arm64: cpufeature: expose arm64_ftr_reg struct for CTR_EL0
[deliverable/linux.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2 * Contains CPU feature definitions
3 *
4 * Copyright (C) 2015 ARM Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 #include <linux/types.h>
24 #include <asm/cpu.h>
25 #include <asm/cpufeature.h>
26 #include <asm/cpu_ops.h>
27 #include <asm/mmu_context.h>
28 #include <asm/processor.h>
29 #include <asm/sysreg.h>
30 #include <asm/virt.h>
31
32 unsigned long elf_hwcap __read_mostly;
33 EXPORT_SYMBOL_GPL(elf_hwcap);
34
35 #ifdef CONFIG_COMPAT
36 #define COMPAT_ELF_HWCAP_DEFAULT \
37 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
38 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
39 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
40 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
41 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
42 COMPAT_HWCAP_LPAE)
43 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
44 unsigned int compat_elf_hwcap2 __read_mostly;
45 #endif
46
47 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
48
49 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
50 { \
51 .sign = SIGNED, \
52 .strict = STRICT, \
53 .type = TYPE, \
54 .shift = SHIFT, \
55 .width = WIDTH, \
56 .safe_val = SAFE_VAL, \
57 }
58
59 /* Define a feature with unsigned values */
60 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
61 __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
62
63 /* Define a feature with a signed value */
64 #define S_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
65 __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
66
67 #define ARM64_FTR_END \
68 { \
69 .width = 0, \
70 }
71
72 /* meta feature for alternatives */
73 static bool __maybe_unused
74 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
75
76
77 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
78 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
79 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
80 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
81 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
82 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
83 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
84 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
85 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
86 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
87 ARM64_FTR_END,
88 };
89
90 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
91 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
92 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
93 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
94 S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
95 S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
96 /* Linux doesn't care about the EL3 */
97 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
98 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
99 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
100 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
101 ARM64_FTR_END,
102 };
103
104 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
105 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
106 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
107 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
108 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
109 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
110 /* Linux shouldn't care about secure memory */
111 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
112 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
113 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
114 /*
115 * Differing PARange is fine as long as all peripherals and memory are mapped
116 * within the minimum PARange of all CPUs
117 */
118 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
119 ARM64_FTR_END,
120 };
121
122 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
123 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
124 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
125 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
126 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
127 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
128 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
129 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
130 ARM64_FTR_END,
131 };
132
133 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
134 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
135 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
136 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
137 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
138 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
139 ARM64_FTR_END,
140 };
141
142 static const struct arm64_ftr_bits ftr_ctr[] = {
143 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RAO */
144 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
145 ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0), /* CWG */
146 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
147 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
148 /*
149 * Linux can handle differing I-cache policies. Userspace JITs will
150 * make use of *minLine
151 */
152 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0), /* L1Ip */
153 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0), /* RAZ */
154 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
155 ARM64_FTR_END,
156 };
157
158 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
159 .name = "SYS_CTR_EL0",
160 .ftr_bits = ftr_ctr
161 };
162
163 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
164 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0xf), /* InnerShr */
165 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0), /* FCSE */
166 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
167 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0), /* TCM */
168 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* ShareLvl */
169 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0xf), /* OuterShr */
170 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
171 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
172 ARM64_FTR_END,
173 };
174
175 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
176 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
177 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
178 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
179 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
180 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
181 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
182 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
183 ARM64_FTR_END,
184 };
185
186 static const struct arm64_ftr_bits ftr_mvfr2[] = {
187 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
188 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* FPMisc */
189 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* SIMDMisc */
190 ARM64_FTR_END,
191 };
192
193 static const struct arm64_ftr_bits ftr_dczid[] = {
194 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0), /* RAZ */
195 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
