Merge tag 'stable/for-linus-3.19-rc4-tag' of git://git.kernel.org/pub/scm/linux/kerne...
[deliverable/linux.git] / arch / arm64 / kernel / perf_event.c
1 /*
2 * PMU support
3 *
4 * Copyright (C) 2012 ARM Limited
5 * Author: Will Deacon <will.deacon@arm.com>
6 *
7 * This code is based heavily on the ARMv7 perf event code.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21 #define pr_fmt(fmt) "hw perfevents: " fmt
22
23 #include <linux/bitmap.h>
24 #include <linux/interrupt.h>
25 #include <linux/irq.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/perf_event.h>
29 #include <linux/platform_device.h>
30 #include <linux/spinlock.h>
31 #include <linux/uaccess.h>
32
33 #include <asm/cputype.h>
34 #include <asm/irq.h>
35 #include <asm/irq_regs.h>
36 #include <asm/pmu.h>
37 #include <asm/stacktrace.h>
38
39 /*
40 * ARMv8 supports a maximum of 32 events.
41 * The cycle counter is included in this total.
42 */
43 #define ARMPMU_MAX_HWEVENTS 32
44
45 static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
46 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
47 static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
48
49 #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
50
51 /* Set at runtime when we know what CPU type we are. */
52 static struct arm_pmu *cpu_pmu;
53
54 int
55 armpmu_get_max_events(void)
56 {
57 int max_events = 0;
58
59 if (cpu_pmu != NULL)
60 max_events = cpu_pmu->num_events;
61
62 return max_events;
63 }
64 EXPORT_SYMBOL_GPL(armpmu_get_max_events);
65
66 int perf_num_counters(void)
67 {
68 return armpmu_get_max_events();
69 }
70 EXPORT_SYMBOL_GPL(perf_num_counters);
71
72 #define HW_OP_UNSUPPORTED 0xFFFF
73
74 #define C(_x) \
75 PERF_COUNT_HW_CACHE_##_x
76
77 #define CACHE_OP_UNSUPPORTED 0xFFFF
78
79 static int
80 armpmu_map_cache_event(const unsigned (*cache_map)
81 [PERF_COUNT_HW_CACHE_MAX]
82 [PERF_COUNT_HW_CACHE_OP_MAX]
83 [PERF_COUNT_HW_CACHE_RESULT_MAX],
84 u64 config)
85 {
86 unsigned int cache_type, cache_op, cache_result, ret;
87
88 cache_type = (config >> 0) & 0xff;
89 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
90 return -EINVAL;
91
92 cache_op = (config >> 8) & 0xff;
93 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
94 return -EINVAL;
95
96 cache_result = (config >> 16) & 0xff;
97 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
98 return -EINVAL;
99
100 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
101
102 if (ret == CACHE_OP_UNSUPPORTED)
103 return -ENOENT;
104
105 return ret;
106 }
107
108 static int
109 armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
110 {
111 int mapping;
112
113 if (config >= PERF_COUNT_HW_MAX)
114 return -EINVAL;
115
116 mapping = (*event_map)[config];
117 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
118 }
119
120 static int
121 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
122 {
123 return (int)(config & raw_event_mask);
124 }
125
126 static int map_cpu_event(struct perf_event *event,
127 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
128 const unsigned (*cache_map)
129 [PERF_COUNT_HW_CACHE_MAX]
130 [PERF_COUNT_HW_CACHE_OP_MAX]
131 [PERF_COUNT_HW_CACHE_RESULT_MAX],
132 u32 raw_event_mask)
133 {
134 u64 config = event->attr.config;
135
136 switch (event->attr.type) {
137 case PERF_TYPE_HARDWARE:
138 return armpmu_map_event(event_map, config);
139 case PERF_TYPE_HW_CACHE:
140 return armpmu_map_cache_event(cache_map, config);
141 case PERF_TYPE_RAW:
142 return armpmu_map_raw_event(raw_event_mask, config);
143 }
144
145 return -ENOENT;
146 }
147
148 int
149 armpmu_event_set_period(struct perf_event *event,
150 struct hw_perf_event *hwc,
151 int idx)
152 {
153 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
154 s64 left = local64_read(&hwc->period_left);
155 s64 period = hwc->sample_period;
156 int ret = 0;
157
158 if (unlikely(left <= -period)) {
159 left = period;
160 local64_set(&hwc->period_left, left);
161 hwc->last_period = period;
162 ret = 1;
163 }
164
165 if (unlikely(left <= 0)) {
166 left += period;
167 local64_set(&hwc->period_left, left);
168 hwc->last_period = period;
169 ret = 1;
170 }
171
172 /*
173 * Limit the maximum period to prevent the counter value
174 * from overtaking the one we are about to program. In
175 * effect we are reducing max_period to account for
176 * interrupt latency (and we are being very conservative).
177 */
178 if (left > (armpmu->max_period >> 1))
179 left = armpmu->max_period >> 1;
180
181 local64_set(&hwc->prev_count, (u64)-left);
182
183 armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
184
185 perf_event_update_userpage(event);
186
187 return ret;
188 }
189
190 u64
191 armpmu_event_update(struct perf_event *event,
192 struct hw_perf_event *hwc,
193 int idx)
194 {
195 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
196 u64 delta, prev_raw_count, new_raw_count;
197
198 again:
199 prev_raw_count = local64_read(&hwc->prev_count);
200 new_raw_count = armpmu->read_counter(idx);
201
202 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
203 new_raw_count) != prev_raw_count)
204 goto again;
205
206 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
207
208 local64_add(delta, &event->count);
209 local64_sub(delta, &hwc->period_left);
210
211 return new_raw_count;
212 }
213
214 static void
215 armpmu_read(struct perf_event *event)
216 {
217 struct hw_perf_event *hwc = &event->hw;
218
219 /* Don't read disabled counters! */
220 if (hwc->idx < 0)
221 return;
222
223 armpmu_event_update(event, hwc, hwc->idx);
224 }
225
226 static void
227 armpmu_stop(struct perf_event *event, int flags)
228 {
229 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
230 struct hw_perf_event *hwc = &event->hw;
231
232 /*
233 * ARM pmu always has to update the counter, so ignore
234 * PERF_EF_UPDATE, see comments in armpmu_start().
