Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2 * Contains CPU feature definitions
3 *
4 * Copyright (C) 2015 ARM Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 #include <linux/types.h>
24 #include <asm/cpu.h>
25 #include <asm/cpufeature.h>
26 #include <asm/cpu_ops.h>
27 #include <asm/mmu_context.h>
28 #include <asm/processor.h>
29 #include <asm/sysreg.h>
30 #include <asm/virt.h>
31
32 unsigned long elf_hwcap __read_mostly;
33 EXPORT_SYMBOL_GPL(elf_hwcap);
34
35 #ifdef CONFIG_COMPAT
36 #define COMPAT_ELF_HWCAP_DEFAULT \
37 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
38 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
39 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
40 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
41 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
42 COMPAT_HWCAP_LPAE)
43 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
44 unsigned int compat_elf_hwcap2 __read_mostly;
45 #endif
46
47 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
48
49 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
50 { \
51 .sign = SIGNED, \
52 .strict = STRICT, \
53 .type = TYPE, \
54 .shift = SHIFT, \
55 .width = WIDTH, \
56 .safe_val = SAFE_VAL, \
57 }
58
59 /* Define a feature with unsigned values */
60 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
61 __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
62
63 /* Define a feature with a signed value */
64 #define S_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
65 __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
66
67 #define ARM64_FTR_END \
68 { \
69 .width = 0, \
70 }
71
72 /* meta feature for alternatives */
73 static bool __maybe_unused
74 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
75
76
77 static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
78 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
79 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
80 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
81 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
82 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
83 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
84 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
85 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
86 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
87 ARM64_FTR_END,
88 };
89
90 static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
91 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
92 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
93 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
94 S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
95 S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
96 /* Linux doesn't care about the EL3 */
97 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
98 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
99 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
100 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
101 ARM64_FTR_END,
102 };
103
104 static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
105 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
106 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
107 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
108 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
109 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
110 /* Linux shouldn't care about secure memory */
111 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
112 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
113 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
114 /*
115 * Differing PARange is fine as long as all peripherals and memory are mapped
116 * within the minimum PARange of all CPUs
117 */
118 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
119 ARM64_FTR_END,
120 };
121
122 static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
123 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
124 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
125 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
126 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
127 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
128 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
129 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
130 ARM64_FTR_END,
131 };
132
133 static struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
134 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
135 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
136 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
137 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
138 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
139 ARM64_FTR_END,
140 };
141
142 static struct arm64_ftr_bits ftr_ctr[] = {
143 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RAO */
144 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
145 ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0), /* CWG */
146 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
147 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
148 /*
149 * Linux can handle differing I-cache policies. Userspace JITs will
150 * make use of *minLine
151 */
152 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0), /* L1Ip */
153 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0), /* RAZ */
154 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
155 ARM64_FTR_END,
156 };
157
158 static struct arm64_ftr_bits ftr_id_mmfr0[] = {
159 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0xf), /* InnerShr */
160 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0), /* FCSE */
161 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
162 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0), /* TCM */
163 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* ShareLvl */
164 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0xf), /* OuterShr */
165 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
166 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
167 ARM64_FTR_END,
168 };
169
170 static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
171 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
172 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
173 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
174 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
175 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
176 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
177 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
178 ARM64_FTR_END,
179 };
180
181 static struct arm64_ftr_bits ftr_mvfr2[] = {
182 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
183 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* FPMisc */
184 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* SIMDMisc */
185 ARM64_FTR_END,
186 };
187
188 static struct arm64_ftr_bits ftr_dczid[] = {
189 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0), /* RAZ */
190 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
191 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
192 ARM64_FTR_END,
193 };
194
195
196 static struct arm64_ftr_bits ftr_id_isar5[] = {
197 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