196 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
197 ARM64_FTR_END,
198 };
199
200
201 static const struct arm64_ftr_bits ftr_id_isar5[] = {
202 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
203 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0), /* RAZ */
204 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
205 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
206 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
207 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
208 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
209 ARM64_FTR_END,
210 };
211
212 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
213 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
214 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* ac2 */
215 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
216 ARM64_FTR_END,
217 };
218
219 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
220 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0), /* RAZ */
221 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* State3 */
222 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* State2 */
223 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* State1 */
224 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* State0 */
225 ARM64_FTR_END,
226 };
227
228 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
229 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
230 S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
231 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
232 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
233 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
234 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
235 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
236 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
237 ARM64_FTR_END,
238 };
239
240 /*
241 * Common ftr bits for a 32bit register with all hidden, strict
242 * attributes, with 4bit feature fields and a default safe value of
243 * 0. Covers the following 32bit registers:
244 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
245 */
246 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
247 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
248 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
249 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
250 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
251 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
252 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
253 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
254 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
255 ARM64_FTR_END,
256 };
257
258 static const struct arm64_ftr_bits ftr_generic[] = {
259 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
260 ARM64_FTR_END,
261 };
262
263 static const struct arm64_ftr_bits ftr_generic32[] = {
264 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
265 ARM64_FTR_END,
266 };
267
268 static const struct arm64_ftr_bits ftr_aa64raz[] = {
269 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
270 ARM64_FTR_END,
271 };
272
273 #define ARM64_FTR_REG(id, table) { \
274 .sys_id = id, \
275 .reg = &(struct arm64_ftr_reg){ \
276 .name = #id, \
277 .ftr_bits = &((table)[0]), \
278 }}
279
280 static const struct __ftr_reg_entry {
281 u32 sys_id;
282 struct arm64_ftr_reg *reg;
283 } arm64_ftr_regs[] = {
284
285 /* Op1 = 0, CRn = 0, CRm = 1 */
286 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
287 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
288 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
289 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
290 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
291 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
292 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
293
294 /* Op1 = 0, CRn = 0, CRm = 2 */
295 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
296 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
297 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
298 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
299 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
300 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
301 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
302
303 /* Op1 = 0, CRn = 0, CRm = 3 */
304 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
305 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
306 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
307
308 /* Op1 = 0, CRn = 0, CRm = 4 */
309 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
310 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
311
312 /* Op1 = 0, CRn = 0, CRm = 5 */
313 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
314 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
315
316 /* Op1 = 0, CRn = 0, CRm = 6 */
317 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
318 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
319
320 /* Op1 = 0, CRn = 0, CRm = 7 */
321 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
322 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
323 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
324
325 /* Op1 = 3, CRn = 0, CRm = 0 */
326 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
327 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
328
329 /* Op1 = 3, CRn = 14, CRm = 0 */
330 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
331 };
332
333 static int search_cmp_ftr_reg(const void *id, const void *regp)
334 {
335 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
336 }
337
338 /*
339 * get_arm64_ftr_reg - Lookup a feature register entry using its
340 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
341 * ascending order of sys_id , we use binary search to find a matching
342 * entry.
343 *
344 * returns - Upon success, matching ftr_reg entry for id.
345 * - NULL on failure. It is upto the caller to decide
346 * the impact of a failure.
347 */
348 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
349 {
350 const struct __ftr_reg_entry *ret;
351
352 ret = bsearch((const void *)(unsigned long)sys_id,
353 arm64_ftr_regs,
354 ARRAY_SIZE(arm64_ftr_regs),
355 sizeof(arm64_ftr_regs[0]),
356 search_cmp_ftr_reg);
357 if (ret)
358 return ret->reg;
359 return NULL;
360 }
361
362 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
363 s64 ftr_val)
364 {
365 u64 mask = arm64_ftr_mask(ftrp);
366
367 reg &= ~mask;
368 reg |= (ftr_val << ftrp->shift) & mask;
369 return reg;
370 }
371
372 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
373 s64 cur)
374 {
375 s64 ret = 0;
376
377 switch (ftrp->type) {
378 case FTR_EXACT:
379 ret = ftrp->safe_val;
380 break;
381 case FTR_LOWER_SAFE:
382 ret = new < cur ? new : cur;
383 break;
384 case FTR_HIGHER_SAFE:
385 ret = new > cur ? new : cur;
386 break;
387 default:
388 BUG();
389 }
390
391 return ret;
392 }
393
394 static void __init sort_ftr_regs(void)
395 {
396 int i;
397
398 /* Check that the array is sorted so that we can do the binary search */
399 for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
400 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
401 }
402
403 /*
404 * Initialise the CPU feature register from Boot CPU values.
