Merge tag 'kvm-arm-for-4.3-rc2-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / arch / arm64 / kernel / smp.c
1 /*
2 * SMP initialisation and IPI support
3 * Based on arch/arm/kernel/smp.c
4 *
5 * Copyright (C) 2012 ARM Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/acpi.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/cache.h>
27 #include <linux/profile.h>
28 #include <linux/errno.h>
29 #include <linux/mm.h>
30 #include <linux/err.h>
31 #include <linux/cpu.h>
32 #include <linux/smp.h>
33 #include <linux/seq_file.h>
34 #include <linux/irq.h>
35 #include <linux/percpu.h>
36 #include <linux/clockchips.h>
37 #include <linux/completion.h>
38 #include <linux/of.h>
39 #include <linux/irq_work.h>
40
41 #include <asm/alternative.h>
42 #include <asm/atomic.h>
43 #include <asm/cacheflush.h>
44 #include <asm/cpu.h>
45 #include <asm/cputype.h>
46 #include <asm/cpu_ops.h>
47 #include <asm/mmu_context.h>
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/processor.h>
51 #include <asm/smp_plat.h>
52 #include <asm/sections.h>
53 #include <asm/tlbflush.h>
54 #include <asm/ptrace.h>
55 #include <asm/virt.h>
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/ipi.h>
59
60 /*
61 * as from 2.5, kernels no longer have an init_tasks structure
62 * so we need some other way of telling a new secondary core
63 * where to place its SVC stack
64 */
65 struct secondary_data secondary_data;
66
67 enum ipi_msg_type {
68 IPI_RESCHEDULE,
69 IPI_CALL_FUNC,
70 IPI_CPU_STOP,
71 IPI_TIMER,
72 IPI_IRQ_WORK,
73 };
74
75 /*
76 * Boot a secondary CPU, and assign it the specified idle task.
77 * This also gives us the initial stack to use for this CPU.
78 */
79 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
80 {
81 if (cpu_ops[cpu]->cpu_boot)
82 return cpu_ops[cpu]->cpu_boot(cpu);
83
84 return -EOPNOTSUPP;
85 }
86
87 static DECLARE_COMPLETION(cpu_running);
88
89 int __cpu_up(unsigned int cpu, struct task_struct *idle)
90 {
91 int ret;
92
93 /*
94 * We need to tell the secondary core where to find its stack and the
95 * page tables.
96 */
97 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
98 __flush_dcache_area(&secondary_data, sizeof(secondary_data));
99
100 /*
101 * Now bring the CPU into our world.
102 */
103 ret = boot_secondary(cpu, idle);
104 if (ret == 0) {
105 /*
106 * CPU was successfully started, wait for it to come online or
107 * time out.
108 */
109 wait_for_completion_timeout(&cpu_running,
110 msecs_to_jiffies(1000));
111
112 if (!cpu_online(cpu)) {
113 pr_crit("CPU%u: failed to come online\n", cpu);
114 ret = -EIO;
115 }
116 } else {
117 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
118 }
119
120 secondary_data.stack = NULL;
121
122 return ret;
123 }
124
125 static void smp_store_cpu_info(unsigned int cpuid)
126 {
127 store_cpu_topology(cpuid);
128 }
129
130 /*
131 * This is the secondary CPU boot entry. We're using this CPUs
132 * idle thread stack, but a set of temporary page tables.
133 */
134 asmlinkage void secondary_start_kernel(void)
135 {
136 struct mm_struct *mm = &init_mm;
137 unsigned int cpu = smp_processor_id();
138
139 /*
140 * All kernel threads share the same mm context; grab a
141 * reference and switch to it.
142 */
143 atomic_inc(&mm->mm_count);
144 current->active_mm = mm;
145 cpumask_set_cpu(cpu, mm_cpumask(mm));
146
147 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
148 printk("CPU%u: Booted secondary processor\n", cpu);
149
150 /*
151 * TTBR0 is only used for the identity mapping at this stage. Make it
152 * point to zero page to avoid speculatively fetching new entries.
153 */
154 cpu_set_reserved_ttbr0();
155 flush_tlb_all();
156 cpu_set_default_tcr_t0sz();
157
158 preempt_disable();
159 trace_hardirqs_off();
160
161 if (cpu_ops[cpu]->cpu_postboot)
162 cpu_ops[cpu]->cpu_postboot();
163
164 /*
165 * Log the CPU info before it is marked online and might get read.