235 */
236 if (!(hwc->state & PERF_HES_STOPPED)) {
237 armpmu->disable(hwc, hwc->idx);
238 barrier(); /* why? */
239 armpmu_event_update(event, hwc, hwc->idx);
240 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
241 }
242 }
243
244 static void
245 armpmu_start(struct perf_event *event, int flags)
246 {
247 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
248 struct hw_perf_event *hwc = &event->hw;
249
250 /*
251 * ARM pmu always has to reprogram the period, so ignore
252 * PERF_EF_RELOAD, see the comment below.
253 */
254 if (flags & PERF_EF_RELOAD)
255 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
256
257 hwc->state = 0;
258 /*
259 * Set the period again. Some counters can't be stopped, so when we
260 * were stopped we simply disabled the IRQ source and the counter
261 * may have been left counting. If we don't do this step then we may
262 * get an interrupt too soon or *way* too late if the overflow has
263 * happened since disabling.
264 */
265 armpmu_event_set_period(event, hwc, hwc->idx);
266 armpmu->enable(hwc, hwc->idx);
267 }
268
269 static void
270 armpmu_del(struct perf_event *event, int flags)
271 {
272 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
273 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
274 struct hw_perf_event *hwc = &event->hw;
275 int idx = hwc->idx;
276
277 WARN_ON(idx < 0);
278
279 armpmu_stop(event, PERF_EF_UPDATE);
280 hw_events->events[idx] = NULL;
281 clear_bit(idx, hw_events->used_mask);
282
283 perf_event_update_userpage(event);
284 }
285
286 static int
287 armpmu_add(struct perf_event *event, int flags)
288 {
289 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
290 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
291 struct hw_perf_event *hwc = &event->hw;
292 int idx;
293 int err = 0;
294
295 perf_pmu_disable(event->pmu);
296
297 /* If we don't have a space for the counter then finish early. */
298 idx = armpmu->get_event_idx(hw_events, hwc);
299 if (idx < 0) {
300 err = idx;
301 goto out;
302 }
303
304 /*
305 * If there is an event in the counter we are going to use then make
306 * sure it is disabled.
307 */
308 event->hw.idx = idx;
309 armpmu->disable(hwc, idx);
310 hw_events->events[idx] = event;
311
312 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
313 if (flags & PERF_EF_START)
314 armpmu_start(event, PERF_EF_RELOAD);
315
316 /* Propagate our changes to the userspace mapping. */
317 perf_event_update_userpage(event);
318
319 out:
320 perf_pmu_enable(event->pmu);
321 return err;
322 }
323
324 static int
325 validate_event(struct pmu_hw_events *hw_events,
326 struct perf_event *event)
327 {
328 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
329 struct hw_perf_event fake_event = event->hw;
330 struct pmu *leader_pmu = event->group_leader->pmu;
331
332 if (is_software_event(event))
333 return 1;
334
335 if (event->pmu != leader_pmu || event->state < PERF_EVENT_STATE_OFF)
336 return 1;
337
338 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
339 return 1;
340
341 return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
342 }
343
344 static int
345 validate_group(struct perf_event *event)
346 {
347 struct perf_event *sibling, *leader = event->group_leader;
348 struct pmu_hw_events fake_pmu;
349 DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
350
351 /*
352 * Initialise the fake PMU. We only need to populate the
353 * used_mask for the purposes of validation.
354 */
355 memset(fake_used_mask, 0, sizeof(fake_used_mask));
356 fake_pmu.used_mask = fake_used_mask;
357
358 if (!validate_event(&fake_pmu, leader))
359 return -EINVAL;
360
361 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
362 if (!validate_event(&fake_pmu, sibling))
363 return -EINVAL;
364 }
365
366 if (!validate_event(&fake_pmu, event))
367 return -EINVAL;
368
369 return 0;
370 }
371
372 static void
373 armpmu_disable_percpu_irq(void *data)
374 {
375 unsigned int irq = *(unsigned int *)data;
376 disable_percpu_irq(irq);
377 }
378
379 static void
380 armpmu_release_hardware(struct arm_pmu *armpmu)
381 {
382 int irq;
383 unsigned int i, irqs;
384 struct platform_device *pmu_device = armpmu->plat_device;
385
386 irqs = min(pmu_device->num_resources, num_possible_cpus());
387 if (!irqs)
388 return;
389
390 irq = platform_get_irq(pmu_device, 0);
391 if (irq <= 0)
392 return;
393
394 if (irq_is_percpu(irq)) {
395 on_each_cpu(armpmu_disable_percpu_irq, &irq, 1);
396 free_percpu_irq(irq, &cpu_hw_events);
397 } else {
398 for (i = 0; i < irqs; ++i) {
399 if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
400 continue;
401 irq = platform_get_irq(pmu_device, i);
402 if (irq > 0)
403 free_irq(irq, armpmu);
404 }
405 }
406 }
407
408 static void
409 armpmu_enable_percpu_irq(void *data)
410 {
411 unsigned int irq = *(unsigned int *)data;
412 enable_percpu_irq(irq, IRQ_TYPE_NONE);
413 }
414
415 static int
416 armpmu_reserve_hardware(struct arm_pmu *armpmu)
417 {
418 int err, irq;
419 unsigned int i, irqs;
420 struct platform_device *pmu_device = armpmu->plat_device;
421
422 if (!pmu_device) {
423 pr_err("no PMU device registered\n");
424 return -ENODEV;
425 }
426
427 irqs = min(pmu_device->num_resources, num_possible_cpus());
428 if (!irqs) {
429 pr_err("no irqs for PMUs defined\n");
430 return -ENODEV;
431 }
432
433 irq = platform_get_irq(pmu_device, 0);
434 if (irq <= 0) {
435 pr_err("failed to get valid irq for PMU device\n");
436 return -ENODEV;
437 }
438
439 if (irq_is_percpu(irq)) {
440 err = request_percpu_irq(irq, armpmu->handle_irq,
441 "arm-pmu", &cpu_hw_events);
442
443 if (err) {
444 pr_err("unable to request percpu IRQ%d for ARM PMU counters\n",
445 irq);
446 armpmu_release_hardware(armpmu);
447 return err;
448 }
449
450 on_each_cpu(armpmu_enable_percpu_irq, &irq, 1);
451 } else {
452 for (i = 0; i < irqs; ++i) {
453 err = 0;
454 irq = platform_get_irq(pmu_device, i);
455 if (irq <= 0)
456 continue;
457
458 /*
459 * If we have a single PMU interrupt that we can't shift,
460 * assume that we're running on a uniprocessor machine and
461 * continue. Otherwise, continue without this interrupt.
