Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[deliverable/linux.git] / arch / arm64 / kernel / probes / kprobes.c
1 /*
2 * arch/arm64/kernel/probes/kprobes.c
3 *
4 * Kprobes support for ARM64
5 *
6 * Copyright (C) 2013 Linaro Limited.
7 * Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 */
19 #include <linux/kasan.h>
20 #include <linux/kernel.h>
21 #include <linux/kprobes.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/stop_machine.h>
25 #include <linux/stringify.h>
26 #include <asm/traps.h>
27 #include <asm/ptrace.h>
28 #include <asm/cacheflush.h>
29 #include <asm/debug-monitors.h>
30 #include <asm/system_misc.h>
31 #include <asm/insn.h>
32 #include <asm/uaccess.h>
33 #include <asm/irq.h>
34 #include <asm-generic/sections.h>
35
36 #include "decode-insn.h"
37
38 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
39 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
40
41 static void __kprobes
42 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
43
44 static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
45 {
46 /* prepare insn slot */
47 p->ainsn.insn[0] = cpu_to_le32(p->opcode);
48
49 flush_icache_range((uintptr_t) (p->ainsn.insn),
50 (uintptr_t) (p->ainsn.insn) +
51 MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
52
53 /*
54 * Needs restoring of return address after stepping xol.
55 */
56 p->ainsn.restore = (unsigned long) p->addr +
57 sizeof(kprobe_opcode_t);
58 }
59
60 static void __kprobes arch_prepare_simulate(struct kprobe *p)
61 {
62 /* This instructions is not executed xol. No need to adjust the PC */
63 p->ainsn.restore = 0;
64 }
65
66 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
67 {
68 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
69
70 if (p->ainsn.handler)
71 p->ainsn.handler((u32)p->opcode, (long)p->addr, regs);
72
73 /* single step simulated, now go for post processing */
74 post_kprobe_handler(kcb, regs);
75 }
76
77 int __kprobes arch_prepare_kprobe(struct kprobe *p)
78 {
79 unsigned long probe_addr = (unsigned long)p->addr;
80 extern char __start_rodata[];
81 extern char __end_rodata[];
82
83 if (probe_addr & 0x3)
84 return -EINVAL;
85
86 /* copy instruction */
87 p->opcode = le32_to_cpu(*p->addr);
88
89 if (in_exception_text(probe_addr))
90 return -EINVAL;
91 if (probe_addr >= (unsigned long) __start_rodata &&
92 probe_addr <= (unsigned long) __end_rodata)
93 return -EINVAL;
94
95 /* decode instruction */
96 switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) {
97 case INSN_REJECTED: /* insn not supported */
98 return -EINVAL;
99
100 case INSN_GOOD_NO_SLOT: /* insn need simulation */
101 p->ainsn.insn = NULL;
102 break;
103
104 case INSN_GOOD: /* instruction uses slot */
105 p->ainsn.insn = get_insn_slot();
106 if (!p->ainsn.insn)
107 return -ENOMEM;
108 break;
109 };
110
111 /* prepare the instruction */
112 if (p->ainsn.insn)
113 arch_prepare_ss_slot(p);
114 else
115 arch_prepare_simulate(p);
116
117 return 0;
118 }
119
120 static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
121 {
122 void *addrs[1];
123 u32 insns[1];
124
125 addrs[0] = (void *)addr;
126 insns[0] = (u32)opcode;
127
128 return aarch64_insn_patch_text(addrs, insns, 1);
129 }
130
131 /* arm kprobe: install breakpoint in text */
132 void __kprobes arch_arm_kprobe(struct kprobe *p)
133 {
134 patch_text(p->addr, BRK64_OPCODE_KPROBES);
135 }
136
137 /* disarm kprobe: remove breakpoint from text */
138 void __kprobes arch_disarm_kprobe(struct kprobe *p)
139 {
140 patch_text(p->addr, p->opcode);
141 }
142
143 void __kprobes arch_remove_kprobe(struct kprobe *p)
144 {
145 if (p->ainsn.insn) {
146 free_insn_slot(p->ainsn.insn, 0);
147 p->ainsn.insn = NULL;
148 }
149 }
150
151 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
152 {
153 kcb->prev_kprobe.kp = kprobe_running();
154 kcb->prev_kprobe.status = kcb->kprobe_status;
155 }
156
157 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
158 {
159 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
160 kcb->kprobe_status = kcb->prev_kprobe.status;
161 }
162
163 static void __kprobes set_current_kprobe(struct kprobe *p)
164 {
165 __this_cpu_write(current_kprobe, p);
166 }
167
168 /*
169 * The D-flag (Debug mask) is set (masked) upon debug exception entry.