166 */
167 cpuinfo_store_cpu();
168
169 /*
170 * Enable GIC and timers.
171 */
172 notify_cpu_starting(cpu);
173
174 smp_store_cpu_info(cpu);
175
176 /*
177 * OK, now it's safe to let the boot CPU continue. Wait for
178 * the CPU migration code to notice that the CPU is online
179 * before we continue.
180 */
181 set_cpu_online(cpu, true);
182 complete(&cpu_running);
183
184 local_dbg_enable();
185 local_irq_enable();
186 local_async_enable();
187
188 /*
189 * OK, it's off to the idle thread for us
190 */
191 cpu_startup_entry(CPUHP_ONLINE);
192 }
193
194 #ifdef CONFIG_HOTPLUG_CPU
195 static int op_cpu_disable(unsigned int cpu)
196 {
197 /*
198 * If we don't have a cpu_die method, abort before we reach the point
199 * of no return. CPU0 may not have an cpu_ops, so test for it.
200 */
201 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
202 return -EOPNOTSUPP;
203
204 /*
205 * We may need to abort a hot unplug for some other mechanism-specific
206 * reason.
207 */
208 if (cpu_ops[cpu]->cpu_disable)
209 return cpu_ops[cpu]->cpu_disable(cpu);
210
211 return 0;
212 }
213
214 /*
215 * __cpu_disable runs on the processor to be shutdown.
216 */
217 int __cpu_disable(void)
218 {
219 unsigned int cpu = smp_processor_id();
220 int ret;
221
222 ret = op_cpu_disable(cpu);
223 if (ret)
224 return ret;
225
226 /*
227 * Take this CPU offline. Once we clear this, we can't return,
228 * and we must not schedule until we're ready to give up the cpu.
229 */
230 set_cpu_online(cpu, false);
231
232 /*
233 * OK - migrate IRQs away from this CPU
234 */
235 migrate_irqs();
236
237 /*
238 * Remove this CPU from the vm mask set of all processes.
239 */
240 clear_tasks_mm_cpumask(cpu);
241
242 return 0;
243 }
244
245 static int op_cpu_kill(unsigned int cpu)
246 {
247 /*
248 * If we have no means of synchronising with the dying CPU, then assume
249 * that it is really dead. We can only wait for an arbitrary length of
250 * time and hope that it's dead, so let's skip the wait and just hope.
251 */
252 if (!cpu_ops[cpu]->cpu_kill)
253 return 0;
254
255 return cpu_ops[cpu]->cpu_kill(cpu);
256 }
257
258 /*
259 * called on the thread which is asking for a CPU to be shutdown -
260 * waits until shutdown has completed, or it is timed out.
261 */
262 void __cpu_die(unsigned int cpu)
263 {
264 int err;
265
266 if (!cpu_wait_death(cpu, 5)) {
267 pr_crit("CPU%u: cpu didn't die\n", cpu);
268 return;
269 }
270 pr_notice("CPU%u: shutdown\n", cpu);
271
272 /*
273 * Now that the dying CPU is beyond the point of no return w.r.t.
274 * in-kernel synchronisation, try to get the firwmare to help us to
275 * verify that it has really left the kernel before we consider
276 * clobbering anything it might still be using.
277 */
278 err = op_cpu_kill(cpu);
279 if (err)
280 pr_warn("CPU%d may not have shut down cleanly: %d\n",
281 cpu, err);
282 }
283
284 /*
285 * Called from the idle thread for the CPU which has been shutdown.
286 *
287 * Note that we disable IRQs here, but do not re-enable them
288 * before returning to the caller. This is also the behaviour
289 * of the other hotplug-cpu capable cores, so presumably coming
290 * out of idle fixes this.
291 */
292 void cpu_die(void)
293 {
294 unsigned int cpu = smp_processor_id();
295
296 idle_task_exit();
297
298 local_irq_disable();
299
300 /* Tell __cpu_die() that this CPU is now safe to dispose of */
301 (void)cpu_report_death();
302
303 /*
304 * Actually shutdown the CPU. This must never fail. The specific hotplug
305 * mechanism must perform all required cache maintenance to ensure that
306 * no dirty lines are lost in the process of shutting down the CPU.
