Merge tag 'topic/drm-fixes-2015-11-11' of git://anongit.freedesktop.org/drm-intel...
[deliverable/linux.git] / arch / arm64 / kernel / smp.c
1 /*
2 * SMP initialisation and IPI support
3 * Based on arch/arm/kernel/smp.c
4 *
5 * Copyright (C) 2012 ARM Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/acpi.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/cache.h>
27 #include <linux/profile.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/err.h>
31 #include <linux/cpu.h>
32 #include <linux/smp.h>
33 #include <linux/seq_file.h>
34 #include <linux/irq.h>
35 #include <linux/percpu.h>
36 #include <linux/clockchips.h>
37 #include <linux/completion.h>
38 #include <linux/of.h>
39 #include <linux/irq_work.h>
40
41 #include <asm/alternative.h>
42 #include <asm/atomic.h>
43 #include <asm/cacheflush.h>
44 #include <asm/cpu.h>
45 #include <asm/cputype.h>
46 #include <asm/cpu_ops.h>
47 #include <asm/mmu_context.h>
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/processor.h>
51 #include <asm/smp_plat.h>
52 #include <asm/sections.h>
53 #include <asm/tlbflush.h>
54 #include <asm/ptrace.h>
55 #include <asm/virt.h>
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/ipi.h>
59
60 /*
61 * as from 2.5, kernels no longer have an init_tasks structure
62 * so we need some other way of telling a new secondary core
63 * where to place its SVC stack
64 */
65 struct secondary_data secondary_data;
66
67 enum ipi_msg_type {
68 IPI_RESCHEDULE,
69 IPI_CALL_FUNC,
70 IPI_CPU_STOP,
71 IPI_TIMER,
72 IPI_IRQ_WORK,
73 };
74
75 /*
76 * Boot a secondary CPU, and assign it the specified idle task.
77 * This also gives us the initial stack to use for this CPU.
78 */
79 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
80 {
81 if (cpu_ops[cpu]->cpu_boot)
82 return cpu_ops[cpu]->cpu_boot(cpu);
83
84 return -EOPNOTSUPP;
85 }
86
87 static DECLARE_COMPLETION(cpu_running);
88
89 int __cpu_up(unsigned int cpu, struct task_struct *idle)
90 {
91 int ret;
92
93 /*
94 * We need to tell the secondary core where to find its stack and the
95 * page tables.
96 */
97 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
98 __flush_dcache_area(&secondary_data, sizeof(secondary_data));
99
100 /*
101 * Now bring the CPU into our world.
102 */
103 ret = boot_secondary(cpu, idle);
104 if (ret == 0) {
105 /*
106 * CPU was successfully started, wait for it to come online or
107 * time out.
108 */
109 wait_for_completion_timeout(&cpu_running,
110 msecs_to_jiffies(1000));
111
112 if (!cpu_online(cpu)) {
113 pr_crit("CPU%u: failed to come online\n", cpu);
114 ret = -EIO;
115 }
116 } else {
117 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
118 }
119
120 secondary_data.stack = NULL;
121
122 return ret;
123 }
124
125 static void smp_store_cpu_info(unsigned int cpuid)
126 {
127 store_cpu_topology(cpuid);
128 }
129
130 /*
131 * This is the secondary CPU boot entry. We're using this CPUs
132 * idle thread stack, but a set of temporary page tables.
133 */
134 asmlinkage void secondary_start_kernel(void)
135 {
136 struct mm_struct *mm = &init_mm;
137 unsigned int cpu = smp_processor_id();
138
139 /*
140 * All kernel threads share the same mm context; grab a
141 * reference and switch to it.
142 */
143 atomic_inc(&mm->mm_count);
144 current->active_mm = mm;
145
146 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
147
148 /*
149 * TTBR0 is only used for the identity mapping at this stage. Make it
150 * point to zero page to avoid speculatively fetching new entries.
151 */
152 cpu_set_reserved_ttbr0();
153 local_flush_tlb_all();
154 cpu_set_default_tcr_t0sz();
155
156 preempt_disable();
157 trace_hardirqs_off();
158
159 /*
160 * If the system has established the capabilities, make sure
161 * this CPU ticks all of those. If it doesn't, the CPU will
162 * fail to come online.
163 */
164 verify_local_cpu_capabilities();
165
166 if (cpu_ops[cpu]->cpu_postboot)
167 cpu_ops[cpu]->cpu_postboot();
168
169 /*
170 * Log the CPU info before it is marked online and might get read.