405 * Also initiliases the strict_mask for the register.
406 */
407 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
408 {
409 u64 val = 0;
410 u64 strict_mask = ~0x0ULL;
411 const struct arm64_ftr_bits *ftrp;
412 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
413
414 BUG_ON(!reg);
415
416 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
417 s64 ftr_new = arm64_ftr_value(ftrp, new);
418
419 val = arm64_ftr_set_value(ftrp, val, ftr_new);
420 if (!ftrp->strict)
421 strict_mask &= ~arm64_ftr_mask(ftrp);
422 }
423 reg->sys_val = val;
424 reg->strict_mask = strict_mask;
425 }
426
427 void __init init_cpu_features(struct cpuinfo_arm64 *info)
428 {
429 /* Before we start using the tables, make sure it is sorted */
430 sort_ftr_regs();
431
432 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
433 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
434 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
435 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
436 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
437 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
438 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
439 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
440 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
441 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
442 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
443 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
444
445 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
446 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
447 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
448 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
449 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
450 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
451 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
452 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
453 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
454 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
455 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
456 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
457 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
458 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
459 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
460 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
461 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
462 }
463
464 }
465
466 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
467 {
468 const struct arm64_ftr_bits *ftrp;
469
470 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
471 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
472 s64 ftr_new = arm64_ftr_value(ftrp, new);
473
474 if (ftr_cur == ftr_new)
475 continue;
476 /* Find a safe value */
477 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
478 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
479 }
480
481 }
482
483 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
484 {
485 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
486
487 BUG_ON(!regp);
488 update_cpu_ftr_reg(regp, val);
489 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
490 return 0;
491 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
492 regp->name, boot, cpu, val);
493 return 1;
494 }
495
496 /*
497 * Update system wide CPU feature registers with the values from a
498 * non-boot CPU. Also performs SANITY checks to make sure that there
499 * aren't any insane variations from that of the boot CPU.
500 */
501 void update_cpu_features(int cpu,
502 struct cpuinfo_arm64 *info,
503 struct cpuinfo_arm64 *boot)
504 {
505 int taint = 0;
506
507 /*
508 * The kernel can handle differing I-cache policies, but otherwise
509 * caches should look identical. Userspace JITs will make use of
510 * *minLine.
511 */
512 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
513 info->reg_ctr, boot->reg_ctr);
514
515 /*
516 * Userspace may perform DC ZVA instructions. Mismatched block sizes
517 * could result in too much or too little memory being zeroed if a
518 * process is preempted and migrated between CPUs.
519 */
520 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
521 info->reg_dczid, boot->reg_dczid);
522
523 /* If different, timekeeping will be broken (especially with KVM) */
524 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
525 info->reg_cntfrq, boot->reg_cntfrq);
526
527 /*
528 * The kernel uses self-hosted debug features and expects CPUs to
529 * support identical debug features. We presently need CTX_CMPs, WRPs,
530 * and BRPs to be identical.
531 * ID_AA64DFR1 is currently RES0.
532 */
533 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
534 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
535 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
536 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
537 /*
538 * Even in big.LITTLE, processors should be identical instruction-set
539 * wise.
540 */
541 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
542 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
543 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
544 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
545
546 /*
547 * Differing PARange support is fine as long as all peripherals and
548 * memory are mapped within the minimum PARange of all CPUs.
549 * Linux should not care about secure memory.
550 */
551 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
552 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
553 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
554 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
555 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
556 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
557
558 /*
559 * EL3 is not our concern.
560 * ID_AA64PFR1 is currently RES0.
561 */
562 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
563 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
564 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
565 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
566
567 /*
568 * If we have AArch32, we care about 32-bit features for compat.
569 * If the system doesn't support AArch32, don't update them.