170 * Kprobes needs to clear (unmask) D-flag -ONLY- in case of recursive
171 * probe i.e. when probe hit from kprobe handler context upon
172 * executing the pre/post handlers. In this case we return with
173 * D-flag clear so that single-stepping can be carried-out.
174 *
175 * Leave D-flag set in all other cases.
176 */
177 static void __kprobes
178 spsr_set_debug_flag(struct pt_regs *regs, int mask)
179 {
180 unsigned long spsr = regs->pstate;
181
182 if (mask)
183 spsr |= PSR_D_BIT;
184 else
185 spsr &= ~PSR_D_BIT;
186
187 regs->pstate = spsr;
188 }
189
190 /*
191 * Interrupts need to be disabled before single-step mode is set, and not
192 * reenabled until after single-step mode ends.
193 * Without disabling interrupt on local CPU, there is a chance of
194 * interrupt occurrence in the period of exception return and start of
195 * out-of-line single-step, that result in wrongly single stepping
196 * into the interrupt handler.
197 */
198 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
199 struct pt_regs *regs)
200 {
201 kcb->saved_irqflag = regs->pstate;
202 regs->pstate |= PSR_I_BIT;
203 }
204
205 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
206 struct pt_regs *regs)
207 {
208 if (kcb->saved_irqflag & PSR_I_BIT)
209 regs->pstate |= PSR_I_BIT;
210 else
211 regs->pstate &= ~PSR_I_BIT;
212 }
213
214 static void __kprobes
215 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr)
216 {
217 kcb->ss_ctx.ss_pending = true;
218 kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t);
219 }
220
221 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
222 {
223 kcb->ss_ctx.ss_pending = false;
224 kcb->ss_ctx.match_addr = 0;
225 }
226
227 static void __kprobes setup_singlestep(struct kprobe *p,
228 struct pt_regs *regs,
229 struct kprobe_ctlblk *kcb, int reenter)
230 {
231 unsigned long slot;
232
233 if (reenter) {
234 save_previous_kprobe(kcb);
235 set_current_kprobe(p);
236 kcb->kprobe_status = KPROBE_REENTER;
237 } else {
238 kcb->kprobe_status = KPROBE_HIT_SS;
239 }
240
241
242 if (p->ainsn.insn) {
243 /* prepare for single stepping */
244 slot = (unsigned long)p->ainsn.insn;
245
246 set_ss_context(kcb, slot); /* mark pending ss */
247
248 if (kcb->kprobe_status == KPROBE_REENTER)
249 spsr_set_debug_flag(regs, 0);
250 else
251 WARN_ON(regs->pstate & PSR_D_BIT);
252
253 /* IRQs and single stepping do not mix well. */
254 kprobes_save_local_irqflag(kcb, regs);
255 kernel_enable_single_step(regs);
256 instruction_pointer_set(regs, slot);
257 } else {
258 /* insn simulation */
259 arch_simulate_insn(p, regs);
260 }
261 }
262
263 static int __kprobes reenter_kprobe(struct kprobe *p,
264 struct pt_regs *regs,
265 struct kprobe_ctlblk *kcb)
266 {
267 switch (kcb->kprobe_status) {
268 case KPROBE_HIT_SSDONE:
269 case KPROBE_HIT_ACTIVE:
270 kprobes_inc_nmissed_count(p);
271 setup_singlestep(p, regs, kcb, 1);
272 break;
273 case KPROBE_HIT_SS:
274 case KPROBE_REENTER:
275 pr_warn("Unrecoverable kprobe detected at %p.\n", p->addr);
276 dump_kprobe(p);
277 BUG();
278 break;
279 default:
280 WARN_ON(1);
281 return 0;
282 }
283
284 return 1;
285 }
286
287 static void __kprobes
288 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
289 {
290 struct kprobe *cur = kprobe_running();
291
292 if (!cur)
293 return;
294
295 /* return addr restore if non-branching insn */
296 if (cur->ainsn.restore != 0)
297 instruction_pointer_set(regs, cur->ainsn.restore);
298
299 /* restore back original saved kprobe variables and continue */
300 if (kcb->kprobe_status == KPROBE_REENTER) {
301 restore_previous_kprobe(kcb);
302 return;
303 }
304 /* call post handler */
305 kcb->kprobe_status = KPROBE_HIT_SSDONE;
306 if (cur->post_handler) {
307 /* post_handler can hit breakpoint and single step
308 * again, so we enable D-flag for recursive exception.