462 */
463 if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
464 pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
465 irq, i);
466 continue;
467 }
468
469 err = request_irq(irq, armpmu->handle_irq,
470 IRQF_NOBALANCING,
471 "arm-pmu", armpmu);
472 if (err) {
473 pr_err("unable to request IRQ%d for ARM PMU counters\n",
474 irq);
475 armpmu_release_hardware(armpmu);
476 return err;
477 }
478
479 cpumask_set_cpu(i, &armpmu->active_irqs);
480 }
481 }
482
483 return 0;
484 }
485
486 static void
487 hw_perf_event_destroy(struct perf_event *event)
488 {
489 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
490 atomic_t *active_events = &armpmu->active_events;
491 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
492
493 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
494 armpmu_release_hardware(armpmu);
495 mutex_unlock(pmu_reserve_mutex);
496 }
497 }
498
499 static int
500 event_requires_mode_exclusion(struct perf_event_attr *attr)
501 {
502 return attr->exclude_idle || attr->exclude_user ||
503 attr->exclude_kernel || attr->exclude_hv;
504 }
505
506 static int
507 __hw_perf_event_init(struct perf_event *event)
508 {
509 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
510 struct hw_perf_event *hwc = &event->hw;
511 int mapping, err;
512
513 mapping = armpmu->map_event(event);
514
515 if (mapping < 0) {
516 pr_debug("event %x:%llx not supported\n", event->attr.type,
517 event->attr.config);
518 return mapping;
519 }
520
521 /*
522 * We don't assign an index until we actually place the event onto
523 * hardware. Use -1 to signify that we haven't decided where to put it
524 * yet. For SMP systems, each core has it's own PMU so we can't do any
525 * clever allocation or constraints checking at this point.
526 */
527 hwc->idx = -1;
528 hwc->config_base = 0;
529 hwc->config = 0;
530 hwc->event_base = 0;
531
532 /*
533 * Check whether we need to exclude the counter from certain modes.
534 */
535 if ((!armpmu->set_event_filter ||
536 armpmu->set_event_filter(hwc, &event->attr)) &&
537 event_requires_mode_exclusion(&event->attr)) {
538 pr_debug("ARM performance counters do not support mode exclusion\n");
539 return -EPERM;
540 }
541
542 /*
543 * Store the event encoding into the config_base field.
544 */
545 hwc->config_base |= (unsigned long)mapping;
546
547 if (!hwc->sample_period) {
548 /*
549 * For non-sampling runs, limit the sample_period to half
550 * of the counter width. That way, the new counter value
551 * is far less likely to overtake the previous one unless
552 * you have some serious IRQ latency issues.
553 */
554 hwc->sample_period = armpmu->max_period >> 1;
555 hwc->last_period = hwc->sample_period;
556 local64_set(&hwc->period_left, hwc->sample_period);
557 }
558
559 err = 0;
560 if (event->group_leader != event) {
561 err = validate_group(event);
562 if (err)
563 return -EINVAL;
564 }
565
566 return err;
567 }
568
569 static int armpmu_event_init(struct perf_event *event)
570 {
571 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
572 int err = 0;
573 atomic_t *active_events = &armpmu->active_events;
574
575 if (armpmu->map_event(event) == -ENOENT)
576 return -ENOENT;
577
578 event->destroy = hw_perf_event_destroy;
579
580 if (!atomic_inc_not_zero(active_events)) {
581 mutex_lock(&armpmu->reserve_mutex);
582 if (atomic_read(active_events) == 0)
583 err = armpmu_reserve_hardware(armpmu);
584
585 if (!err)
586 atomic_inc(active_events);
587 mutex_unlock(&armpmu->reserve_mutex);
588 }
589
590 if (err)
591 return err;
592
593 err = __hw_perf_event_init(event);
594 if (err)
595 hw_perf_event_destroy(event);
596
597 return err;
598 }
599
600 static void armpmu_enable(struct pmu *pmu)
601 {
602 struct arm_pmu *armpmu = to_arm_pmu(pmu);
603 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
604 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
605
606 if (enabled)
607 armpmu->start();
608 }
609
610 static void armpmu_disable(struct pmu *pmu)
611 {
612 struct arm_pmu *armpmu = to_arm_pmu(pmu);
613 armpmu->stop();
614 }
615
616 static void __init armpmu_init(struct arm_pmu *armpmu)
617 {
618 atomic_set(&armpmu->active_events, 0);
619 mutex_init(&armpmu->reserve_mutex);
620
621 armpmu->pmu = (struct pmu) {
622 .pmu_enable = armpmu_enable,
623 .pmu_disable = armpmu_disable,
624 .event_init = armpmu_event_init,
625 .add = armpmu_add,
626 .del = armpmu_del,
627 .start = armpmu_start,
628 .stop = armpmu_stop,
629 .read = armpmu_read,
630 };
631 }
632
633 int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
634 {
635 armpmu_init(armpmu);
636 return perf_pmu_register(&armpmu->pmu, name, type);
637 }
638
639 /*
640 * ARMv8 PMUv3 Performance Events handling code.
641 * Common event types.