198 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0), /* RAZ */
199 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
200 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
201 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
202 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
203 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
204 ARM64_FTR_END,
205 };
206
207 static struct arm64_ftr_bits ftr_id_mmfr4[] = {
208 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
209 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* ac2 */
210 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
211 ARM64_FTR_END,
212 };
213
214 static struct arm64_ftr_bits ftr_id_pfr0[] = {
215 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0), /* RAZ */
216 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* State3 */
217 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* State2 */
218 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* State1 */
219 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* State0 */
220 ARM64_FTR_END,
221 };
222
223 static struct arm64_ftr_bits ftr_id_dfr0[] = {
224 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
225 S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
226 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
227 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
228 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
229 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
230 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
231 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
232 ARM64_FTR_END,
233 };
234
235 /*
236 * Common ftr bits for a 32bit register with all hidden, strict
237 * attributes, with 4bit feature fields and a default safe value of
238 * 0. Covers the following 32bit registers:
239 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
240 */
241 static struct arm64_ftr_bits ftr_generic_32bits[] = {
242 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
243 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
244 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
245 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
246 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
247 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
248 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
249 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
250 ARM64_FTR_END,
251 };
252
253 static struct arm64_ftr_bits ftr_generic[] = {
254 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
255 ARM64_FTR_END,
256 };
257
258 static struct arm64_ftr_bits ftr_generic32[] = {
259 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
260 ARM64_FTR_END,
261 };
262
263 static struct arm64_ftr_bits ftr_aa64raz[] = {
264 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
265 ARM64_FTR_END,
266 };
267
268 #define ARM64_FTR_REG(id, table) \
269 { \
270 .sys_id = id, \
271 .name = #id, \
272 .ftr_bits = &((table)[0]), \
273 }
274
275 static struct arm64_ftr_reg arm64_ftr_regs[] = {
276
277 /* Op1 = 0, CRn = 0, CRm = 1 */
278 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
279 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
280 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
281 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
282 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
283 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
284 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
285
286 /* Op1 = 0, CRn = 0, CRm = 2 */
287 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
288 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
289 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
290 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
291 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
292 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
293 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
294
295 /* Op1 = 0, CRn = 0, CRm = 3 */
296 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
297 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
298 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
299
300 /* Op1 = 0, CRn = 0, CRm = 4 */
301 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
302 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
303
304 /* Op1 = 0, CRn = 0, CRm = 5 */
305 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
306 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
307
308 /* Op1 = 0, CRn = 0, CRm = 6 */
309 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
310 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
311
312 /* Op1 = 0, CRn = 0, CRm = 7 */
313 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
314 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
315 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
316
317 /* Op1 = 3, CRn = 0, CRm = 0 */
318 ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
319 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
320
321 /* Op1 = 3, CRn = 14, CRm = 0 */
322 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
323 };
324
325 static int search_cmp_ftr_reg(const void *id, const void *regp)
326 {
327 return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
328 }
329
330 /*
331 * get_arm64_ftr_reg - Lookup a feature register entry using its
332 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
333 * ascending order of sys_id , we use binary search to find a matching
334 * entry.
335 *
336 * returns - Upon success, matching ftr_reg entry for id.
337 * - NULL on failure. It is upto the caller to decide
338 * the impact of a failure.
339 */
340 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
341 {
342 return bsearch((const void *)(unsigned long)sys_id,
343 arm64_ftr_regs,
344 ARRAY_SIZE(arm64_ftr_regs),
345 sizeof(arm64_ftr_regs[0]),
346 search_cmp_ftr_reg);
347 }
348
349 static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
350 {
351 u64 mask = arm64_ftr_mask(ftrp);
352
353 reg &= ~mask;
354 reg |= (ftr_val << ftrp->shift) & mask;
355 return reg;
356 }
357
358 static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
359 {
360 s64 ret = 0;
361
362 switch (ftrp->type) {
363 case FTR_EXACT:
364 ret = ftrp->safe_val;
365 break;
366 case FTR_LOWER_SAFE:
367 ret = new < cur ? new : cur;
368 break;
369 case FTR_HIGHER_SAFE:
370 ret = new > cur ? new : cur;
371 break;
372 default:
373 BUG();
374 }
375
376 return ret;
377 }
378
379 static int __init sort_cmp_ftr_regs(const void *a, const void *b)
380 {
381 return ((const struct arm64_ftr_reg *)a)->sys_id -
382 ((const struct arm64_ftr_reg *)b)->sys_id;
383 }
384
385 static void __init swap_ftr_regs(void *a, void *b, int size)
386 {
387 struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
388 *(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
389 *(struct arm64_ftr_reg *)b = tmp;
390 }
391
392 static void __init sort_ftr_regs(void)
393 {
394 /* Keep the array sorted so that we can do the binary search */
395 sort(arm64_ftr_regs,
396 ARRAY_SIZE(arm64_ftr_regs),
397 sizeof(arm64_ftr_regs[0]),
398 sort_cmp_ftr_regs,
399 swap_ftr_regs);
400 }
401
402 /*
403 * Initialise the CPU feature register from Boot CPU values.
