Merge remote-tracking branch 'battery/for-next'
[deliverable/linux.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
25 #include <linux/mm.h>
26 #include <linux/uaccess.h>
27
28 #include <asm/cacheflush.h>
29 #include <asm/cputype.h>
30 #include <asm/debug-monitors.h>
31 #include <asm/esr.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_asm.h>
34 #include <asm/kvm_coproc.h>
35 #include <asm/kvm_emulate.h>
36 #include <asm/kvm_host.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/perf_event.h>
39 #include <asm/sysreg.h>
40
41 #include <trace/events/kvm.h>
42
43 #include "sys_regs.h"
44
45 #include "trace.h"
46
47 /*
48 * All of this file is extremly similar to the ARM coproc.c, but the
49 * types are different. My gut feeling is that it should be pretty
50 * easy to merge, but that would be an ABI breakage -- again. VFP
51 * would also need to be abstracted.
52 *
53 * For AArch32, we only take care of what is being trapped. Anything
54 * that has to do with init and userspace access has to go via the
55 * 64bit interface.
56 */
57
58 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
59 static u32 cache_levels;
60
61 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
62 #define CSSELR_MAX 12
63
64 /* Which cache CCSIDR represents depends on CSSELR value. */
65 static u32 get_ccsidr(u32 csselr)
66 {
67 u32 ccsidr;
68
69 /* Make sure noone else changes CSSELR during this! */
70 local_irq_disable();
71 write_sysreg(csselr, csselr_el1);
72 isb();
73 ccsidr = read_sysreg(ccsidr_el1);
74 local_irq_enable();
75
76 return ccsidr;
77 }
78
79 /*
80 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
81 */
82 static bool access_dcsw(struct kvm_vcpu *vcpu,
83 struct sys_reg_params *p,
84 const struct sys_reg_desc *r)
85 {
86 if (!p->is_write)
87 return read_from_write_only(vcpu, p);
88
89 kvm_set_way_flush(vcpu);
90 return true;
91 }
92
93 /*
94 * Generic accessor for VM registers. Only called as long as HCR_TVM
95 * is set. If the guest enables the MMU, we stop trapping the VM
96 * sys_regs and leave it in complete control of the caches.
97 */
98 static bool access_vm_reg(struct kvm_vcpu *vcpu,
99 struct sys_reg_params *p,
100 const struct sys_reg_desc *r)
101 {
102 bool was_enabled = vcpu_has_cache_enabled(vcpu);
103
104 BUG_ON(!p->is_write);
105
106 if (!p->is_aarch32) {
107 vcpu_sys_reg(vcpu, r->reg) = p->regval;
108 } else {
109 if (!p->is_32bit)
110 vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
111 vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
112 }
113
114 kvm_toggle_cache(vcpu, was_enabled);
115 return true;
116 }
117
118 /*
119 * Trap handler for the GICv3 SGI generation system register.
120 * Forward the request to the VGIC emulation.
121 * The cp15_64 code makes sure this automatically works
122 * for both AArch64 and AArch32 accesses.
123 */
124 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
125 struct sys_reg_params *p,
126 const struct sys_reg_desc *r)
127 {
128 if (!p->is_write)
129 return read_from_write_only(vcpu, p);
130
131 vgic_v3_dispatch_sgi(vcpu, p->regval);
132
133 return true;
134 }
135
136 static bool access_gic_sre(struct kvm_vcpu *vcpu,
137 struct sys_reg_params *p,
138 const struct sys_reg_desc *r)
139 {
140 if (p->is_write)
141 return ignore_write(vcpu, p);
142
143 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
144 return true;
145 }
146
147 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
148 struct sys_reg_params *p,
149 const struct sys_reg_desc *r)
150 {
151 if (p->is_write)
152 return ignore_write(vcpu, p);
153 else
154 return read_zero(vcpu, p);
155 }
156
157 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
158 struct sys_reg_params *p,
159 const struct sys_reg_desc *r)
160 {
161 if (p->is_write) {
162 return ignore_write(vcpu, p);
163 } else {
164 p->regval = (1 << 3);
165 return true;
166 }
167 }
168
169 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
170 struct sys_reg_params *p,
171 const struct sys_reg_desc *r)
172 {
173 if (p->is_write) {
174 return ignore_write(vcpu, p);
175 } else {
176 p->regval = read_sysreg(dbgauthstatus_el1);
177 return true;
178 }
179 }
180
181 /*
182 * We want to avoid world-switching all the DBG registers all the
183 * time:
184 *
185 * - If we've touched any debug register, it is likely that we're
186 * going to touch more of them. It then makes sense to disable the
187 * traps and start doing the save/restore dance
188 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
189 * then mandatory to save/restore the registers, as the guest
190 * depends on them.