642 */
643 enum armv8_pmuv3_perf_types {
644 /* Required events. */
645 ARMV8_PMUV3_PERFCTR_PMNC_SW_INCR = 0x00,
646 ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL = 0x03,
647 ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS = 0x04,
648 ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED = 0x10,
649 ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES = 0x11,
650 ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED = 0x12,
651
652 /* At least one of the following is required. */
653 ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED = 0x08,
654 ARMV8_PMUV3_PERFCTR_OP_SPEC = 0x1B,
655
656 /* Common architectural events. */
657 ARMV8_PMUV3_PERFCTR_MEM_READ = 0x06,
658 ARMV8_PMUV3_PERFCTR_MEM_WRITE = 0x07,
659 ARMV8_PMUV3_PERFCTR_EXC_TAKEN = 0x09,
660 ARMV8_PMUV3_PERFCTR_EXC_EXECUTED = 0x0A,
661 ARMV8_PMUV3_PERFCTR_CID_WRITE = 0x0B,
662 ARMV8_PMUV3_PERFCTR_PC_WRITE = 0x0C,
663 ARMV8_PMUV3_PERFCTR_PC_IMM_BRANCH = 0x0D,
664 ARMV8_PMUV3_PERFCTR_PC_PROC_RETURN = 0x0E,
665 ARMV8_PMUV3_PERFCTR_MEM_UNALIGNED_ACCESS = 0x0F,
666 ARMV8_PMUV3_PERFCTR_TTBR_WRITE = 0x1C,
667
668 /* Common microarchitectural events. */
669 ARMV8_PMUV3_PERFCTR_L1_ICACHE_REFILL = 0x01,
670 ARMV8_PMUV3_PERFCTR_ITLB_REFILL = 0x02,
671 ARMV8_PMUV3_PERFCTR_DTLB_REFILL = 0x05,
672 ARMV8_PMUV3_PERFCTR_MEM_ACCESS = 0x13,
673 ARMV8_PMUV3_PERFCTR_L1_ICACHE_ACCESS = 0x14,
674 ARMV8_PMUV3_PERFCTR_L1_DCACHE_WB = 0x15,
675 ARMV8_PMUV3_PERFCTR_L2_CACHE_ACCESS = 0x16,
676 ARMV8_PMUV3_PERFCTR_L2_CACHE_REFILL = 0x17,
677 ARMV8_PMUV3_PERFCTR_L2_CACHE_WB = 0x18,
678 ARMV8_PMUV3_PERFCTR_BUS_ACCESS = 0x19,
679 ARMV8_PMUV3_PERFCTR_MEM_ERROR = 0x1A,
680 ARMV8_PMUV3_PERFCTR_BUS_CYCLES = 0x1D,
681 };
682
683 /* PMUv3 HW events mapping. */
684 static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
685 [PERF_COUNT_HW_CPU_CYCLES] = ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES,
686 [PERF_COUNT_HW_INSTRUCTIONS] = ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED,
687 [PERF_COUNT_HW_CACHE_REFERENCES] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
688 [PERF_COUNT_HW_CACHE_MISSES] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
689 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = HW_OP_UNSUPPORTED,
690 [PERF_COUNT_HW_BRANCH_MISSES] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
691 [PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED,
692 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = HW_OP_UNSUPPORTED,
693 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = HW_OP_UNSUPPORTED,
694 };
695
696 static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
697 [PERF_COUNT_HW_CACHE_OP_MAX]
698 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
699 [C(L1D)] = {
700 [C(OP_READ)] = {
701 [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
702 [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
703 },
704 [C(OP_WRITE)] = {
705 [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
706 [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
707 },
708 [C(OP_PREFETCH)] = {
709 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
710 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
711 },
712 },
713 [C(L1I)] = {
714 [C(OP_READ)] = {
715 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
716 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
717 },
718 [C(OP_WRITE)] = {
719 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
720 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
721 },
722 [C(OP_PREFETCH)] = {
723 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
724 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
725 },
726 },
727 [C(LL)] = {
728 [C(OP_READ)] = {
729 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
730 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
731 },
732 [C(OP_WRITE)] = {
733 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
734 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
735 },
736 [C(OP_PREFETCH)] = {
737 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
738 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
739 },
740 },
741 [C(DTLB)] = {
742 [C(OP_READ)] = {
743 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
744 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
745 },
746 [C(OP_WRITE)] = {
747 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
748 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
749 },
750 [C(OP_PREFETCH)] = {
751 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
752 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
753 },
754 },
755 [C(ITLB)] = {
756 [C(OP_READ)] = {
757 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
758 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
759 },
760 [C(OP_WRITE)] = {
761 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
762 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
763 },
764 [C(OP_PREFETCH)] = {
765 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
766 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
767 },
768 },
769 [C(BPU)] = {
770 [C(OP_READ)] = {
771 [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
772 [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
773 },
774 [C(OP_WRITE)] = {
775 [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
776 [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
777 },
778 [C(OP_PREFETCH)] = {
779 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
780 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
781 },
782 },