404 * Also initiliases the strict_mask for the register.
405 */
406 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
407 {
408 u64 val = 0;
409 u64 strict_mask = ~0x0ULL;
410 struct arm64_ftr_bits *ftrp;
411 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
412
413 BUG_ON(!reg);
414
415 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
416 s64 ftr_new = arm64_ftr_value(ftrp, new);
417
418 val = arm64_ftr_set_value(ftrp, val, ftr_new);
419 if (!ftrp->strict)
420 strict_mask &= ~arm64_ftr_mask(ftrp);
421 }
422 reg->sys_val = val;
423 reg->strict_mask = strict_mask;
424 }
425
426 void __init init_cpu_features(struct cpuinfo_arm64 *info)
427 {
428 /* Before we start using the tables, make sure it is sorted */
429 sort_ftr_regs();
430
431 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
432 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
433 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
434 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
435 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
436 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
437 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
438 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
439 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
440 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
441 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
442 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
443
444 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
445 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
446 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
447 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
448 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
449 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
450 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
451 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
452 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
453 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
454 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
455 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
456 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
457 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
458 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
459 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
460 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
461 }
462
463 }
464
465 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
466 {
467 struct arm64_ftr_bits *ftrp;
468
469 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
470 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
471 s64 ftr_new = arm64_ftr_value(ftrp, new);
472
473 if (ftr_cur == ftr_new)
474 continue;
475 /* Find a safe value */
476 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
477 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
478 }
479
480 }
481
482 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
483 {
484 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
485
486 BUG_ON(!regp);
487 update_cpu_ftr_reg(regp, val);
488 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
489 return 0;
490 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
491 regp->name, boot, cpu, val);
492 return 1;
493 }
494
495 /*
496 * Update system wide CPU feature registers with the values from a
497 * non-boot CPU. Also performs SANITY checks to make sure that there
498 * aren't any insane variations from that of the boot CPU.
499 */
500 void update_cpu_features(int cpu,
501 struct cpuinfo_arm64 *info,
502 struct cpuinfo_arm64 *boot)
503 {
504 int taint = 0;
505
506 /*
507 * The kernel can handle differing I-cache policies, but otherwise
508 * caches should look identical. Userspace JITs will make use of
509 * *minLine.
510 */
511 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
512 info->reg_ctr, boot->reg_ctr);
513
514 /*
515 * Userspace may perform DC ZVA instructions. Mismatched block sizes
516 * could result in too much or too little memory being zeroed if a
517 * process is preempted and migrated between CPUs.
518 */
519 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
520 info->reg_dczid, boot->reg_dczid);
521
522 /* If different, timekeeping will be broken (especially with KVM) */
523 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
524 info->reg_cntfrq, boot->reg_cntfrq);
525
526 /*
527 * The kernel uses self-hosted debug features and expects CPUs to
528 * support identical debug features. We presently need CTX_CMPs, WRPs,
529 * and BRPs to be identical.
530 * ID_AA64DFR1 is currently RES0.
531 */
532 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
533 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
534 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
535 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
536 /*
537 * Even in big.LITTLE, processors should be identical instruction-set
538 * wise.
539 */
540 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
541 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
542 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
543 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
544
545 /*
546 * Differing PARange support is fine as long as all peripherals and
547 * memory are mapped within the minimum PARange of all CPUs.
548 * Linux should not care about secure memory.
549 */
550 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
551 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
552 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
553 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
554 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
555 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
556
557 /*
558 * EL3 is not our concern.
559 * ID_AA64PFR1 is currently RES0.