570 */
571 if (id_aa64pfr0_32bit_el0(read_system_reg(SYS_ID_AA64PFR0_EL1)) &&
572 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
573
574 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
575 info->reg_id_dfr0, boot->reg_id_dfr0);
576 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
577 info->reg_id_isar0, boot->reg_id_isar0);
578 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
579 info->reg_id_isar1, boot->reg_id_isar1);
580 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
581 info->reg_id_isar2, boot->reg_id_isar2);
582 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
583 info->reg_id_isar3, boot->reg_id_isar3);
584 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
585 info->reg_id_isar4, boot->reg_id_isar4);
586 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
587 info->reg_id_isar5, boot->reg_id_isar5);
588
589 /*
590 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
591 * ACTLR formats could differ across CPUs and therefore would have to
592 * be trapped for virtualization anyway.
593 */
594 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
595 info->reg_id_mmfr0, boot->reg_id_mmfr0);
596 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
597 info->reg_id_mmfr1, boot->reg_id_mmfr1);
598 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
599 info->reg_id_mmfr2, boot->reg_id_mmfr2);
600 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
601 info->reg_id_mmfr3, boot->reg_id_mmfr3);
602 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
603 info->reg_id_pfr0, boot->reg_id_pfr0);
604 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
605 info->reg_id_pfr1, boot->reg_id_pfr1);
606 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
607 info->reg_mvfr0, boot->reg_mvfr0);
608 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
609 info->reg_mvfr1, boot->reg_mvfr1);
610 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
611 info->reg_mvfr2, boot->reg_mvfr2);
612 }
613
614 /*
615 * Mismatched CPU features are a recipe for disaster. Don't even
616 * pretend to support them.
617 */
618 WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
619 "Unsupported CPU feature variation.\n");
620 }
621
622 u64 read_system_reg(u32 id)
623 {
624 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
625
626 /* We shouldn't get a request for an unsupported register */
627 BUG_ON(!regp);
628 return regp->sys_val;
629 }
630
631 /*
632 * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
633 * Read the system register on the current CPU
634 */
635 static u64 __raw_read_system_reg(u32 sys_id)
636 {
637 switch (sys_id) {
638 case SYS_ID_PFR0_EL1: return read_cpuid(ID_PFR0_EL1);
639 case SYS_ID_PFR1_EL1: return read_cpuid(ID_PFR1_EL1);
640 case SYS_ID_DFR0_EL1: return read_cpuid(ID_DFR0_EL1);
641 case SYS_ID_MMFR0_EL1: return read_cpuid(ID_MMFR0_EL1);
642 case SYS_ID_MMFR1_EL1: return read_cpuid(ID_MMFR1_EL1);
643 case SYS_ID_MMFR2_EL1: return read_cpuid(ID_MMFR2_EL1);
644 case SYS_ID_MMFR3_EL1: return read_cpuid(ID_MMFR3_EL1);
645 case SYS_ID_ISAR0_EL1: return read_cpuid(ID_ISAR0_EL1);
646 case SYS_ID_ISAR1_EL1: return read_cpuid(ID_ISAR1_EL1);
647 case SYS_ID_ISAR2_EL1: return read_cpuid(ID_ISAR2_EL1);
648 case SYS_ID_ISAR3_EL1: return read_cpuid(ID_ISAR3_EL1);
649 case SYS_ID_ISAR4_EL1: return read_cpuid(ID_ISAR4_EL1);
650 case SYS_ID_ISAR5_EL1: return read_cpuid(ID_ISAR4_EL1);
651 case SYS_MVFR0_EL1: return read_cpuid(MVFR0_EL1);
652 case SYS_MVFR1_EL1: return read_cpuid(MVFR1_EL1);
653 case SYS_MVFR2_EL1: return read_cpuid(MVFR2_EL1);
654
655 case SYS_ID_AA64PFR0_EL1: return read_cpuid(ID_AA64PFR0_EL1);
656 case SYS_ID_AA64PFR1_EL1: return read_cpuid(ID_AA64PFR0_EL1);
657 case SYS_ID_AA64DFR0_EL1: return read_cpuid(ID_AA64DFR0_EL1);
658 case SYS_ID_AA64DFR1_EL1: return read_cpuid(ID_AA64DFR0_EL1);
659 case SYS_ID_AA64MMFR0_EL1: return read_cpuid(ID_AA64MMFR0_EL1);
660 case SYS_ID_AA64MMFR1_EL1: return read_cpuid(ID_AA64MMFR1_EL1);
661 case SYS_ID_AA64MMFR2_EL1: return read_cpuid(ID_AA64MMFR2_EL1);