171 */
172 cpuinfo_store_cpu();
173
174 /*
175 * Enable GIC and timers.
176 */
177 notify_cpu_starting(cpu);
178
179 smp_store_cpu_info(cpu);
180
181 /*
182 * OK, now it's safe to let the boot CPU continue. Wait for
183 * the CPU migration code to notice that the CPU is online
184 * before we continue.
185 */
186 pr_info("CPU%u: Booted secondary processor [%08x]\n",
187 cpu, read_cpuid_id());
188 set_cpu_online(cpu, true);
189 complete(&cpu_running);
190
191 local_dbg_enable();
192 local_irq_enable();
193 local_async_enable();
194
195 /*
196 * OK, it's off to the idle thread for us
197 */
198 cpu_startup_entry(CPUHP_ONLINE);
199 }
200
201 #ifdef CONFIG_HOTPLUG_CPU
202 static int op_cpu_disable(unsigned int cpu)
203 {
204 /*
205 * If we don't have a cpu_die method, abort before we reach the point
206 * of no return. CPU0 may not have an cpu_ops, so test for it.
207 */
208 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
209 return -EOPNOTSUPP;
210
211 /*
212 * We may need to abort a hot unplug for some other mechanism-specific
213 * reason.
214 */
215 if (cpu_ops[cpu]->cpu_disable)
216 return cpu_ops[cpu]->cpu_disable(cpu);
217
218 return 0;
219 }
220
221 /*
222 * __cpu_disable runs on the processor to be shutdown.
223 */
224 int __cpu_disable(void)
225 {
226 unsigned int cpu = smp_processor_id();
227 int ret;
228
229 ret = op_cpu_disable(cpu);
230 if (ret)
231 return ret;
232
233 /*
234 * Take this CPU offline. Once we clear this, we can't return,
235 * and we must not schedule until we're ready to give up the cpu.
236 */
237 set_cpu_online(cpu, false);
238
239 /*
240 * OK - migrate IRQs away from this CPU
241 */
242 irq_migrate_all_off_this_cpu();
243
244 return 0;
245 }
246
247 static int op_cpu_kill(unsigned int cpu)
248 {
249 /*
250 * If we have no means of synchronising with the dying CPU, then assume
251 * that it is really dead. We can only wait for an arbitrary length of
252 * time and hope that it's dead, so let's skip the wait and just hope.
253 */
254 if (!cpu_ops[cpu]->cpu_kill)
255 return 0;
256
257 return cpu_ops[cpu]->cpu_kill(cpu);
258 }
259
260 /*
261 * called on the thread which is asking for a CPU to be shutdown -
262 * waits until shutdown has completed, or it is timed out.
263 */
264 void __cpu_die(unsigned int cpu)
265 {
266 int err;
267
268 if (!cpu_wait_death(cpu, 5)) {
269 pr_crit("CPU%u: cpu didn't die\n", cpu);
270 return;
271 }
272 pr_notice("CPU%u: shutdown\n", cpu);
273
274 /*
275 * Now that the dying CPU is beyond the point of no return w.r.t.
276 * in-kernel synchronisation, try to get the firwmare to help us to
277 * verify that it has really left the kernel before we consider
278 * clobbering anything it might still be using.
279 */
280 err = op_cpu_kill(cpu);
281 if (err)
282 pr_warn("CPU%d may not have shut down cleanly: %d\n",
283 cpu, err);
284 }
285
286 /*
287 * Called from the idle thread for the CPU which has been shutdown.
288 *
289 * Note that we disable IRQs here, but do not re-enable them
290 * before returning to the caller. This is also the behaviour
291 * of the other hotplug-cpu capable cores, so presumably coming
292 * out of idle fixes this.
293 */
294 void cpu_die(void)
295 {
296 unsigned int cpu = smp_processor_id();
297
298 idle_task_exit();
299
300 local_irq_disable();
301
302 /* Tell __cpu_die() that this CPU is now safe to dispose of */
303 (void)cpu_report_death();
304
305 /*
306 * Actually shutdown the CPU. This must never fail. The specific hotplug
307 * mechanism must perform all required cache maintenance to ensure that
308 * no dirty lines are lost in the process of shutting down the CPU.