560 */
561 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
562 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
563 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
564 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
565
566 /*
567 * If we have AArch32, we care about 32-bit features for compat.
568 * If the system doesn't support AArch32, don't update them.
569 */
570 if (id_aa64pfr0_32bit_el0(read_system_reg(SYS_ID_AA64PFR0_EL1)) &&
571 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
572
573 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
574 info->reg_id_dfr0, boot->reg_id_dfr0);
575 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
576 info->reg_id_isar0, boot->reg_id_isar0);
577 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
578 info->reg_id_isar1, boot->reg_id_isar1);
579 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
580 info->reg_id_isar2, boot->reg_id_isar2);
581 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
582 info->reg_id_isar3, boot->reg_id_isar3);
583 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
584 info->reg_id_isar4, boot->reg_id_isar4);
585 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
586 info->reg_id_isar5, boot->reg_id_isar5);
587
588 /*
589 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
590 * ACTLR formats could differ across CPUs and therefore would have to
591 * be trapped for virtualization anyway.
592 */
593 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
594 info->reg_id_mmfr0, boot->reg_id_mmfr0);
595 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
596 info->reg_id_mmfr1, boot->reg_id_mmfr1);
597 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
598 info->reg_id_mmfr2, boot->reg_id_mmfr2);
599 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
600 info->reg_id_mmfr3, boot->reg_id_mmfr3);
601 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
602 info->reg_id_pfr0, boot->reg_id_pfr0);
603 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
604 info->reg_id_pfr1, boot->reg_id_pfr1);
605 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
606 info->reg_mvfr0, boot->reg_mvfr0);
607 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
608 info->reg_mvfr1, boot->reg_mvfr1);
609 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
610 info->reg_mvfr2, boot->reg_mvfr2);
611 }
612
613 /*
614 * Mismatched CPU features are a recipe for disaster. Don't even
615 * pretend to support them.
616 */
617 WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
618 "Unsupported CPU feature variation.\n");
619 }
620
621 u64 read_system_reg(u32 id)
622 {
623 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
624
625 /* We shouldn't get a request for an unsupported register */
626 BUG_ON(!regp);
627 return regp->sys_val;
628 }
629
630 /*
631 * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
632 * Read the system register on the current CPU
633 */
634 static u64 __raw_read_system_reg(u32 sys_id)
635 {
636 switch (sys_id) {
637 case SYS_ID_PFR0_EL1: return read_cpuid(ID_PFR0_EL1);
638 case SYS_ID_PFR1_EL1: return read_cpuid(ID_PFR1_EL1);
639 case SYS_ID_DFR0_EL1: return read_cpuid(ID_DFR0_EL1);
640 case SYS_ID_MMFR0_EL1: return read_cpuid(ID_MMFR0_EL1);
641 case SYS_ID_MMFR1_EL1: return read_cpuid(ID_MMFR1_EL1);
642 case SYS_ID_MMFR2_EL1: return read_cpuid(ID_MMFR2_EL1);
643 case SYS_ID_MMFR3_EL1: return read_cpuid(ID_MMFR3_EL1);
644 case SYS_ID_ISAR0_EL1: return read_cpuid(ID_ISAR0_EL1);
645 case SYS_ID_ISAR1_EL1: return read_cpuid(ID_ISAR1_EL1);
646 case SYS_ID_ISAR2_EL1: return read_cpuid(ID_ISAR2_EL1);
647 case SYS_ID_ISAR3_EL1: return read_cpuid(ID_ISAR3_EL1);
648 case SYS_ID_ISAR4_EL1: return read_cpuid(ID_ISAR4_EL1);
649 case SYS_ID_ISAR5_EL1: return read_cpuid(ID_ISAR4_EL1);
650 case SYS_MVFR0_EL1: return read_cpuid(MVFR0_EL1);
651 case SYS_MVFR1_EL1: return read_cpuid(MVFR1_EL1);
652 case SYS_MVFR2_EL1: return read_cpuid(MVFR2_EL1);
653
654 case SYS_ID_AA64PFR0_EL1: return read_cpuid(ID_AA64PFR0_EL1);