662 case SYS_ID_AA64ISAR0_EL1: return read_cpuid(ID_AA64ISAR0_EL1);
663 case SYS_ID_AA64ISAR1_EL1: return read_cpuid(ID_AA64ISAR1_EL1);
664
665 case SYS_CNTFRQ_EL0: return read_cpuid(CNTFRQ_EL0);
666 case SYS_CTR_EL0: return read_cpuid(CTR_EL0);
667 case SYS_DCZID_EL0: return read_cpuid(DCZID_EL0);
668 default:
669 BUG();
670 return 0;
671 }
672 }
673
674 #include <linux/irqchip/arm-gic-v3.h>
675
676 static bool
677 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
678 {
679 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
680
681 return val >= entry->min_field_value;
682 }
683
684 static bool
685 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
686 {
687 u64 val;
688
689 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
690 if (scope == SCOPE_SYSTEM)
691 val = read_system_reg(entry->sys_reg);
692 else
693 val = __raw_read_system_reg(entry->sys_reg);
694
695 return feature_matches(val, entry);
696 }
697
698 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
699 {
700 bool has_sre;
701
702 if (!has_cpuid_feature(entry, scope))
703 return false;
704
705 has_sre = gic_enable_sre();
706 if (!has_sre)
707 pr_warn_once("%s present but disabled by higher exception level\n",
708 entry->desc);
709
710 return has_sre;
711 }
712
713 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
714 {
715 u32 midr = read_cpuid_id();
716 u32 rv_min, rv_max;
717
718 /* Cavium ThunderX pass 1.x and 2.x */
719 rv_min = 0;
720 rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
721
722 return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
723 }
724
725 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
726 {
727 return is_kernel_in_hyp_mode();
728 }
729
730 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
731 int __unused)
732 {
733 phys_addr_t idmap_addr = virt_to_phys(__hyp_idmap_text_start);
734
735 /*
736 * Activate the lower HYP offset only if:
737 * - the idmap doesn't clash with it,
738 * - the kernel is not running at EL2.
739 */
740 return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
741 }
742
743 static const struct arm64_cpu_capabilities arm64_features[] = {
744 {
745 .desc = "GIC system register CPU interface",
746 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
747 .def_scope = SCOPE_SYSTEM,
748 .matches = has_useable_gicv3_cpuif,
749 .sys_reg = SYS_ID_AA64PFR0_EL1,
750 .field_pos = ID_AA64PFR0_GIC_SHIFT,
751 .sign = FTR_UNSIGNED,
752 .min_field_value = 1,
753 },
754 #ifdef CONFIG_ARM64_PAN
755 {
756 .desc = "Privileged Access Never",
757 .capability = ARM64_HAS_PAN,
758 .def_scope = SCOPE_SYSTEM,
759 .matches = has_cpuid_feature,
760 .sys_reg = SYS_ID_AA64MMFR1_EL1,
761 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
762 .sign = FTR_UNSIGNED,
763 .min_field_value = 1,
764 .enable = cpu_enable_pan,
765 },
766 #endif /* CONFIG_ARM64_PAN */
767 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
768 {
769 .desc = "LSE atomic instructions",
770 .capability = ARM64_HAS_LSE_ATOMICS,
771 .def_scope = SCOPE_SYSTEM,
772 .matches = has_cpuid_feature,
773 .sys_reg = SYS_ID_AA64ISAR0_EL1,
774 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
775 .sign = FTR_UNSIGNED,
776 .min_field_value = 2,
777 },
778 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
779 {
780 .desc = "Software prefetching using PRFM",
781 .capability = ARM64_HAS_NO_HW_PREFETCH,
782 .def_scope = SCOPE_SYSTEM,
783 .matches = has_no_hw_prefetch,
784 },
785 #ifdef CONFIG_ARM64_UAO
786 {
787 .desc = "User Access Override",
788 .capability = ARM64_HAS_UAO,
789 .def_scope = SCOPE_SYSTEM,
790 .matches = has_cpuid_feature,
791 .sys_reg = SYS_ID_AA64MMFR2_EL1,
792 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
793 .min_field_value = 1,
794 .enable = cpu_enable_uao,
795 },
796 #endif /* CONFIG_ARM64_UAO */
797 #ifdef CONFIG_ARM64_PAN
798 {
799 .capability = ARM64_ALT_PAN_NOT_UAO,
800 .def_scope = SCOPE_SYSTEM,
801 .matches = cpufeature_pan_not_uao,
802 },
803 #endif /* CONFIG_ARM64_PAN */
804 {
805 .desc = "Virtualization Host Extensions",
806 .capability = ARM64_HAS_VIRT_HOST_EXTN,
