwcaps);
1063
1064 if (system_supports_32bit_el0())
1065 setup_elf_hwcaps(compat_elf_hwcaps);
1066
1067 /* Advertise that we have computed the system capabilities */
1068 set_sys_caps_initialised();
1069
1070 /*
1071 * Check for sane CTR_EL0.CWG value.
1072 */
1073 cwg = cache_type_cwg();
1074 cls = cache_line_size();
1075 if (!cwg)
1076 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1077 cls);
1078 if (L1_CACHE_BYTES < cls)
1079 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1080 L1_CACHE_BYTES, cls);
1081 }
1082
1083 static bool __maybe_unused
1084 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1085 {
1086 return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
1087 }
This page took 0.097838 seconds and 5 git commands to generate.