307 */
308 cpu_ops[cpu]->cpu_die(cpu);
309
310 BUG();
311 }
312 #endif
313
314 static void __init hyp_mode_check(void)
315 {
316 if (is_hyp_mode_available())
317 pr_info("CPU: All CPU(s) started at EL2\n");
318 else if (is_hyp_mode_mismatched())
319 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
320 "CPU: CPUs started in inconsistent modes");
321 else
322 pr_info("CPU: All CPU(s) started at EL1\n");
323 }
324
325 void __init smp_cpus_done(unsigned int max_cpus)
326 {
327 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
328 hyp_mode_check();
329 apply_alternatives_all();
330 }
331
332 void __init smp_prepare_boot_cpu(void)
333 {
334 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
335 }
336
337 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
338 {
339 const __be32 *cell;
340 u64 hwid;
341
342 /*
343 * A cpu node with missing "reg" property is
344 * considered invalid to build a cpu_logical_map
345 * entry.
346 */
347 cell = of_get_property(dn, "reg", NULL);
348 if (!cell) {
349 pr_err("%s: missing reg property\n", dn->full_name);
350 return INVALID_HWID;
351 }
352
353 hwid = of_read_number(cell, of_n_addr_cells(dn));
354 /*
355 * Non affinity bits must be set to 0 in the DT
356 */
357 if (hwid & ~MPIDR_HWID_BITMASK) {
358 pr_err("%s: invalid reg property\n", dn->full_name);
359 return INVALID_HWID;
360 }
361 return hwid;
362 }
363
364 /*
365 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
366 * entries and check for duplicates. If any is found just ignore the
367 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
368 * matching valid MPIDR values.
369 */
370 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
371 {
372 unsigned int i;
373
374 for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
375 if (cpu_logical_map(i) == hwid)
376 return true;
377 return false;
378 }
379
380 /*
381 * Initialize cpu operations for a logical cpu and
382 * set it in the possible mask on success
383 */
384 static int __init smp_cpu_setup(int cpu)
385 {
386 if (cpu_read_ops(cpu))
387 return -ENODEV;
388
389 if (cpu_ops[cpu]->cpu_init(cpu))
390 return -ENODEV;
391
392 set_cpu_possible(cpu, true);
393
394 return 0;
395 }
396
397 static bool bootcpu_valid __initdata;
398 static unsigned int cpu_count = 1;
399
400 #ifdef CONFIG_ACPI
401 /*
402 * acpi_map_gic_cpu_interface - parse processor MADT entry
403 *
404 * Carry out sanity checks on MADT processor entry and initialize
405 * cpu_logical_map on success
406 */
407 static void __init
408 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
409 {
410 u64 hwid = processor->arm_mpidr;
411
412 if (!(processor->flags & ACPI_MADT_ENABLED)) {
413 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
414 return;
415 }
416
417 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
418 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
419 return;
420 }
421
422 if (is_mpidr_duplicate(cpu_count, hwid)) {
423 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
424 return;
425 }
426
427 /* Check if GICC structure of boot CPU is available in the MADT */
428 if (cpu_logical_map(0) == hwid) {
429 if (bootcpu_valid) {
430 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
431 hwid);
432 return;
433 }
434 bootcpu_valid = true;
435 return;
436 }
437
438 if (cpu_count >= NR_CPUS)
439 return;
440
441 /* map the logical cpu id to cpu MPIDR */
442 cpu_logical_map(cpu_count) = hwid;
443
444 cpu_count++;
445 }
446
447 static int __init
448 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
449 const unsigned long end)
450 {
451 struct acpi_madt_generic_interrupt *processor;
452
453 processor = (struct acpi_madt_generic_interrupt *)header;
454 if (BAD_MADT_GICC_ENTRY(processor, end))
455 return -EINVAL;
456
457 acpi_table_print_madt_entry(header);
458
459 acpi_map_gic_cpu_interface(processor);
460
461 return 0;
462 }
463 #else
464 #define acpi_table_parse_madt(...) do { } while (0)
465 #endif
466
467 /*
468 * Enumerate the possible CPU set from the device tree and build the
469 * cpu logical map array containing MPIDR values related to logical
470 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
471 */
472 void __init of_parse_and_init_cpus(void)
473 {
474 struct device_node *dn = NULL;
475
476 while ((dn = of_find_node_by_type(dn, "cpu"))) {
477 u64 hwid = of_get_cpu_mpidr(dn);
478
479 if (hwid == INVALID_HWID)
480 goto next;
481
482 if (is_mpidr_duplicate(cpu_count, hwid)) {
483 pr_err("%s: duplicate cpu reg properties in the DT\n",
484 dn->full_name);
485 goto next;
486 }
487
488 /*
489 * The numbering scheme requires that the boot CPU
490 * must be assigned logical id 0. Record it so that
491 * the logical map built from DT is validated and can
492 * be used.