807 .def_scope = SCOPE_SYSTEM,
808 .matches = runs_at_el2,
809 },
810 {
811 .desc = "32-bit EL0 Support",
812 .capability = ARM64_HAS_32BIT_EL0,
813 .def_scope = SCOPE_SYSTEM,
814 .matches = has_cpuid_feature,
815 .sys_reg = SYS_ID_AA64PFR0_EL1,
816 .sign = FTR_UNSIGNED,
817 .field_pos = ID_AA64PFR0_EL0_SHIFT,
818 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
819 },
820 {
821 .desc = "Reduced HYP mapping offset",
822 .capability = ARM64_HYP_OFFSET_LOW,
823 .def_scope = SCOPE_SYSTEM,
824 .matches = hyp_offset_low,
825 },
826 {},
827 };
828
829 #define HWCAP_CAP(reg, field, s, min_value, type, cap) \
830 { \
831 .desc = #cap, \
832 .def_scope = SCOPE_SYSTEM, \
833 .matches = has_cpuid_feature, \
834 .sys_reg = reg, \
835 .field_pos = field, \
836 .sign = s, \
837 .min_field_value = min_value, \
838 .hwcap_type = type, \
839 .hwcap = cap, \
840 }
841
842 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
843 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
844 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
845 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
846 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
847 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
848 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
849 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
850 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
851 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
852 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
853 {},
854 };
855
856 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
857 #ifdef CONFIG_COMPAT
858 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
859 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
860 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
861 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
862 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
863 #endif
864 {},
865 };
866
867 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
868 {
869 switch (cap->hwcap_type) {
870 case CAP_HWCAP:
871 elf_hwcap |= cap->hwcap;
872 break;
873 #ifdef CONFIG_COMPAT
874 case CAP_COMPAT_HWCAP:
875 compat_elf_hwcap |= (u32)cap->hwcap;
876 break;
877 case CAP_COMPAT_HWCAP2:
878 compat_elf_hwcap2 |= (u32)cap->hwcap;
879 break;
880 #endif
881 default:
882 WARN_ON(1);
883 break;
884 }
885 }
886
887 /* Check if we have a particular HWCAP enabled */
888 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
889 {
890 bool rc;
891
892 switch (cap->hwcap_type) {
893 case CAP_HWCAP:
894 rc = (elf_hwcap & cap->hwcap) != 0;
895 break;
896 #ifdef CONFIG_COMPAT
897 case CAP_COMPAT_HWCAP:
898 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
899 break;
900 case CAP_COMPAT_HWCAP2:
901 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
902 break;
903 #endif
904 default:
905 WARN_ON(1);
906 rc = false;
907 }
908
909 return rc;
910 }
911
912 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
913 {
914 for (; hwcaps->matches; hwcaps++)
915 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
916 cap_set_elf_hwcap(hwcaps);
917 }
918
919 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
920 const char *info)
921 {
922 for (; caps->matches; caps++) {
923 if (!caps->matches(caps, caps->def_scope))
924 continue;
925
926 if (!cpus_have_cap(caps->capability) && caps->desc)
927 pr_info("%s %s\n", info, caps->desc);
928 cpus_set_cap(caps->capability);
929 }
930 }
931
932 /*
933 * Run through the enabled capabilities and enable() it on all active
934 * CPUs
935 */
936 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
937 {
938 for (; caps->matches; caps++)
939 if (caps->enable && cpus_have_cap(caps->capability))
940 on_each_cpu(caps->enable, NULL, true);
941 }
942
943 /*
944 * Flag to indicate if we have computed the system wide
945 * capabilities based on the boot time active CPUs. This
946 * will be used to determine if a new booting CPU should
947 * go through the verification process to make sure that it
948 * supports the system capabilities, without using a hotplug
949 * notifier.