309 */
310 cur->post_handler(cur, regs, 0);
311 }
312
313 reset_current_kprobe();
314 }
315
316 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
317 {
318 struct kprobe *cur = kprobe_running();
319 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
320
321 switch (kcb->kprobe_status) {
322 case KPROBE_HIT_SS:
323 case KPROBE_REENTER:
324 /*
325 * We are here because the instruction being single
326 * stepped caused a page fault. We reset the current
327 * kprobe and the ip points back to the probe address
328 * and allow the page fault handler to continue as a
329 * normal page fault.
330 */
331 instruction_pointer_set(regs, (unsigned long) cur->addr);
332 if (!instruction_pointer(regs))
333 BUG();
334
335 kernel_disable_single_step();
336 if (kcb->kprobe_status == KPROBE_REENTER)
337 spsr_set_debug_flag(regs, 1);
338
339 if (kcb->kprobe_status == KPROBE_REENTER)
340 restore_previous_kprobe(kcb);
341 else
342 reset_current_kprobe();
343
344 break;
345 case KPROBE_HIT_ACTIVE:
346 case KPROBE_HIT_SSDONE:
347 /*
348 * We increment the nmissed count for accounting,
349 * we can also use npre/npostfault count for accounting
350 * these specific fault cases.
351 */
352 kprobes_inc_nmissed_count(cur);
353
354 /*
355 * We come here because instructions in the pre/post
356 * handler caused the page_fault, this could happen
357 * if handler tries to access user space by
358 * copy_from_user(), get_user() etc. Let the
359 * user-specified handler try to fix it first.
360 */
361 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
362 return 1;
363
364 /*
365 * In case the user-specified fault handler returned
366 * zero, try to fix up.
367 */
368 if (fixup_exception(regs))
369 return 1;
370 }
371 return 0;
372 }
373
374 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
375 unsigned long val, void *data)
376 {
377 return NOTIFY_DONE;
378 }
379
380 static void __kprobes kprobe_handler(struct pt_regs *regs)
381 {
382 struct kprobe *p, *cur_kprobe;
383 struct kprobe_ctlblk *kcb;
384 unsigned long addr = instruction_pointer(regs);
385
386 kcb = get_kprobe_ctlblk();
387 cur_kprobe = kprobe_running();
388
389 p = get_kprobe((kprobe_opcode_t *) addr);
390
391 if (p) {
392 if (cur_kprobe) {
393 if (reenter_kprobe(p, regs, kcb))
394 return;
395 } else {
396 /* Probe hit */
397 set_current_kprobe(p);
398 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
399
400 /*
401 * If we have no pre-handler or it returned 0, we
402 * continue with normal processing. If we have a
403 * pre-handler and it returned non-zero, it prepped
404 * for calling the break_handler below on re-entry,
405 * so get out doing nothing more here.
406 *
407 * pre_handler can hit a breakpoint and can step thru
408 * before return, keep PSTATE D-flag enabled until
409 * pre_handler return back.