783 [C(NODE)] = {
784 [C(OP_READ)] = {
785 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
786 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
787 },
788 [C(OP_WRITE)] = {
789 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
790 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
791 },
792 [C(OP_PREFETCH)] = {
793 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
794 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
795 },
796 },
797 };
798
799 /*
800 * Perf Events' indices
801 */
802 #define ARMV8_IDX_CYCLE_COUNTER 0
803 #define ARMV8_IDX_COUNTER0 1
804 #define ARMV8_IDX_COUNTER_LAST (ARMV8_IDX_CYCLE_COUNTER + cpu_pmu->num_events - 1)
805
806 #define ARMV8_MAX_COUNTERS 32
807 #define ARMV8_COUNTER_MASK (ARMV8_MAX_COUNTERS - 1)
808
809 /*
810 * ARMv8 low level PMU access
811 */
812
813 /*
814 * Perf Event to low level counters mapping
815 */
816 #define ARMV8_IDX_TO_COUNTER(x) \
817 (((x) - ARMV8_IDX_COUNTER0) & ARMV8_COUNTER_MASK)
818
819 /*
820 * Per-CPU PMCR: config reg
821 */
822 #define ARMV8_PMCR_E (1 << 0) /* Enable all counters */
823 #define ARMV8_PMCR_P (1 << 1) /* Reset all counters */
824 #define ARMV8_PMCR_C (1 << 2) /* Cycle counter reset */
825 #define ARMV8_PMCR_D (1 << 3) /* CCNT counts every 64th cpu cycle */
826 #define ARMV8_PMCR_X (1 << 4) /* Export to ETM */
827 #define ARMV8_PMCR_DP (1 << 5) /* Disable CCNT if non-invasive debug*/
828 #define ARMV8_PMCR_N_SHIFT 11 /* Number of counters supported */
829 #define ARMV8_PMCR_N_MASK 0x1f
830 #define ARMV8_PMCR_MASK 0x3f /* Mask for writable bits */
831
832 /*
833 * PMOVSR: counters overflow flag status reg
834 */
835 #define ARMV8_OVSR_MASK 0xffffffff /* Mask for writable bits */
836 #define ARMV8_OVERFLOWED_MASK ARMV8_OVSR_MASK
837
838 /*
839 * PMXEVTYPER: Event selection reg
840 */
841 #define ARMV8_EVTYPE_MASK 0xc80003ff /* Mask for writable bits */
842 #define ARMV8_EVTYPE_EVENT 0x3ff /* Mask for EVENT bits */
843
844 /*
845 * Event filters for PMUv3
846 */
847 #define ARMV8_EXCLUDE_EL1 (1 << 31)
848 #define ARMV8_EXCLUDE_EL0 (1 << 30)
849 #define ARMV8_INCLUDE_EL2 (1 << 27)
850
851 static inline u32 armv8pmu_pmcr_read(void)
852 {
853 u32 val;
854 asm volatile("mrs %0, pmcr_el0" : "=r" (val));
855 return val;
856 }
857
858 static inline void armv8pmu_pmcr_write(u32 val)
859 {
860 val &= ARMV8_PMCR_MASK;
861 isb();
862 asm volatile("msr pmcr_el0, %0" :: "r" (val));
863 }
864
865 static inline int armv8pmu_has_overflowed(u32 pmovsr)
866 {
867 return pmovsr & ARMV8_OVERFLOWED_MASK;
868 }
869
870 static inline int armv8pmu_counter_valid(int idx)
871 {
872 return idx >= ARMV8_IDX_CYCLE_COUNTER && idx <= ARMV8_IDX_COUNTER_LAST;
873 }
874
875 static inline int armv8pmu_counter_has_overflowed(u32 pmnc, int idx)
876 {
877 int ret = 0;
878 u32 counter;
879
880 if (!armv8pmu_counter_valid(idx)) {
881 pr_err("CPU%u checking wrong counter %d overflow status\n",
882 smp_processor_id(), idx);
883 } else {
884 counter = ARMV8_IDX_TO_COUNTER(idx);
885 ret = pmnc & BIT(counter);
886 }
887
888 return ret;
889 }
890
891 static inline int armv8pmu_select_counter(int idx)
892 {
893 u32 counter;
894
895 if (!armv8pmu_counter_valid(idx)) {
896 pr_err("CPU%u selecting wrong PMNC counter %d\n",
897 smp_processor_id(), idx);
898 return -EINVAL;
899 }
900
901 counter = ARMV8_IDX_TO_COUNTER(idx);
902 asm volatile("msr pmselr_el0, %0" :: "r" (counter));
903 isb();
904
905 return idx;
906 }
907
908 static inline u32 armv8pmu_read_counter(int idx)
909 {
910 u32 value = 0;
911
912 if (!armv8pmu_counter_valid(idx))
913 pr_err("CPU%u reading wrong counter %d\n",
914 smp_processor_id(), idx);
915 else if (idx == ARMV8_IDX_CYCLE_COUNTER)
916 asm volatile("mrs %0, pmccntr_el0" : "=r" (value));
917 else if (armv8pmu_select_counter(idx) == idx)
918 asm volatile("mrs %0, pmxevcntr_el0" : "=r" (value));
919
920 return value;
921 }
922
923 static inline void armv8pmu_write_counter(int idx, u32 value)
924 {
925 if (!armv8pmu_counter_valid(idx))
926 pr_err("CPU%u writing wrong counter %d\n",
927 smp_processor_id(), idx);
928 else if (idx == ARMV8_IDX_CYCLE_COUNTER)
929 asm volatile("msr pmccntr_el0, %0" :: "r" (value));
930 else if (armv8pmu_select_counter(idx) == idx)
931 asm volatile("msr pmxevcntr_el0, %0" :: "r" (value));
932 }
933
934 static inline void armv8pmu_write_evtype(int idx, u32 val)
935 {
936 if (armv8pmu_select_counter(idx) == idx) {
937 val &= ARMV8_EVTYPE_MASK;
938 asm volatile("msr pmxevtyper_el0, %0" :: "r" (val));
939 }
940 }
941
942 static inline int armv8pmu_enable_counter(int idx)
943 {
944 u32 counter;
945
946 if (!armv8pmu_counter_valid(idx)) {
947 pr_err("CPU%u enabling wrong PMNC counter %d\n",
948 smp_processor_id(), idx);
949 return -EINVAL;
950 }
951
952 counter = ARMV8_IDX_TO_COUNTER(idx);
953 asm volatile("msr pmcntenset_el0, %0" :: "r" (BIT(counter)));
954 return idx;
955 }
956
957 static inline int armv8pmu_disable_counter(int idx)
958 {
959 u32 counter;
960
961 if (!armv8pmu_counter_valid(idx)) {
962 pr_err("CPU%u disabling wrong PMNC counter %d\n",
963 smp_processor_id(), idx);
964 return -EINVAL;
965 }
966
967 counter = ARMV8_IDX_TO_COUNTER(idx);
968 asm volatile("msr pmcntenclr_el0, %0" :: "r" (BIT(counter)));
969 return idx;
970 }
971
972 static inline int armv8pmu_enable_intens(int idx)
973 {
974 u32 counter;
975
976 if (!armv8pmu_counter_valid(idx)) {
977 pr_err("CPU%u enabling wrong PMNC counter IRQ enable %d\n",
978 smp_processor_id(), idx);
979 return -EINVAL;
980 }
981
982 counter = ARMV8_IDX_TO_COUNTER(idx);