655 case SYS_ID_AA64PFR1_EL1: return read_cpuid(ID_AA64PFR0_EL1);
656 case SYS_ID_AA64DFR0_EL1: return read_cpuid(ID_AA64DFR0_EL1);
657 case SYS_ID_AA64DFR1_EL1: return read_cpuid(ID_AA64DFR0_EL1);
658 case SYS_ID_AA64MMFR0_EL1: return read_cpuid(ID_AA64MMFR0_EL1);
659 case SYS_ID_AA64MMFR1_EL1: return read_cpuid(ID_AA64MMFR1_EL1);
660 case SYS_ID_AA64MMFR2_EL1: return read_cpuid(ID_AA64MMFR2_EL1);
661 case SYS_ID_AA64ISAR0_EL1: return read_cpuid(ID_AA64ISAR0_EL1);
662 case SYS_ID_AA64ISAR1_EL1: return read_cpuid(ID_AA64ISAR1_EL1);
663
664 case SYS_CNTFRQ_EL0: return read_cpuid(CNTFRQ_EL0);
665 case SYS_CTR_EL0: return read_cpuid(CTR_EL0);
666 case SYS_DCZID_EL0: return read_cpuid(DCZID_EL0);
667 default:
668 BUG();
669 return 0;
670 }
671 }
672
673 #include <linux/irqchip/arm-gic-v3.h>
674
675 static bool
676 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
677 {
678 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
679
680 return val >= entry->min_field_value;
681 }
682
683 static bool
684 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
685 {
686 u64 val;
687
688 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
689 if (scope == SCOPE_SYSTEM)
690 val = read_system_reg(entry->sys_reg);
691 else
692 val = __raw_read_system_reg(entry->sys_reg);
693
694 return feature_matches(val, entry);
695 }
696
697 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
698 {
699 bool has_sre;
700
701 if (!has_cpuid_feature(entry, scope))
702 return false;
703
704 has_sre = gic_enable_sre();
705 if (!has_sre)
706 pr_warn_once("%s present but disabled by higher exception level\n",
707 entry->desc);
708
709 return has_sre;
710 }
711
712 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
713 {
714 u32 midr = read_cpuid_id();
715 u32 rv_min, rv_max;
716
717 /* Cavium ThunderX pass 1.x and 2.x */
718 rv_min = 0;
719 rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
720
721 return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
722 }
723
724 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
725 {
726 return is_kernel_in_hyp_mode();
727 }
728
729 static const struct arm64_cpu_capabilities arm64_features[] = {
730 {
731 .desc = "GIC system register CPU interface",
732 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
733 .def_scope = SCOPE_SYSTEM,
734 .matches = has_useable_gicv3_cpuif,
735 .sys_reg = SYS_ID_AA64PFR0_EL1,
736 .field_pos = ID_AA64PFR0_GIC_SHIFT,
737 .sign = FTR_UNSIGNED,
738 .min_field_value = 1,
739 },
740 #ifdef CONFIG_ARM64_PAN
741 {
742 .desc = "Privileged Access Never",
743 .capability = ARM64_HAS_PAN,
744 .def_scope = SCOPE_SYSTEM,
745 .matches = has_cpuid_feature,
746 .sys_reg = SYS_ID_AA64MMFR1_EL1,
747 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
748 .sign = FTR_UNSIGNED,
749 .min_field_value = 1,
750 .enable = cpu_enable_pan,
751 },
752 #endif /* CONFIG_ARM64_PAN */
753 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
754 {
755 .desc = "LSE atomic instructions",
756 .capability = ARM64_HAS_LSE_ATOMICS,
757 .def_scope = SCOPE_SYSTEM,
758 .matches = has_cpuid_feature,
759 .sys_reg = SYS_ID_AA64ISAR0_EL1,
760 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
761 .sign = FTR_UNSIGNED,
762 .min_field_value = 2,
763 },
764 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
765 {
766 .desc = "Software prefetching using PRFM",
767 .capability = ARM64_HAS_NO_HW_PREFETCH,
768 .def_scope = SCOPE_SYSTEM,
769 .matches = has_no_hw_prefetch,
770 },
771 #ifdef CONFIG_ARM64_UAO
772 {
773 .desc = "User Access Override",
774 .capability = ARM64_HAS_UAO,
775 .def_scope = SCOPE_SYSTEM,
776 .matches = has_cpuid_feature,
777 .sys_reg = SYS_ID_AA64MMFR2_EL1,
778 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
779 .min_field_value = 1,
780 .enable = cpu_enable_uao,
781 },
782 #endif /* CONFIG_ARM64_UAO */
783 #ifdef CONFIG_ARM64_PAN
784 {
785 .capability = ARM64_ALT_PAN_NOT_UAO,
786 .def_scope = SCOPE_SYSTEM,
787 .matches = cpufeature_pan_not_uao,
788 },
789 #endif /* CONFIG_ARM64_PAN */