950 */
951 static bool sys_caps_initialised;
952
953 static inline void set_sys_caps_initialised(void)
954 {
955 sys_caps_initialised = true;
956 }
957
958 /*
959 * Check for CPU features that are used in early boot
960 * based on the Boot CPU value.
961 */
962 static void check_early_cpu_features(void)
963 {
964 verify_cpu_run_el();
965 verify_cpu_asid_bits();
966 }
967
968 static void
969 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
970 {
971
972 for (; caps->matches; caps++)
973 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
974 pr_crit("CPU%d: missing HWCAP: %s\n",
975 smp_processor_id(), caps->desc);
976 cpu_die_early();
977 }
978 }
979
980 static void
981 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
982 {
983 for (; caps->matches; caps++) {
984 if (!cpus_have_cap(caps->capability))
985 continue;
986 /*
987 * If the new CPU misses an advertised feature, we cannot proceed
988 * further, park the cpu.
989 */
990 if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
991 pr_crit("CPU%d: missing feature: %s\n",
992 smp_processor_id(), caps->desc);
993 cpu_die_early();
994 }
995 if (caps->enable)
996 caps->enable(NULL);
997 }
998 }
999
1000 /*
1001 * Run through the enabled system capabilities and enable() it on this CPU.
1002 * The capabilities were decided based on the available CPUs at the boot time.
1003 * Any new CPU should match the system wide status of the capability. If the
1004 * new CPU doesn't have a capability which the system now has enabled, we
1005 * cannot do anything to fix it up and could cause unexpected failures. So
1006 * we park the CPU.
1007 */
1008 void verify_local_cpu_capabilities(void)
1009 {
1010
1011 check_early_cpu_features();
1012
1013 /*
1014 * If we haven't computed the system capabilities, there is nothing
1015 * to verify.
1016 */
1017 if (!sys_caps_initialised)
1018 return;
1019
1020 verify_local_cpu_errata();
1021 verify_local_cpu_features(arm64_features);
1022 verify_local_elf_hwcaps(arm64_elf_hwcaps);
1023 if (system_supports_32bit_el0())
1024 verify_local_elf_hwcaps(compat_elf_hwcaps);
1025 }
1026
1027 static void __init setup_feature_capabilities(void)
1028 {
1029 update_cpu_capabilities(arm64_features, "detected feature:");
1030 enable_cpu_capabilities(arm64_features);
1031 }
1032
1033 /*
1034 * Check if the current CPU has a given feature capability.
1035 * Should be called from non-preemptible context.
1036 */
1037 bool this_cpu_has_cap(unsigned int cap)
1038 {
1039 const struct arm64_cpu_capabilities *caps;
1040
1041 if (WARN_ON(preemptible()))
1042 return false;
1043
1044 for (caps = arm64_features; caps->desc; caps++)
1045 if (caps->capability == cap && caps->matches)
1046 return caps->matches(caps, SCOPE_LOCAL_CPU);
1047
1048 return false;
1049 }
1050
1051 void __init setup_cpu_features(void)
1052 {
1053 u32 cwg;
1054 int cls;
1055
1056 /* Set the CPU feature capabilies */
1057 setup_feature_capabilities();
1058 enable_errata_workarounds();
1059 setup_elf_hwcaps(arm64_elf_hwcaps);
1060
1061 if (system_supports_32bit_el0())
1062 setup_elf_hwcaps(compat_elf_hwcaps);
1063
1064 /* Advertise that we have computed the system capabilities */
1065 set_sys_caps_initialised();
1066
1067 /*
1068 * Check for sane CTR_EL0.CWG value.
1069 */
1070 cwg = cache_type_cwg();
1071 cls = cache_line_size();
1072 if (!cwg)
1073 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1074 cls);
1075 if (L1_CACHE_BYTES < cls)
1076 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1077 L1_CACHE_BYTES, cls);
1078 }
1079
1080 static bool __maybe_unused
1081 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1082 {
1083 return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
1084 }
This page took 0.053841 seconds and 5 git commands to generate.