983 asm volatile("msr pmintenset_el1, %0" :: "r" (BIT(counter)));
984 return idx;
985 }
986
987 static inline int armv8pmu_disable_intens(int idx)
988 {
989 u32 counter;
990
991 if (!armv8pmu_counter_valid(idx)) {
992 pr_err("CPU%u disabling wrong PMNC counter IRQ enable %d\n",
993 smp_processor_id(), idx);
994 return -EINVAL;
995 }
996
997 counter = ARMV8_IDX_TO_COUNTER(idx);
998 asm volatile("msr pmintenclr_el1, %0" :: "r" (BIT(counter)));
999 isb();
1000 /* Clear the overflow flag in case an interrupt is pending. */
1001 asm volatile("msr pmovsclr_el0, %0" :: "r" (BIT(counter)));
1002 isb();
1003 return idx;
1004 }
1005
1006 static inline u32 armv8pmu_getreset_flags(void)
1007 {
1008 u32 value;
1009
1010 /* Read */
1011 asm volatile("mrs %0, pmovsclr_el0" : "=r" (value));
1012
1013 /* Write to clear flags */
1014 value &= ARMV8_OVSR_MASK;
1015 asm volatile("msr pmovsclr_el0, %0" :: "r" (value));
1016
1017 return value;
1018 }
1019
1020 static void armv8pmu_enable_event(struct hw_perf_event *hwc, int idx)
1021 {
1022 unsigned long flags;
1023 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1024
1025 /*
1026 * Enable counter and interrupt, and set the counter to count
1027 * the event that we're interested in.
1028 */
1029 raw_spin_lock_irqsave(&events->pmu_lock, flags);
1030
1031 /*
1032 * Disable counter
1033 */
1034 armv8pmu_disable_counter(idx);
1035
1036 /*
1037 * Set event (if destined for PMNx counters).
1038 */
1039 armv8pmu_write_evtype(idx, hwc->config_base);
1040
1041 /*
1042 * Enable interrupt for this counter
1043 */
1044 armv8pmu_enable_intens(idx);
1045
1046 /*
1047 * Enable counter
1048 */
1049 armv8pmu_enable_counter(idx);
1050
1051 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1052 }
1053
1054 static void armv8pmu_disable_event(struct hw_perf_event *hwc, int idx)
1055 {
1056 unsigned long flags;
1057 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1058
1059 /*
1060 * Disable counter and interrupt
1061 */
1062 raw_spin_lock_irqsave(&events->pmu_lock, flags);
1063
1064 /*
1065 * Disable counter
1066 */
1067 armv8pmu_disable_counter(idx);
1068
1069 /*
1070 * Disable interrupt for this counter
1071 */
1072 armv8pmu_disable_intens(idx);
1073
1074 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1075 }
1076
1077 static irqreturn_t armv8pmu_handle_irq(int irq_num, void *dev)
1078 {
1079 u32 pmovsr;
1080 struct perf_sample_data data;
1081 struct pmu_hw_events *cpuc;
1082 struct pt_regs *regs;
1083 int idx;
1084
1085 /*
1086 * Get and reset the IRQ flags
1087 */
1088 pmovsr = armv8pmu_getreset_flags();
1089
1090 /*
1091 * Did an overflow occur?
1092 */
1093 if (!armv8pmu_has_overflowed(pmovsr))
1094 return IRQ_NONE;
1095
1096 /*
1097 * Handle the counter(s) overflow(s)
1098 */
1099 regs = get_irq_regs();
1100
1101 cpuc = this_cpu_ptr(&cpu_hw_events);
1102 for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
1103 struct perf_event *event = cpuc->events[idx];
1104 struct hw_perf_event *hwc;
1105
1106 /* Ignore if we don't have an event. */
1107 if (!event)
1108 continue;
1109
1110 /*
1111 * We have a single interrupt for all counters. Check that
1112 * each counter has overflowed before we process it.
1113 */
1114 if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
1115 continue;
1116
1117 hwc = &event->hw;
1118 armpmu_event_update(event, hwc, idx);
1119 perf_sample_data_init(&data, 0, hwc->last_period);
1120 if (!armpmu_event_set_period(event, hwc, idx))
1121 continue;
1122
1123 if (perf_event_overflow(event, &data, regs))
1124 cpu_pmu->disable(hwc, idx);
1125 }
1126
1127 /*
1128 * Handle the pending perf events.
1129 *
1130 * Note: this call *must* be run with interrupts disabled. For
1131 * platforms that can have the PMU interrupts raised as an NMI, this
1132 * will not work.
1133 */
1134 irq_work_run();
1135
1136 return IRQ_HANDLED;
1137 }
1138
1139 static void armv8pmu_start(void)
1140 {
1141 unsigned long flags;
1142 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1143
1144 raw_spin_lock_irqsave(&events->pmu_lock, flags);
1145 /* Enable all counters */
1146 armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMCR_E);
1147 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1148 }
1149
1150 static void armv8pmu_stop(void)
1151 {
1152 unsigned long flags;
1153 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1154
1155 raw_spin_lock_irqsave(&events->pmu_lock, flags);
1156 /* Disable all counters */
1157 armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMCR_E);
1158 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1159 }
1160
1161 static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
1162 struct hw_perf_event *event)
1163 {
1164 int idx;
1165 unsigned long evtype = event->config_base & ARMV8_EVTYPE_EVENT;
1166
1167 /* Always place a cycle counter into the cycle counter. */
1168 if (evtype == ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES) {
1169 if (test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))
1170 return -EAGAIN;
1171
1172 return ARMV8_IDX_CYCLE_COUNTER;
1173 }
1174
1175 /*
1176 * For anything other than a cycle counter, try and use
1177 * the events counters
1178 */
1179 for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; ++idx) {
1180 if (!test_and_set_bit(idx, cpuc->used_mask))
1181 return idx;
1182 }
1183
1184 /* The counters are all in use. */
1185 return -EAGAIN;
1186 }
1187
1188 /*
1189 * Add an event filter to a given event. This will only work for PMUv2 PMUs.