309 */
310 cpu_ops[cpu]->cpu_die(cpu);
311
312 BUG();
313 }
314 #endif
315
316 static void __init hyp_mode_check(void)
317 {
318 if (is_hyp_mode_available())
319 pr_info("CPU: All CPU(s) started at EL2\n");
320 else if (is_hyp_mode_mismatched())
321 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
322 "CPU: CPUs started in inconsistent modes");
323 else
324 pr_info("CPU: All CPU(s) started at EL1\n");
325 }
326
327 void __init smp_cpus_done(unsigned int max_cpus)
328 {
329 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
330 setup_cpu_features();
331 hyp_mode_check();
332 apply_alternatives_all();
333 }
334
335 void __init smp_prepare_boot_cpu(void)
336 {
337 cpuinfo_store_boot_cpu();
338 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
339 }
340
341 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
342 {
343 const __be32 *cell;
344 u64 hwid;
345
346 /*
347 * A cpu node with missing "reg" property is
348 * considered invalid to build a cpu_logical_map
349 * entry.
350 */
351 cell = of_get_property(dn, "reg", NULL);
352 if (!cell) {
353 pr_err("%s: missing reg property\n", dn->full_name);
354 return INVALID_HWID;
355 }
356
357 hwid = of_read_number(cell, of_n_addr_cells(dn));
358 /*
359 * Non affinity bits must be set to 0 in the DT
360 */
361 if (hwid & ~MPIDR_HWID_BITMASK) {
362 pr_err("%s: invalid reg property\n", dn->full_name);
363 return INVALID_HWID;
364 }
365 return hwid;
366 }
367
368 /*
369 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
370 * entries and check for duplicates. If any is found just ignore the
371 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
372 * matching valid MPIDR values.
373 */
374 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
375 {
376 unsigned int i;
377
378 for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
379 if (cpu_logical_map(i) == hwid)
380 return true;
381 return false;
382 }
383
384 /*
385 * Initialize cpu operations for a logical cpu and
386 * set it in the possible mask on success
387 */
388 static int __init smp_cpu_setup(int cpu)
389 {
390 if (cpu_read_ops(cpu))
391 return -ENODEV;
392
393 if (cpu_ops[cpu]->cpu_init(cpu))
394 return -ENODEV;
395
396 set_cpu_possible(cpu, true);
397
398 return 0;
399 }
400
401 static bool bootcpu_valid __initdata;
402 static unsigned int cpu_count = 1;
403
404 #ifdef CONFIG_ACPI
405 /*
406 * acpi_map_gic_cpu_interface - parse processor MADT entry
407 *
408 * Carry out sanity checks on MADT processor entry and initialize
409 * cpu_logical_map on success
410 */
411 static void __init
412 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
413 {
414 u64 hwid = processor->arm_mpidr;
415
416 if (!(processor->flags & ACPI_MADT_ENABLED)) {
417 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
418 return;
419 }
420
421 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
422 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
423 return;
424 }
425
426 if (is_mpidr_duplicate(cpu_count, hwid)) {
427 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
428 return;
429 }
430
431 /* Check if GICC structure of boot CPU is available in the MADT */
432 if (cpu_logical_map(0) == hwid) {
433 if (bootcpu_valid) {
434 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
435 hwid);
436 return;
437 }
438 bootcpu_valid = true;
439 return;
440 }
441
442 if (cpu_count >= NR_CPUS)
443 return;
444
445 /* map the logical cpu id to cpu MPIDR */
446 cpu_logical_map(cpu_count) = hwid;
447
448 cpu_count++;
449 }
450
451 static int __init
452 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
453 const unsigned long end)
454 {
455 struct acpi_madt_generic_interrupt *processor;
456
457 processor = (struct acpi_madt_generic_interrupt *)header;
458 if (BAD_MADT_GICC_ENTRY(processor, end))
459 return -EINVAL;
460
461 acpi_table_print_madt_entry(header);
462
463 acpi_map_gic_cpu_interface(processor);
464
465 return 0;
466 }
467 #else
468 #define acpi_table_parse_madt(...) do { } while (0)
469 #endif
470
471 /*
472 * Enumerate the possible CPU set from the device tree and build the
473 * cpu logical map array containing MPIDR values related to logical
474 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
475 */
476 static void __init of_parse_and_init_cpus(void)
477 {
478 struct device_node *dn = NULL;
479
480 while ((dn = of_find_node_by_type(dn, "cpu"))) {
481 u64 hwid = of_get_cpu_mpidr(dn);
482
483 if (hwid == INVALID_HWID)
484 goto next;
485
486 if (is_mpidr_duplicate(cpu_count, hwid)) {
487 pr_err("%s: duplicate cpu reg properties in the DT\n",
488 dn->full_name);
489 goto next;
490 }
491
492 /*
493 * The numbering scheme requires that the boot CPU
494 * must be assigned logical id 0. Record it so that
495 * the logical map built from DT is validated and can
496 * be used.