410 */
411 if (!p->pre_handler || !p->pre_handler(p, regs)) {
412 setup_singlestep(p, regs, kcb, 0);
413 return;
414 }
415 }
416 } else if ((le32_to_cpu(*(kprobe_opcode_t *) addr) ==
417 BRK64_OPCODE_KPROBES) && cur_kprobe) {
418 /* We probably hit a jprobe. Call its break handler. */
419 if (cur_kprobe->break_handler &&
420 cur_kprobe->break_handler(cur_kprobe, regs)) {
421 setup_singlestep(cur_kprobe, regs, kcb, 0);
422 return;
423 }
424 }
425 /*
426 * The breakpoint instruction was removed right
427 * after we hit it. Another cpu has removed
428 * either a probepoint or a debugger breakpoint
429 * at this address. In either case, no further
430 * handling of this interrupt is appropriate.
431 * Return back to original instruction, and continue.
432 */
433 }
434
435 static int __kprobes
436 kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr)
437 {
438 if ((kcb->ss_ctx.ss_pending)
439 && (kcb->ss_ctx.match_addr == addr)) {
440 clear_ss_context(kcb); /* clear pending ss */
441 return DBG_HOOK_HANDLED;
442 }
443 /* not ours, kprobes should ignore it */
444 return DBG_HOOK_ERROR;
445 }
446
447 int __kprobes
448 kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr)
449 {
450 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
451 int retval;
452
453 /* return error if this is not our step */
454 retval = kprobe_ss_hit(kcb, instruction_pointer(regs));
455
456 if (retval == DBG_HOOK_HANDLED) {
457 kprobes_restore_local_irqflag(kcb, regs);
458 kernel_disable_single_step();
459
460 if (kcb->kprobe_status == KPROBE_REENTER)
461 spsr_set_debug_flag(regs, 1);
462
463 post_kprobe_handler(kcb, regs);
464 }
465
466 return retval;
467 }
468
469 int __kprobes
470 kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr)
471 {
472 kprobe_handler(regs);
473 return DBG_HOOK_HANDLED;
474 }
475
476 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
477 {
478 struct jprobe *jp = container_of(p, struct jprobe, kp);
479 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
480
481 kcb->jprobe_saved_regs = *regs;
482 /*
483 * Since we can't be sure where in the stack frame "stacked"
484 * pass-by-value arguments are stored we just don't try to
485 * duplicate any of the stack. Do not use jprobes on functions that
486 * use more than 64 bytes (after padding each to an 8 byte boundary)
487 * of arguments, or pass individual arguments larger than 16 bytes.
488 */
489
490 instruction_pointer_set(regs, (unsigned long) jp->entry);
491 preempt_disable();
492 pause_graph_tracing();
493 return 1;
494 }
495
496 void __kprobes jprobe_return(void)
497 {
498 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
499
500 /*
501 * Jprobe handler return by entering break exception,
502 * encoded same as kprobe, but with following conditions
503 * -a special PC to identify it from the other kprobes.