191 *
192 * For this, we use a DIRTY bit, indicating the guest has modified the
193 * debug registers, used as follow:
194 *
195 * On guest entry:
196 * - If the dirty bit is set (because we're coming back from trapping),
197 * disable the traps, save host registers, restore guest registers.
198 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
199 * set the dirty bit, disable the traps, save host registers,
200 * restore guest registers.
201 * - Otherwise, enable the traps
202 *
203 * On guest exit:
204 * - If the dirty bit is set, save guest registers, restore host
205 * registers and clear the dirty bit. This ensure that the host can
206 * now use the debug registers.
207 */
208 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
209 struct sys_reg_params *p,
210 const struct sys_reg_desc *r)
211 {
212 if (p->is_write) {
213 vcpu_sys_reg(vcpu, r->reg) = p->regval;
214 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
215 } else {
216 p->regval = vcpu_sys_reg(vcpu, r->reg);
217 }
218
219 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
220
221 return true;
222 }
223
224 /*
225 * reg_to_dbg/dbg_to_reg
226 *
227 * A 32 bit write to a debug register leave top bits alone
228 * A 32 bit read from a debug register only returns the bottom bits
229 *
230 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
231 * hyp.S code switches between host and guest values in future.
232 */
233 static void reg_to_dbg(struct kvm_vcpu *vcpu,
234 struct sys_reg_params *p,
235 u64 *dbg_reg)
236 {
237 u64 val = p->regval;
238
239 if (p->is_32bit) {
240 val &= 0xffffffffUL;
241 val |= ((*dbg_reg >> 32) << 32);
242 }
243
244 *dbg_reg = val;
245 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
246 }
247
248 static void dbg_to_reg(struct kvm_vcpu *vcpu,
249 struct sys_reg_params *p,
250 u64 *dbg_reg)
251 {
252 p->regval = *dbg_reg;
253 if (p->is_32bit)
254 p->regval &= 0xffffffffUL;
255 }
256
257 static bool trap_bvr(struct kvm_vcpu *vcpu,
258 struct sys_reg_params *p,
259 const struct sys_reg_desc *rd)
260 {
261 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
262
263 if (p->is_write)
264 reg_to_dbg(vcpu, p, dbg_reg);
265 else
266 dbg_to_reg(vcpu, p, dbg_reg);
267
268 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
269
270 return true;
271 }
272
273 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
274 const struct kvm_one_reg *reg, void __user *uaddr)
275 {
276 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
277
278 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
279 return -EFAULT;
280 return 0;
281 }
282
283 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
284 const struct kvm_one_reg *reg, void __user *uaddr)
285 {
286 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
287
288 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
289 return -EFAULT;
290 return 0;
291 }
292
293 static void reset_bvr(struct kvm_vcpu *vcpu,
294 const struct sys_reg_desc *rd)
295 {
296 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
297 }
298
299 static bool trap_bcr(struct kvm_vcpu *vcpu,
300 struct sys_reg_params *p,
301 const struct sys_reg_desc *rd)
302 {
303 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
304
305 if (p->is_write)
306 reg_to_dbg(vcpu, p, dbg_reg);
307 else
308 dbg_to_reg(vcpu, p, dbg_reg);
309
310 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
311
312 return true;
313 }
314
315 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
316 const struct kvm_one_reg *reg, void __user *uaddr)
317 {
318 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
319
320 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
321 return -EFAULT;
322
323 return 0;
324 }
325
326 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
327 const struct kvm_one_reg *reg, void __user *uaddr)
328 {
329 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
330
331 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
332 return -EFAULT;
333 return 0;
334 }
335
336 static void reset_bcr(struct kvm_vcpu *vcpu,
337 const struct sys_reg_desc *rd)
338 {
339 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
340 }
341
342 static bool trap_wvr(struct kvm_vcpu *vcpu,
343 struct sys_reg_params *p,
344 const struct sys_reg_desc *rd)
345 {
346 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
347
348 if (p->is_write)
349 reg_to_dbg(vcpu, p, dbg_reg);
350 else