1190 */
1191 static int armv8pmu_set_event_filter(struct hw_perf_event *event,
1192 struct perf_event_attr *attr)
1193 {
1194 unsigned long config_base = 0;
1195
1196 if (attr->exclude_idle)
1197 return -EPERM;
1198 if (attr->exclude_user)
1199 config_base |= ARMV8_EXCLUDE_EL0;
1200 if (attr->exclude_kernel)
1201 config_base |= ARMV8_EXCLUDE_EL1;
1202 if (!attr->exclude_hv)
1203 config_base |= ARMV8_INCLUDE_EL2;
1204
1205 /*
1206 * Install the filter into config_base as this is used to
1207 * construct the event type.
1208 */
1209 event->config_base = config_base;
1210
1211 return 0;
1212 }
1213
1214 static void armv8pmu_reset(void *info)
1215 {
1216 u32 idx, nb_cnt = cpu_pmu->num_events;
1217
1218 /* The counter and interrupt enable registers are unknown at reset. */
1219 for (idx = ARMV8_IDX_CYCLE_COUNTER; idx < nb_cnt; ++idx)
1220 armv8pmu_disable_event(NULL, idx);
1221
1222 /* Initialize & Reset PMNC: C and P bits. */
1223 armv8pmu_pmcr_write(ARMV8_PMCR_P | ARMV8_PMCR_C);
1224
1225 /* Disable access from userspace. */
1226 asm volatile("msr pmuserenr_el0, %0" :: "r" (0));
1227 }
1228
1229 static int armv8_pmuv3_map_event(struct perf_event *event)
1230 {
1231 return map_cpu_event(event, &armv8_pmuv3_perf_map,
1232 &armv8_pmuv3_perf_cache_map,
1233 ARMV8_EVTYPE_EVENT);
1234 }
1235
1236 static struct arm_pmu armv8pmu = {
1237 .handle_irq = armv8pmu_handle_irq,
1238 .enable = armv8pmu_enable_event,
1239 .disable = armv8pmu_disable_event,
1240 .read_counter = armv8pmu_read_counter,
1241 .write_counter = armv8pmu_write_counter,
1242 .get_event_idx = armv8pmu_get_event_idx,
1243 .start = armv8pmu_start,
1244 .stop = armv8pmu_stop,
1245 .reset = armv8pmu_reset,
1246 .max_period = (1LLU << 32) - 1,
1247 };
1248
1249 static u32 __init armv8pmu_read_num_pmnc_events(void)
1250 {
1251 u32 nb_cnt;
1252
1253 /* Read the nb of CNTx counters supported from PMNC */
1254 nb_cnt = (armv8pmu_pmcr_read() >> ARMV8_PMCR_N_SHIFT) & ARMV8_PMCR_N_MASK;
1255
1256 /* Add the CPU cycles counter and return */
1257 return nb_cnt + 1;
1258 }
1259
1260 static struct arm_pmu *__init armv8_pmuv3_pmu_init(void)
1261 {
1262 armv8pmu.name = "arm/armv8-pmuv3";
1263 armv8pmu.map_event = armv8_pmuv3_map_event;
1264 armv8pmu.num_events = armv8pmu_read_num_pmnc_events();
1265 armv8pmu.set_event_filter = armv8pmu_set_event_filter;
1266 return &armv8pmu;
1267 }
1268
1269 /*
1270 * Ensure the PMU has sane values out of reset.
1271 * This requires SMP to be available, so exists as a separate initcall.
1272 */
1273 static int __init
1274 cpu_pmu_reset(void)
1275 {
1276 if (cpu_pmu && cpu_pmu->reset)
1277 return on_each_cpu(cpu_pmu->reset, NULL, 1);
1278 return 0;
1279 }
1280 arch_initcall(cpu_pmu_reset);
1281
1282 /*
1283 * PMU platform driver and devicetree bindings.
1284 */
1285 static const struct of_device_id armpmu_of_device_ids[] = {
1286 {.compatible = "arm,armv8-pmuv3"},
1287 {},
1288 };
1289
1290 static int armpmu_device_probe(struct platform_device *pdev)
1291 {
1292 if (!cpu_pmu)
1293 return -ENODEV;
1294
1295 cpu_pmu->plat_device = pdev;
1296 return 0;
1297 }
1298
1299 static struct platform_driver armpmu_driver = {
1300 .driver = {
1301 .name = "arm-pmu",
1302 .of_match_table = armpmu_of_device_ids,
1303 },
1304 .probe = armpmu_device_probe,
1305 };
1306
1307 static int __init register_pmu_driver(void)
1308 {
1309 return platform_driver_register(&armpmu_driver);
1310 }
1311 device_initcall(register_pmu_driver);
1312
1313 static struct pmu_hw_events *armpmu_get_cpu_events(void)
1314 {
1315 return this_cpu_ptr(&cpu_hw_events);
1316 }
1317
1318 static void __init cpu_pmu_init(struct arm_pmu *armpmu)
1319 {
1320 int cpu;
1321 for_each_possible_cpu(cpu) {
1322 struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
1323 events->events = per_cpu(hw_events, cpu);
1324 events->used_mask = per_cpu(used_mask, cpu);
1325 raw_spin_lock_init(&events->pmu_lock);
1326 }
1327 armpmu->get_hw_events = armpmu_get_cpu_events;
1328 }
1329
1330 static int __init init_hw_perf_events(void)
1331 {
1332 u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
1333
1334 switch ((dfr >> 8) & 0xf) {
1335 case 0x1: /* PMUv3 */
1336 cpu_pmu = armv8_pmuv3_pmu_init();
1337 break;
1338 }
1339
1340 if (cpu_pmu) {
1341 pr_info("enabled with %s PMU driver, %d counters available\n",
1342 cpu_pmu->name, cpu_pmu->num_events);
1343 cpu_pmu_init(cpu_pmu);
1344 armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
1345 } else {
1346 pr_info("no hardware support available\n");
1347 }
1348
1349 return 0;
1350 }
1351 early_initcall(init_hw_perf_events);
1352
1353 /*
1354 * Callchain handling code.