504 * -restore stack addr to original saved pt_regs
505 */
506 asm volatile(" mov sp, %0 \n"
507 "jprobe_return_break: brk %1 \n"
508 :
509 : "r" (kcb->jprobe_saved_regs.sp),
510 "I" (BRK64_ESR_KPROBES)
511 : "memory");
512
513 unreachable();
514 }
515
516 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
517 {
518 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
519 long stack_addr = kcb->jprobe_saved_regs.sp;
520 long orig_sp = kernel_stack_pointer(regs);
521 struct jprobe *jp = container_of(p, struct jprobe, kp);
522 extern const char jprobe_return_break[];
523
524 if (instruction_pointer(regs) != (u64) jprobe_return_break)
525 return 0;
526
527 if (orig_sp != stack_addr) {
528 struct pt_regs *saved_regs =
529 (struct pt_regs *)kcb->jprobe_saved_regs.sp;
530 pr_err("current sp %lx does not match saved sp %lx\n",
531 orig_sp, stack_addr);
532 pr_err("Saved registers for jprobe %p\n", jp);
533 show_regs(saved_regs);
534 pr_err("Current registers\n");
535 show_regs(regs);
536 BUG();
537 }
538 unpause_graph_tracing();
539 *regs = kcb->jprobe_saved_regs;
540 preempt_enable_no_resched();
541 return 1;
542 }
543
544 bool arch_within_kprobe_blacklist(unsigned long addr)
545 {
546 extern char __idmap_text_start[], __idmap_text_end[];
547 extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
548
549 if ((addr >= (unsigned long)__kprobes_text_start &&
550 addr < (unsigned long)__kprobes_text_end) ||
551 (addr >= (unsigned long)__entry_text_start &&
552 addr < (unsigned long)__entry_text_end) ||
553 (addr >= (unsigned long)__idmap_text_start &&
554 addr < (unsigned long)__idmap_text_end) ||
555 !!search_exception_tables(addr))
556 return true;
557
558 if (!is_kernel_in_hyp_mode()) {
559 if ((addr >= (unsigned long)__hyp_text_start &&
560 addr < (unsigned long)__hyp_text_end) ||
561 (addr >= (unsigned long)__hyp_idmap_text_start &&
562 addr < (unsigned long)__hyp_idmap_text_end))
563 return true;
564 }
565
566 return false;
567 }
568
569 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
570 {
571 struct kretprobe_instance *ri = NULL;
572 struct hlist_head *head, empty_rp;
573 struct hlist_node *tmp;
574 unsigned long flags, orig_ret_address = 0;
575 unsigned long trampoline_address =
576 (unsigned long)&kretprobe_trampoline;
577 kprobe_opcode_t *correct_ret_addr = NULL;
578
579 INIT_HLIST_HEAD(&empty_rp);
580 kretprobe_hash_lock(current, &head, &flags);
581
582 /*
583 * It is possible to have multiple instances associated with a given
584 * task either because multiple functions in the call path have
585 * return probes installed on them, and/or more than one
586 * return probe was registered for a target function.
587 *
588 * We can handle this because:
589 * - instances are always pushed into the head of the list
590 * - when multiple return probes are registered for the same
591 * function, the (chronologically) first instance's ret_addr
592 * will be the real return address, and all the rest will
593 * point to kretprobe_trampoline.
594 */
595 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
596 if (ri->task != current)
597 /* another task is sharing our hash bucket */
598 continue;
599
600 orig_ret_address = (unsigned long)ri->ret_addr;
601
602 if (orig_ret_address != trampoline_address)
603 /*
604 * This is the real return address. Any other
605 * instances associated with this task are for
606 * other calls deeper on the call stack
607 */
608 break;
609 }
610
611 kretprobe_assert(ri, orig_ret_address, trampoline_address);
612
613 correct_ret_addr = ri->ret_addr;
614 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
615 if (ri->task != current)
616 /* another task is sharing our hash bucket */
617 continue;
618
619 orig_ret_address = (unsigned long)ri->ret_addr;
620 if (ri->rp && ri->rp->handler) {
621 __this_cpu_write(current_kprobe, &ri->rp->kp);
622 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
623 ri->ret_addr = correct_ret_addr;
624 ri->rp->handler(ri, regs);
625 __this_cpu_write(current_kprobe, NULL);
626 }
627
628 recycle_rp_inst(ri, &empty_rp);
629
630 if (orig_ret_address != trampoline_address)
631 /*
632 * This is the real return address. Any other
633 * instances associated with this task are for
634 * other calls deeper on the call stack
635 */
636 break;
637 }
638
639 kretprobe_hash_unlock(current, &flags);
640
641 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
642 hlist_del(&ri->hlist);
643 kfree(ri);
644 }
645 return (void *)orig_ret_address;
646 }
647
648 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
649 struct pt_regs *regs)
650 {
651 ri->ret_addr = (kprobe_opcode_t *)regs->regs[30];
652
653 /* replace return addr (x30) with trampoline */
654 regs->regs[30] = (long)&kretprobe_trampoline;
655 }
656
657 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
658 {
659 return 0;
660 }
661
662 int __init arch_init_kprobes(void)
663 {
664 return 0;
665 }
This page took 0.064365 seconds and 6 git commands to generate.