351 dbg_to_reg(vcpu, p, dbg_reg);
352
353 trace_trap_reg(__func__, rd->reg, p->is_write,
354 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
355
356 return true;
357 }
358
359 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
360 const struct kvm_one_reg *reg, void __user *uaddr)
361 {
362 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
363
364 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
365 return -EFAULT;
366 return 0;
367 }
368
369 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
370 const struct kvm_one_reg *reg, void __user *uaddr)
371 {
372 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
373
374 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
375 return -EFAULT;
376 return 0;
377 }
378
379 static void reset_wvr(struct kvm_vcpu *vcpu,
380 const struct sys_reg_desc *rd)
381 {
382 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
383 }
384
385 static bool trap_wcr(struct kvm_vcpu *vcpu,
386 struct sys_reg_params *p,
387 const struct sys_reg_desc *rd)
388 {
389 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
390
391 if (p->is_write)
392 reg_to_dbg(vcpu, p, dbg_reg);
393 else
394 dbg_to_reg(vcpu, p, dbg_reg);
395
396 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
397
398 return true;
399 }
400
401 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
402 const struct kvm_one_reg *reg, void __user *uaddr)
403 {
404 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
405
406 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
407 return -EFAULT;
408 return 0;
409 }
410
411 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
412 const struct kvm_one_reg *reg, void __user *uaddr)
413 {
414 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
415
416 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
417 return -EFAULT;
418 return 0;
419 }
420
421 static void reset_wcr(struct kvm_vcpu *vcpu,
422 const struct sys_reg_desc *rd)
423 {
424 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
425 }
426
427 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
428 {
429 vcpu_sys_reg(vcpu, AMAIR_EL1) = read_sysreg(amair_el1);
430 }
431
432 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
433 {
434 u64 mpidr;
435
436 /*
437 * Map the vcpu_id into the first three affinity level fields of
438 * the MPIDR. We limit the number of VCPUs in level 0 due to a
439 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
440 * of the GICv3 to be able to address each CPU directly when
441 * sending IPIs.
442 */
443 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
444 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
445 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
446 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
447 }
448
449 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
450 {
451 u64 pmcr, val;
452
453 pmcr = read_sysreg(pmcr_el0);
454 /*
455 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
456 * except PMCR.E resetting to zero.
457 */
458 val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
459 | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
460 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
461 }
462
463 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
464 {
465 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
466
467 return !((reg & ARMV8_PMU_USERENR_EN) || vcpu_mode_priv(vcpu));
468 }
469
470 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
471 {
472 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
473
474 return !((reg & (ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN))
475 || vcpu_mode_priv(vcpu));
476 }
477
478 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
479 {
480 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
481
482 return !((reg & (ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN))
483 || vcpu_mode_priv(vcpu));
484 }
485
486 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
487 {
488 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
489
490 return !((reg & (ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN))
491 || vcpu_mode_priv(vcpu));
492 }
493
494 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
495 const struct sys_reg_desc *r)
496 {
497 u64 val;
498
499 if (!kvm_arm_pmu_v3_ready(vcpu))
500 return trap_raz_wi(vcpu, p, r);
501
502 if (pmu_access_el0_disabled(vcpu))
503 return false;
504
505 if (p->is_write) {