497 */
498 if (hwid == cpu_logical_map(0)) {
499 if (bootcpu_valid) {
500 pr_err("%s: duplicate boot cpu reg property in DT\n",
501 dn->full_name);
502 goto next;
503 }
504
505 bootcpu_valid = true;
506
507 /*
508 * cpu_logical_map has already been
509 * initialized and the boot cpu doesn't need
510 * the enable-method so continue without
511 * incrementing cpu.
512 */
513 continue;
514 }
515
516 if (cpu_count >= NR_CPUS)
517 goto next;
518
519 pr_debug("cpu logical map 0x%llx\n", hwid);
520 cpu_logical_map(cpu_count) = hwid;
521 next:
522 cpu_count++;
523 }
524 }
525
526 /*
527 * Enumerate the possible CPU set from the device tree or ACPI and build the
528 * cpu logical map array containing MPIDR values related to logical
529 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
530 */
531 void __init smp_init_cpus(void)
532 {
533 int i;
534
535 if (acpi_disabled)
536 of_parse_and_init_cpus();
537 else
538 /*
539 * do a walk of MADT to determine how many CPUs
540 * we have including disabled CPUs, and get information
541 * we need for SMP init
542 */
543 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
544 acpi_parse_gic_cpu_interface, 0);
545
546 if (cpu_count > NR_CPUS)
547 pr_warn("no. of cores (%d) greater than configured maximum of %d - clipping\n",
548 cpu_count, NR_CPUS);
549
550 if (!bootcpu_valid) {
551 pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
552 return;
553 }
554
555 /*
556 * We need to set the cpu_logical_map entries before enabling
557 * the cpus so that cpu processor description entries (DT cpu nodes
558 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
559 * with entries in cpu_logical_map while initializing the cpus.
560 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
561 */
562 for (i = 1; i < NR_CPUS; i++) {
563 if (cpu_logical_map(i) != INVALID_HWID) {
564 if (smp_cpu_setup(i))
565 cpu_logical_map(i) = INVALID_HWID;
566 }
567 }
568 }
569
570 void __init smp_prepare_cpus(unsigned int max_cpus)
571 {
572 int err;
573 unsigned int cpu, ncores = num_possible_cpus();
574
575 init_cpu_topology();
576
577 smp_store_cpu_info(smp_processor_id());
578
579 /*
580 * are we trying to boot more cores than exist?
581 */
582 if (max_cpus > ncores)
583 max_cpus = ncores;
584
585 /* Don't bother if we're effectively UP */
586 if (max_cpus <= 1)
587 return;
588
589 /*
590 * Initialise the present map (which describes the set of CPUs
591 * actually populated at the present time) and release the
592 * secondaries from the bootloader.
593 *
594 * Make sure we online at most (max_cpus - 1) additional CPUs.