493 */
494 if (hwid == cpu_logical_map(0)) {
495 if (bootcpu_valid) {
496 pr_err("%s: duplicate boot cpu reg property in DT\n",
497 dn->full_name);
498 goto next;
499 }
500
501 bootcpu_valid = true;
502
503 /*
504 * cpu_logical_map has already been
505 * initialized and the boot cpu doesn't need
506 * the enable-method so continue without
507 * incrementing cpu.
508 */
509 continue;
510 }
511
512 if (cpu_count >= NR_CPUS)
513 goto next;
514
515 pr_debug("cpu logical map 0x%llx\n", hwid);
516 cpu_logical_map(cpu_count) = hwid;
517 next:
518 cpu_count++;
519 }
520 }
521
522 /*
523 * Enumerate the possible CPU set from the device tree or ACPI and build the
524 * cpu logical map array containing MPIDR values related to logical
525 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
526 */
527 void __init smp_init_cpus(void)
528 {
529 int i;
530
531 if (acpi_disabled)
532 of_parse_and_init_cpus();
533 else
534 /*
535 * do a walk of MADT to determine how many CPUs
536 * we have including disabled CPUs, and get information
537 * we need for SMP init
538 */
539 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
540 acpi_parse_gic_cpu_interface, 0);
541
542 if (cpu_count > NR_CPUS)
543 pr_warn("no. of cores (%d) greater than configured maximum of %d - clipping\n",
544 cpu_count, NR_CPUS);
545
546 if (!bootcpu_valid) {
547 pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
548 return;
549 }
550
551 /*
552 * We need to set the cpu_logical_map entries before enabling
553 * the cpus so that cpu processor description entries (DT cpu nodes
554 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
555 * with entries in cpu_logical_map while initializing the cpus.
556 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
557 */
558 for (i = 1; i < NR_CPUS; i++) {
559 if (cpu_logical_map(i) != INVALID_HWID) {
560 if (smp_cpu_setup(i))
561 cpu_logical_map(i) = INVALID_HWID;
562 }
563 }
564 }
565
566 void __init smp_prepare_cpus(unsigned int max_cpus)
567 {
568 int err;
569 unsigned int cpu, ncores = num_possible_cpus();
570
571 init_cpu_topology();
572
573 smp_store_cpu_info(smp_processor_id());
574
575 /*
576 * are we trying to boot more cores than exist?
577 */
578 if (max_cpus > ncores)
579 max_cpus = ncores;
580
581 /* Don't bother if we're effectively UP */
582 if (max_cpus <= 1)
583 return;
584
585 /*
586 * Initialise the present map (which describes the set of CPUs
587 * actually populated at the present time) and release the
588 * secondaries from the bootloader.
589 *
590 * Make sure we online at most (max_cpus - 1) additional CPUs.