506 /* Only update writeable bits of PMCR */
507 val = vcpu_sys_reg(vcpu, PMCR_EL0);
508 val &= ~ARMV8_PMU_PMCR_MASK;
509 val |= p->regval & ARMV8_PMU_PMCR_MASK;
510 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
511 kvm_pmu_handle_pmcr(vcpu, val);
512 } else {
513 /* PMCR.P & PMCR.C are RAZ */
514 val = vcpu_sys_reg(vcpu, PMCR_EL0)
515 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
516 p->regval = val;
517 }
518
519 return true;
520 }
521
522 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
523 const struct sys_reg_desc *r)
524 {
525 if (!kvm_arm_pmu_v3_ready(vcpu))
526 return trap_raz_wi(vcpu, p, r);
527
528 if (pmu_access_event_counter_el0_disabled(vcpu))
529 return false;
530
531 if (p->is_write)
532 vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
533 else
534 /* return PMSELR.SEL field */
535 p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
536 & ARMV8_PMU_COUNTER_MASK;
537
538 return true;
539 }
540
541 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
542 const struct sys_reg_desc *r)
543 {
544 u64 pmceid;
545
546 if (!kvm_arm_pmu_v3_ready(vcpu))
547 return trap_raz_wi(vcpu, p, r);
548
549 BUG_ON(p->is_write);
550
551 if (pmu_access_el0_disabled(vcpu))
552 return false;
553
554 if (!(p->Op2 & 1))
555 pmceid = read_sysreg(pmceid0_el0);
556 else
557 pmceid = read_sysreg(pmceid1_el0);
558
559 p->regval = pmceid;
560
561 return true;
562 }
563
564 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
565 {
566 u64 pmcr, val;
567
568 pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
569 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
570 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX)
571 return false;
572
573 return true;
574 }
575
576 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
577 struct sys_reg_params *p,
578 const struct sys_reg_desc *r)
579 {
580 u64 idx;
581
582 if (!kvm_arm_pmu_v3_ready(vcpu))
583 return trap_raz_wi(vcpu, p, r);
584
585 if (r->CRn == 9 && r->CRm == 13) {
586 if (r->Op2 == 2) {
587 /* PMXEVCNTR_EL0 */
588 if (pmu_access_event_counter_el0_disabled(vcpu))
589 return false;
590
591 idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
592 & ARMV8_PMU_COUNTER_MASK;
593 } else if (r->Op2 == 0) {
594 /* PMCCNTR_EL0 */
595 if (pmu_access_cycle_counter_el0_disabled(vcpu))
596 return false;
597
598 idx = ARMV8_PMU_CYCLE_IDX;
599 } else {
600 BUG();
601 }
602 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
603 /* PMEVCNTRn_EL0 */
604 if (pmu_access_event_counter_el0_disabled(vcpu))
605 return false;
606
607 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
608 } else {
609 BUG();
610 }
611
612 if (!pmu_counter_idx_valid(vcpu, idx))
613 return false;
614
615 if (p->is_write) {
616 if (pmu_access_el0_disabled(vcpu))
617 return false;
618
619 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
620 } else {
621 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
622 }
623
624 return true;
625 }
626
627 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
628 const struct sys_reg_desc *r)
629 {
630 u64 idx, reg;
631
632 if (!kvm_arm_pmu_v3_ready(vcpu))
633 return trap_raz_wi(vcpu, p, r);
634
635 if (pmu_access_el0_disabled(vcpu))
636 return false;
637
638 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
639 /* PMXEVTYPER_EL0 */
640 idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
641 reg = PMEVTYPER0_EL0 + idx;
642 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
643 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
644 if (idx == ARMV8_PMU_CYCLE_IDX)
645 reg = PMCCFILTR_EL0;
646 else
647 /* PMEVTYPERn_EL0 */
648 reg = PMEVTYPER0_EL0 + idx;
649 } else {
650 BUG();
651 }
652
653 if (!pmu_counter_idx_valid(vcpu, idx))
654 return false;
655
656 if (p->is_write) {
657 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
658 vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
659 } else {
660 p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
661 }
662
663 return true;
664 }
665
666 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
667 const struct sys_reg_desc *r)
668 {
669 u64 val, mask;
670
671 if (!kvm_arm_pmu_v3_ready(vcpu))
672 return trap_raz_wi(vcpu, p, r);
673
674 if (pmu_access_el0_disabled(vcpu))
675 return false;
676
677 mask = kvm_pmu_valid_counter_mask(vcpu);
678 if (p->is_write) {
679 val = p->regval & mask;
680 if (r->Op2 & 0x1) {