790 {
791 .desc = "Virtualization Host Extensions",
792 .capability = ARM64_HAS_VIRT_HOST_EXTN,
793 .def_scope = SCOPE_SYSTEM,
794 .matches = runs_at_el2,
795 },
796 {
797 .desc = "32-bit EL0 Support",
798 .capability = ARM64_HAS_32BIT_EL0,
799 .def_scope = SCOPE_SYSTEM,
800 .matches = has_cpuid_feature,
801 .sys_reg = SYS_ID_AA64PFR0_EL1,
802 .sign = FTR_UNSIGNED,
803 .field_pos = ID_AA64PFR0_EL0_SHIFT,
804 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
805 },
806 {},
807 };
808
809 #define HWCAP_CAP(reg, field, s, min_value, type, cap) \
810 { \
811 .desc = #cap, \
812 .def_scope = SCOPE_SYSTEM, \
813 .matches = has_cpuid_feature, \
814 .sys_reg = reg, \
815 .field_pos = field, \
816 .sign = s, \
817 .min_field_value = min_value, \
818 .hwcap_type = type, \
819 .hwcap = cap, \
820 }
821
822 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
823 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
824 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
825 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
826 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
827 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
828 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
829 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
830 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
831 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
832 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
833 {},
834 };
835
836 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
837 #ifdef CONFIG_COMPAT
838 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
839 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
840 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
841 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
842 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
843 #endif
844 {},
845 };
846
847 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
848 {
849 switch (cap->hwcap_type) {
850 case CAP_HWCAP:
851 elf_hwcap |= cap->hwcap;
852 break;
853 #ifdef CONFIG_COMPAT
854 case CAP_COMPAT_HWCAP:
855 compat_elf_hwcap |= (u32)cap->hwcap;
856 break;
857 case CAP_COMPAT_HWCAP2:
858 compat_elf_hwcap2 |= (u32)cap->hwcap;
859 break;
860 #endif
861 default:
862 WARN_ON(1);
863 break;
864 }
865 }
866
867 /* Check if we have a particular HWCAP enabled */
868 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
869 {
870 bool rc;
871
872 switch (cap->hwcap_type) {
873 case CAP_HWCAP:
874 rc = (elf_hwcap & cap->hwcap) != 0;
875 break;
876 #ifdef CONFIG_COMPAT
877 case CAP_COMPAT_HWCAP:
878 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
879 break;
880 case CAP_COMPAT_HWCAP2:
881 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
882 break;
883 #endif
884 default:
885 WARN_ON(1);
886 rc = false;
887 }
888
889 return rc;
890 }
891
892 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
893 {
894 for (; hwcaps->matches; hwcaps++)
895 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
896 cap_set_elf_hwcap(hwcaps);
897 }
898
899 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
900 const char *info)
901 {
902 for (; caps->matches; caps++) {
903 if (!caps->matches(caps, caps->def_scope))
904 continue;
905
906 if (!cpus_have_cap(caps->capability) && caps->desc)
907 pr_info("%s %s\n", info, caps->desc);
908 cpus_set_cap(caps->capability);
909 }
910 }
911
912 /*
913 * Run through the enabled capabilities and enable() it on all active
914 * CPUs
915 */
916 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
917 {
918 for (; caps->matches; caps++)
919 if (caps->enable && cpus_have_cap(caps->capability))
920 on_each_cpu(caps->enable, NULL, true);
921 }
922
923 /*
924 * Flag to indicate if we have computed the system wide
925 * capabilities based on the boot time active CPUs. This
926 * will be used to determine if a new booting CPU should
927 * go through the verification process to make sure that it
928 * supports the system capabilities, without using a hotplug
929 * notifier.