595 */
596 max_cpus--;
597 for_each_possible_cpu(cpu) {
598 if (max_cpus == 0)
599 break;
600
601 if (cpu == smp_processor_id())
602 continue;
603
604 if (!cpu_ops[cpu])
605 continue;
606
607 err = cpu_ops[cpu]->cpu_prepare(cpu);
608 if (err)
609 continue;
610
611 set_cpu_present(cpu, true);
612 max_cpus--;
613 }
614 }
615
616 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
617
618 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
619 {
620 __smp_cross_call = fn;
621 }
622
623 static const char *ipi_types[NR_IPI] __tracepoint_string = {
624 #define S(x,s) [x] = s
625 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
626 S(IPI_CALL_FUNC, "Function call interrupts"),
627 S(IPI_CPU_STOP, "CPU stop interrupts"),
628 S(IPI_TIMER, "Timer broadcast interrupts"),
629 S(IPI_IRQ_WORK, "IRQ work interrupts"),
630 };
631
632 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
633 {
634 trace_ipi_raise(target, ipi_types[ipinr]);
635 __smp_cross_call(target, ipinr);
636 }
637
638 void show_ipi_list(struct seq_file *p, int prec)
639 {
640 unsigned int cpu, i;
641
642 for (i = 0; i < NR_IPI; i++) {
643 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
644 prec >= 4 ? " " : "");
645 for_each_online_cpu(cpu)
646 seq_printf(p, "%10u ",
647 __get_irq_stat(cpu, ipi_irqs[i]));
648 seq_printf(p, " %s\n", ipi_types[i]);
649 }
650 }
651
652 u64 smp_irq_stat_cpu(unsigned int cpu)
653 {
654 u64 sum = 0;
655 int i;
656
657 for (i = 0; i < NR_IPI; i++)
658 sum += __get_irq_stat(cpu, ipi_irqs[i]);
659
660 return sum;
661 }
662
663 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
664 {
665 smp_cross_call(mask, IPI_CALL_FUNC);
666 }
667
668 void arch_send_call_function_single_ipi(int cpu)
669 {
670 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
671 }
672
673 #ifdef CONFIG_IRQ_WORK
674 void arch_irq_work_raise(void)
675 {
676 if (__smp_cross_call)
677 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
678 }
679 #endif
680
681 static DEFINE_RAW_SPINLOCK(stop_lock);
682
683 /*
684 * ipi_cpu_stop - handle IPI from smp_send_stop()
685 */
686 static void ipi_cpu_stop(unsigned int cpu)
687 {
688 if (system_state == SYSTEM_BOOTING ||
689 system_state == SYSTEM_RUNNING) {
690 raw_spin_lock(&stop_lock);
691 pr_crit("CPU%u: stopping\n", cpu);
692 dump_stack();
693 raw_spin_unlock(&stop_lock);
694 }
695
696 set_cpu_online(cpu, false);
697
698 local_irq_disable();
699
700 while (1)
701 cpu_relax();
702 }
703
704 /*
705 * Main handler for inter-processor interrupts
706 */
707 void handle_IPI(int ipinr, struct pt_regs *regs)
708 {
709 unsigned int cpu = smp_processor_id();
710 struct pt_regs *old_regs = set_irq_regs(regs);
711
712 if ((unsigned)ipinr < NR_IPI) {
713 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
714 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
715 }
716
717 switch (ipinr) {
718 case IPI_RESCHEDULE:
719 scheduler_ipi();
720 break;
721
722 case IPI_CALL_FUNC:
723 irq_enter();
724 generic_smp_call_function_interrupt();
725 irq_exit();
726 break;
727
728 case IPI_CPU_STOP:
729 irq_enter();
730 ipi_cpu_stop(cpu);
731 irq_exit();
732 break;
733
734 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
735 case IPI_TIMER:
736 irq_enter();
737 tick_receive_broadcast();
738 irq_exit();
739 break;
740 #endif
741
742 #ifdef CONFIG_IRQ_WORK
743 case IPI_IRQ_WORK:
744 irq_enter();
745 irq_work_run();
746 irq_exit();
747 break;
748 #endif
749
750 default:
751 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
752 break;
753 }
754
755 if ((unsigned)ipinr < NR_IPI)
756 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
757 set_irq_regs(old_regs);
758 }
759
760 void smp_send_reschedule(int cpu)
761 {
762 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
763 }
764
765 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
766 void tick_broadcast(const struct cpumask *mask)
767 {
768 smp_cross_call(mask, IPI_TIMER);
769 }
770 #endif
771
772 void smp_send_stop(void)
773 {
774 unsigned long timeout;
775
776 if (num_online_cpus() > 1) {
777 cpumask_t mask;
778
779 cpumask_copy(&mask, cpu_online_mask);
780 cpumask_clear_cpu(smp_processor_id(), &mask);
781
782 smp_cross_call(&mask, IPI_CPU_STOP);
783 }
784
785 /* Wait up to one second for other CPUs to stop */
786 timeout = USEC_PER_SEC;
787 while (num_online_cpus() > 1 && timeout--)
788 udelay(1);
789
790 if (num_online_cpus() > 1)
791 pr_warning("SMP: failed to stop secondary CPUs\n");
792 }
793
794 /*
795 * not supported here
796 */
797 int setup_profiling_timer(unsigned int multiplier)
798 {
799 return -EINVAL;
800 }
This page took 0.125815 seconds and 5 git commands to generate.