681 /* accessing PMCNTENSET_EL0 */
682 vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
683 kvm_pmu_enable_counter(vcpu, val);
684 } else {
685 /* accessing PMCNTENCLR_EL0 */
686 vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
687 kvm_pmu_disable_counter(vcpu, val);
688 }
689 } else {
690 p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
691 }
692
693 return true;
694 }
695
696 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
697 const struct sys_reg_desc *r)
698 {
699 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
700
701 if (!kvm_arm_pmu_v3_ready(vcpu))
702 return trap_raz_wi(vcpu, p, r);
703
704 if (!vcpu_mode_priv(vcpu))
705 return false;
706
707 if (p->is_write) {
708 u64 val = p->regval & mask;
709
710 if (r->Op2 & 0x1)
711 /* accessing PMINTENSET_EL1 */
712 vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
713 else
714 /* accessing PMINTENCLR_EL1 */
715 vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
716 } else {
717 p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
718 }
719
720 return true;
721 }
722
723 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
724 const struct sys_reg_desc *r)
725 {
726 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
727
728 if (!kvm_arm_pmu_v3_ready(vcpu))
729 return trap_raz_wi(vcpu, p, r);
730
731 if (pmu_access_el0_disabled(vcpu))
732 return false;
733
734 if (p->is_write) {
735 if (r->CRm & 0x2)
736 /* accessing PMOVSSET_EL0 */
737 kvm_pmu_overflow_set(vcpu, p->regval & mask);
738 else
739 /* accessing PMOVSCLR_EL0 */
740 vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
741 } else {
742 p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
743 }
744
745 return true;
746 }
747
748 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
749 const struct sys_reg_desc *r)
750 {
751 u64 mask;
752
753 if (!kvm_arm_pmu_v3_ready(vcpu))
754 return trap_raz_wi(vcpu, p, r);
755
756 if (pmu_write_swinc_el0_disabled(vcpu))
757 return false;
758
759 if (p->is_write) {
760 mask = kvm_pmu_valid_counter_mask(vcpu);
761 kvm_pmu_software_increment(vcpu, p->regval & mask);
762 return true;
763 }
764
765 return false;
766 }
767
768 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
769 const struct sys_reg_desc *r)
770 {
771 if (!kvm_arm_pmu_v3_ready(vcpu))
772 return trap_raz_wi(vcpu, p, r);
773
774 if (p->is_write) {
775 if (!vcpu_mode_priv(vcpu))
776 return false;
777
778 vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
779 & ARMV8_PMU_USERENR_MASK;
780 } else {
781 p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0)
782 & ARMV8_PMU_USERENR_MASK;
783 }
784
785 return true;
786 }
787
788 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
789 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
790 /* DBGBVRn_EL1 */ \
791 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
792 trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
793 /* DBGBCRn_EL1 */ \
794 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
795 trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
796 /* DBGWVRn_EL1 */ \
797 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
798 trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
799 /* DBGWCRn_EL1 */ \
800 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
801 trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
802
803 /* Macro to expand the PMEVCNTRn_EL0 register */
804 #define PMU_PMEVCNTR_EL0(n) \
805 /* PMEVCNTRn_EL0 */ \
806 { Op0(0b11), Op1(0b011), CRn(0b1110), \
807 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
808 access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
809
810 /* Macro to expand the PMEVTYPERn_EL0 register */
811 #define PMU_PMEVTYPER_EL0(n) \
812 /* PMEVTYPERn_EL0 */ \
813 { Op0(0b11), Op1(0b011), CRn(0b1110), \
814 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
815 access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
816
817 /*
818 * Architected system registers.
819 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
820 *
821 * Debug handling: We do trap most, if not all debug related system
822 * registers. The implementation is good enough to ensure that a guest
823 * can use these with minimal performance degradation. The drawback is
824 * that we don't implement any of the external debug, none of the
825 * OSlock protocol. This should be revisited if we ever encounter a
826 * more demanding guest...