591 */
592 max_cpus--;
593 for_each_possible_cpu(cpu) {
594 if (max_cpus == 0)
595 break;
596
597 if (cpu == smp_processor_id())
598 continue;
599
600 if (!cpu_ops[cpu])
601 continue;
602
603 err = cpu_ops[cpu]->cpu_prepare(cpu);
604 if (err)
605 continue;
606
607 set_cpu_present(cpu, true);
608 max_cpus--;
609 }
610 }
611
612 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
613
614 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
615 {
616 __smp_cross_call = fn;
617 }
618
619 static const char *ipi_types[NR_IPI] __tracepoint_string = {
620 #define S(x,s) [x] = s
621 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
622 S(IPI_CALL_FUNC, "Function call interrupts"),
623 S(IPI_CPU_STOP, "CPU stop interrupts"),
624 S(IPI_TIMER, "Timer broadcast interrupts"),
625 S(IPI_IRQ_WORK, "IRQ work interrupts"),
626 };
627
628 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
629 {
630 trace_ipi_raise(target, ipi_types[ipinr]);
631 __smp_cross_call(target, ipinr);
632 }
633
634 void show_ipi_list(struct seq_file *p, int prec)
635 {
636 unsigned int cpu, i;
637
638 for (i = 0; i < NR_IPI; i++) {
639 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
640 prec >= 4 ? " " : "");
641 for_each_online_cpu(cpu)
642 seq_printf(p, "%10u ",
643 __get_irq_stat(cpu, ipi_irqs[i]));
644 seq_printf(p, " %s\n", ipi_types[i]);
645 }
646 }
647
648 u64 smp_irq_stat_cpu(unsigned int cpu)
649 {
650 u64 sum = 0;
651 int i;
652
653 for (i = 0; i < NR_IPI; i++)
654 sum += __get_irq_stat(cpu, ipi_irqs[i]);
655
656 return sum;
657 }
658
659 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
660 {
661 smp_cross_call(mask, IPI_CALL_FUNC);
662 }
663
664 void arch_send_call_function_single_ipi(int cpu)
665 {
666 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
667 }
668
669 #ifdef CONFIG_IRQ_WORK
670 void arch_irq_work_raise(void)
671 {
672 if (__smp_cross_call)
673 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
674 }
675 #endif
676
677 static DEFINE_RAW_SPINLOCK(stop_lock);
678
679 /*
680 * ipi_cpu_stop - handle IPI from smp_send_stop()
681 */
682 static void ipi_cpu_stop(unsigned int cpu)
683 {
684 if (system_state == SYSTEM_BOOTING ||
685 system_state == SYSTEM_RUNNING) {
686 raw_spin_lock(&stop_lock);
687 pr_crit("CPU%u: stopping\n", cpu);
688 dump_stack();
689 raw_spin_unlock(&stop_lock);
690 }
691
692 set_cpu_online(cpu, false);
693
694 local_irq_disable();
695
696 while (1)
697 cpu_relax();
698 }
699
700 /*
701 * Main handler for inter-processor interrupts
702 */
703 void handle_IPI(int ipinr, struct pt_regs *regs)
704 {
705 unsigned int cpu = smp_processor_id();
706 struct pt_regs *old_regs = set_irq_regs(regs);
707
708 if ((unsigned)ipinr < NR_IPI) {
709 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
710 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
711 }
712
713 switch (ipinr) {
714 case IPI_RESCHEDULE:
715 scheduler_ipi();
716 break;
717
718 case IPI_CALL_FUNC:
719 irq_enter();
720 generic_smp_call_function_interrupt();
721 irq_exit();
722 break;
723
724 case IPI_CPU_STOP:
725 irq_enter();
726 ipi_cpu_stop(cpu);
727 irq_exit();
728 break;
729
730 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
731 case IPI_TIMER:
732 irq_enter();
733 tick_receive_broadcast();
734 irq_exit();
735 break;
736 #endif
737
738 #ifdef CONFIG_IRQ_WORK
739 case IPI_IRQ_WORK:
740 irq_enter();
741 irq_work_run();
742 irq_exit();
743 break;
744 #endif
745
746 default:
747 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
748 break;
749 }
750
751 if ((unsigned)ipinr < NR_IPI)
752 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
753 set_irq_regs(old_regs);
754 }
755
756 void smp_send_reschedule(int cpu)
757 {
758 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
759 }
760
761 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
762 void tick_broadcast(const struct cpumask *mask)
763 {
764 smp_cross_call(mask, IPI_TIMER);
765 }
766 #endif
767
768 void smp_send_stop(void)
769 {
770 unsigned long timeout;
771
772 if (num_online_cpus() > 1) {
773 cpumask_t mask;
774
775 cpumask_copy(&mask, cpu_online_mask);
776 cpumask_clear_cpu(smp_processor_id(), &mask);
777
778 smp_cross_call(&mask, IPI_CPU_STOP);
779 }
780
781 /* Wait up to one second for other CPUs to stop */
782 timeout = USEC_PER_SEC;
783 while (num_online_cpus() > 1 && timeout--)
784 udelay(1);
785
786 if (num_online_cpus() > 1)
787 pr_warning("SMP: failed to stop secondary CPUs\n");
788 }
789
790 /*
791 * not supported here
792 */
793 int setup_profiling_timer(unsigned int multiplier)
794 {
795 return -EINVAL;
796 }
This page took 0.068102 seconds and 5 git commands to generate.