930 */
931 static bool sys_caps_initialised;
932
933 static inline void set_sys_caps_initialised(void)
934 {
935 sys_caps_initialised = true;
936 }
937
938 /*
939 * Check for CPU features that are used in early boot
940 * based on the Boot CPU value.
941 */
942 static void check_early_cpu_features(void)
943 {
944 verify_cpu_run_el();
945 verify_cpu_asid_bits();
946 }
947
948 static void
949 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
950 {
951
952 for (; caps->matches; caps++)
953 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
954 pr_crit("CPU%d: missing HWCAP: %s\n",
955 smp_processor_id(), caps->desc);
956 cpu_die_early();
957 }
958 }
959
960 static void
961 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
962 {
963 for (; caps->matches; caps++) {
964 if (!cpus_have_cap(caps->capability))
965 continue;
966 /*
967 * If the new CPU misses an advertised feature, we cannot proceed
968 * further, park the cpu.
969 */
970 if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
971 pr_crit("CPU%d: missing feature: %s\n",
972 smp_processor_id(), caps->desc);
973 cpu_die_early();
974 }
975 if (caps->enable)
976 caps->enable(NULL);
977 }
978 }
979
980 /*
981 * Run through the enabled system capabilities and enable() it on this CPU.
982 * The capabilities were decided based on the available CPUs at the boot time.
983 * Any new CPU should match the system wide status of the capability. If the
984 * new CPU doesn't have a capability which the system now has enabled, we
985 * cannot do anything to fix it up and could cause unexpected failures. So
986 * we park the CPU.
987 */
988 void verify_local_cpu_capabilities(void)
989 {
990
991 check_early_cpu_features();
992
993 /*
994 * If we haven't computed the system capabilities, there is nothing
995 * to verify.
996 */
997 if (!sys_caps_initialised)
998 return;
999
1000 verify_local_cpu_errata();
1001 verify_local_cpu_features(arm64_features);
1002 verify_local_elf_hwcaps(arm64_elf_hwcaps);
1003 if (system_supports_32bit_el0())
1004 verify_local_elf_hwcaps(compat_elf_hwcaps);
1005 }
1006
1007 static void __init setup_feature_capabilities(void)
1008 {
1009 update_cpu_capabilities(arm64_features, "detected feature:");
1010 enable_cpu_capabilities(arm64_features);
1011 }
1012
1013 /*
1014 * Check if the current CPU has a given feature capability.
1015 * Should be called from non-preemptible context.
1016 */
1017 bool this_cpu_has_cap(unsigned int cap)
1018 {
1019 const struct arm64_cpu_capabilities *caps;
1020
1021 if (WARN_ON(preemptible()))
1022 return false;
1023
1024 for (caps = arm64_features; caps->desc; caps++)
1025 if (caps->capability == cap && caps->matches)
1026 return caps->matches(caps, SCOPE_LOCAL_CPU);
1027
1028 return false;
1029 }
1030
1031 void __init setup_cpu_features(void)
1032 {
1033 u32 cwg;
1034 int cls;
1035
1036 /* Set the CPU feature capabilies */
1037 setup_feature_capabilities();
1038 enable_errata_workarounds();
1039 setup_elf_hwcaps(arm64_elf_hwcaps);
1040
1041 if (system_supports_32bit_el0())
1042 setup_elf_hwcaps(compat_elf_hwcaps);
1043
1044 /* Advertise that we have computed the system capabilities */
1045 set_sys_caps_initialised();
1046
1047 /*
1048 * Check for sane CTR_EL0.CWG value.
1049 */
1050 cwg = cache_type_cwg();
1051 cls = cache_line_size();
1052 if (!cwg)
1053 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1054 cls);
1055 if (L1_CACHE_BYTES < cls)
1056 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1057 L1_CACHE_BYTES, cls);
1058 }
1059
1060 static bool __maybe_unused
1061 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1062 {
1063 return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
1064 }
This page took 0.075577 seconds and 6 git commands to generate.