827 */
828 static const struct sys_reg_desc sys_reg_descs[] = {
829 /* DC ISW */
830 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
831 access_dcsw },
832 /* DC CSW */
833 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
834 access_dcsw },
835 /* DC CISW */
836 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
837 access_dcsw },
838
839 DBG_BCR_BVR_WCR_WVR_EL1(0),
840 DBG_BCR_BVR_WCR_WVR_EL1(1),
841 /* MDCCINT_EL1 */
842 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
843 trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
844 /* MDSCR_EL1 */
845 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
846 trap_debug_regs, reset_val, MDSCR_EL1, 0 },
847 DBG_BCR_BVR_WCR_WVR_EL1(2),
848 DBG_BCR_BVR_WCR_WVR_EL1(3),
849 DBG_BCR_BVR_WCR_WVR_EL1(4),
850 DBG_BCR_BVR_WCR_WVR_EL1(5),
851 DBG_BCR_BVR_WCR_WVR_EL1(6),
852 DBG_BCR_BVR_WCR_WVR_EL1(7),
853 DBG_BCR_BVR_WCR_WVR_EL1(8),
854 DBG_BCR_BVR_WCR_WVR_EL1(9),
855 DBG_BCR_BVR_WCR_WVR_EL1(10),
856 DBG_BCR_BVR_WCR_WVR_EL1(11),
857 DBG_BCR_BVR_WCR_WVR_EL1(12),
858 DBG_BCR_BVR_WCR_WVR_EL1(13),
859 DBG_BCR_BVR_WCR_WVR_EL1(14),
860 DBG_BCR_BVR_WCR_WVR_EL1(15),
861
862 /* MDRAR_EL1 */
863 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
864 trap_raz_wi },
865 /* OSLAR_EL1 */
866 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
867 trap_raz_wi },
868 /* OSLSR_EL1 */
869 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
870 trap_oslsr_el1 },
871 /* OSDLR_EL1 */
872 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
873 trap_raz_wi },
874 /* DBGPRCR_EL1 */
875 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
876 trap_raz_wi },
877 /* DBGCLAIMSET_EL1 */
878 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
879 trap_raz_wi },
880 /* DBGCLAIMCLR_EL1 */
881 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
882 trap_raz_wi },
883 /* DBGAUTHSTATUS_EL1 */
884 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
885 trap_dbgauthstatus_el1 },
886
887 /* MDCCSR_EL1 */
888 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
889 trap_raz_wi },
890 /* DBGDTR_EL0 */
891 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
892 trap_raz_wi },
893 /* DBGDTR[TR]X_EL0 */
894 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
895 trap_raz_wi },
896
897 /* DBGVCR32_EL2 */
898 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
899 NULL, reset_val, DBGVCR32_EL2, 0 },
900
901 /* MPIDR_EL1 */
902 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
903 NULL, reset_mpidr, MPIDR_EL1 },
904 /* SCTLR_EL1 */
905 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
906 access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
907 /* CPACR_EL1 */
908 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
909 NULL, reset_val, CPACR_EL1, 0 },
910 /* TTBR0_EL1 */
911 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
912 access_vm_reg, reset_unknown, TTBR0_EL1 },
913 /* TTBR1_EL1 */
914 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
915 access_vm_reg, reset_unknown, TTBR1_EL1 },
916 /* TCR_EL1 */
917 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
918 access_vm_reg, reset_val, TCR_EL1, 0 },
919
920 /* AFSR0_EL1 */
921 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
922 access_vm_reg, reset_unknown, AFSR0_EL1 },
923 /* AFSR1_EL1 */
924 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
925 access_vm_reg, reset_unknown, AFSR1_EL1 },
926 /* ESR_EL1 */
927 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
928 access_vm_reg, reset_unknown, ESR_EL1 },
929 /* FAR_EL1 */
930 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
931 access_vm_reg, reset_unknown, FAR_EL1 },
932 /* PAR_EL1 */
933 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
934 NULL, reset_unknown, PAR_EL1 },
935
936 /* PMINTENSET_EL1 */
937 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
938 access_pminten, reset_unknown, PMINTENSET_EL1 },
939 /* PMINTENCLR_EL1 */
940 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
941 access_pminten, NULL, PMINTENSET_EL1 },
942
943 /* MAIR_EL1 */
944 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
945 access_vm_reg, reset_unknown, MAIR_EL1 },
946 /* AMAIR_EL1 */