1355 */
1356 struct frame_tail {
1357 struct frame_tail __user *fp;
1358 unsigned long lr;
1359 } __attribute__((packed));
1360
1361 /*
1362 * Get the return address for a single stackframe and return a pointer to the
1363 * next frame tail.
1364 */
1365 static struct frame_tail __user *
1366 user_backtrace(struct frame_tail __user *tail,
1367 struct perf_callchain_entry *entry)
1368 {
1369 struct frame_tail buftail;
1370 unsigned long err;
1371
1372 /* Also check accessibility of one struct frame_tail beyond */
1373 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
1374 return NULL;
1375
1376 pagefault_disable();
1377 err = __copy_from_user_inatomic(&buftail, tail, sizeof(buftail));
1378 pagefault_enable();
1379
1380 if (err)
1381 return NULL;
1382
1383 perf_callchain_store(entry, buftail.lr);
1384
1385 /*
1386 * Frame pointers should strictly progress back up the stack
1387 * (towards higher addresses).
1388 */
1389 if (tail >= buftail.fp)
1390 return NULL;
1391
1392 return buftail.fp;
1393 }
1394
1395 #ifdef CONFIG_COMPAT
1396 /*
1397 * The registers we're interested in are at the end of the variable
1398 * length saved register structure. The fp points at the end of this
1399 * structure so the address of this struct is:
1400 * (struct compat_frame_tail *)(xxx->fp)-1
1401 *
1402 * This code has been adapted from the ARM OProfile support.
1403 */
1404 struct compat_frame_tail {
1405 compat_uptr_t fp; /* a (struct compat_frame_tail *) in compat mode */
1406 u32 sp;
1407 u32 lr;
1408 } __attribute__((packed));
1409
1410 static struct compat_frame_tail __user *
1411 compat_user_backtrace(struct compat_frame_tail __user *tail,
1412 struct perf_callchain_entry *entry)
1413 {
1414 struct compat_frame_tail buftail;
1415 unsigned long err;
1416
1417 /* Also check accessibility of one struct frame_tail beyond */
1418 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
1419 return NULL;
1420
1421 pagefault_disable();
1422 err = __copy_from_user_inatomic(&buftail, tail, sizeof(buftail));
1423 pagefault_enable();
1424
1425 if (err)
1426 return NULL;
1427
1428 perf_callchain_store(entry, buftail.lr);
1429
1430 /*
1431 * Frame pointers should strictly progress back up the stack
1432 * (towards higher addresses).
1433 */
1434 if (tail + 1 >= (struct compat_frame_tail __user *)
1435 compat_ptr(buftail.fp))
1436 return NULL;
1437
1438 return (struct compat_frame_tail __user *)compat_ptr(buftail.fp) - 1;
1439 }
1440 #endif /* CONFIG_COMPAT */
1441
1442 void perf_callchain_user(struct perf_callchain_entry *entry,
1443 struct pt_regs *regs)
1444 {
1445 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1446 /* We don't support guest os callchain now */
1447 return;
1448 }
1449
1450 perf_callchain_store(entry, regs->pc);
1451
1452 if (!compat_user_mode(regs)) {
1453 /* AARCH64 mode */
1454 struct frame_tail __user *tail;
1455
1456 tail = (struct frame_tail __user *)regs->regs[29];
1457
1458 while (entry->nr < PERF_MAX_STACK_DEPTH &&
1459 tail && !((unsigned long)tail & 0xf))
1460 tail = user_backtrace(tail, entry);
1461 } else {
1462 #ifdef CONFIG_COMPAT
1463 /* AARCH32 compat mode */
1464 struct compat_frame_tail __user *tail;
1465
1466 tail = (struct compat_frame_tail __user *)regs->compat_fp - 1;
1467
1468 while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
1469 tail && !((unsigned long)tail & 0x3))
1470 tail = compat_user_backtrace(tail, entry);
1471 #endif
1472 }
1473 }
1474
1475 /*
1476 * Gets called by walk_stackframe() for every stackframe. This will be called
1477 * whist unwinding the stackframe and is like a subroutine return so we use
1478 * the PC.
1479 */
1480 static int callchain_trace(struct stackframe *frame, void *data)
1481 {
1482 struct perf_callchain_entry *entry = data;
1483 perf_callchain_store(entry, frame->pc);
1484 return 0;
1485 }
1486
1487 void perf_callchain_kernel(struct perf_callchain_entry *entry,
1488 struct pt_regs *regs)
1489 {
1490 struct stackframe frame;
1491
1492 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1493 /* We don't support guest os callchain now */
1494 return;
1495 }
1496
1497 frame.fp = regs->regs[29];
1498 frame.sp = regs->sp;
1499 frame.pc = regs->pc;
1500
1501 walk_stackframe(&frame, callchain_trace, entry);
1502 }
1503
1504 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1505 {
1506 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1507 return perf_guest_cbs->get_guest_ip();
1508
1509 return instruction_pointer(regs);
1510 }
1511
1512 unsigned long perf_misc_flags(struct pt_regs *regs)
1513 {
1514 int misc = 0;
1515
1516 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1517 if (perf_guest_cbs->is_user_mode())
1518 misc |= PERF_RECORD_MISC_GUEST_USER;
1519 else
1520 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1521 } else {
1522 if (user_mode(regs))
1523 misc |= PERF_RECORD_MISC_USER;
1524 else
1525 misc |= PERF_RECORD_MISC_KERNEL;
1526 }
1527
1528 return misc;
1529 }
This page took 0.065183 seconds and 5 git commands to generate.