947 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
948 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
949
950 /* VBAR_EL1 */
951 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
952 NULL, reset_val, VBAR_EL1, 0 },
953
954 /* ICC_SGI1R_EL1 */
955 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
956 access_gic_sgi },
957 /* ICC_SRE_EL1 */
958 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
959 access_gic_sre },
960
961 /* CONTEXTIDR_EL1 */
962 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
963 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
964 /* TPIDR_EL1 */
965 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
966 NULL, reset_unknown, TPIDR_EL1 },
967
968 /* CNTKCTL_EL1 */
969 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
970 NULL, reset_val, CNTKCTL_EL1, 0},
971
972 /* CSSELR_EL1 */
973 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
974 NULL, reset_unknown, CSSELR_EL1 },
975
976 /* PMCR_EL0 */
977 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
978 access_pmcr, reset_pmcr, },
979 /* PMCNTENSET_EL0 */
980 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
981 access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
982 /* PMCNTENCLR_EL0 */
983 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
984 access_pmcnten, NULL, PMCNTENSET_EL0 },
985 /* PMOVSCLR_EL0 */
986 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
987 access_pmovs, NULL, PMOVSSET_EL0 },
988 /* PMSWINC_EL0 */
989 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
990 access_pmswinc, reset_unknown, PMSWINC_EL0 },
991 /* PMSELR_EL0 */
992 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
993 access_pmselr, reset_unknown, PMSELR_EL0 },
994 /* PMCEID0_EL0 */
995 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
996 access_pmceid },
997 /* PMCEID1_EL0 */
998 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
999 access_pmceid },
1000 /* PMCCNTR_EL0 */
1001 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
1002 access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1003 /* PMXEVTYPER_EL0 */
1004 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
1005 access_pmu_evtyper },
1006 /* PMXEVCNTR_EL0 */
1007 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
1008 access_pmu_evcntr },
1009 /* PMUSERENR_EL0
1010 * This register resets as unknown in 64bit mode while it resets as zero
1011 * in 32bit mode. Here we choose to reset it as zero for consistency.
1012 */
1013 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
1014 access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1015 /* PMOVSSET_EL0 */
1016 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
1017 access_pmovs, reset_unknown, PMOVSSET_EL0 },
1018
1019 /* TPIDR_EL0 */
1020 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
1021 NULL, reset_unknown, TPIDR_EL0 },
1022 /* TPIDRRO_EL0 */
1023 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
1024 NULL, reset_unknown, TPIDRRO_EL0 },
1025
1026 /* PMEVCNTRn_EL0 */
1027 PMU_PMEVCNTR_EL0(0),
1028 PMU_PMEVCNTR_EL0(1),
1029 PMU_PMEVCNTR_EL0(2),
1030 PMU_PMEVCNTR_EL0(3),
1031 PMU_PMEVCNTR_EL0(4),
1032 PMU_PMEVCNTR_EL0(5),
1033 PMU_PMEVCNTR_EL0(6),
1034 PMU_PMEVCNTR_EL0(7),
1035 PMU_PMEVCNTR_EL0(8),
1036 PMU_PMEVCNTR_EL0(9),
1037 PMU_PMEVCNTR_EL0(10),
1038 PMU_PMEVCNTR_EL0(11),
1039 PMU_PMEVCNTR_EL0(12),
1040 PMU_PMEVCNTR_EL0(13),
1041 PMU_PMEVCNTR_EL0(14),
1042 PMU_PMEVCNTR_EL0(15),
1043 PMU_PMEVCNTR_EL0(16),
1044 PMU_PMEVCNTR_EL0(17),
1045 PMU_PMEVCNTR_EL0(18),
1046 PMU_PMEVCNTR_EL0(19),
1047 PMU_PMEVCNTR_EL0(20),
1048 PMU_PMEVCNTR_EL0(21),
1049 PMU_PMEVCNTR_EL0(22),
1050 PMU_PMEVCNTR_EL0(23),
1051 PMU_PMEVCNTR_EL0(24),
1052 PMU_PMEVCNTR_EL0(25),
1053 PMU_PMEVCNTR_EL0(26),
1054 PMU_PMEVCNTR_EL0(27),
1055 PMU_PMEVCNTR_EL0(28),
1056 PMU_PMEVCNTR_EL0(29),
1057 PMU_PMEVCNTR_EL0(30),
1058 /* PMEVTYPERn_EL0 */
1059 PMU_PMEVTYPER_EL0(0),
1060 PMU_PMEVTYPER_EL0(1),
1061 PMU_PMEVTYPER_EL0(2),
1062 PMU_PMEVTYPER_EL0(3),
1063 PMU_PMEVTYPER_EL0(4),
1064 PMU_PMEVTYPER_EL0(5),
1065 PMU_PMEVTYPER_EL0(6),
1066 PMU_PMEVTYPER_EL0(7),
1067 PMU_PMEVTYPER_EL0(8),
1068 PMU_PMEVTYPER_EL0(9),
1069 PMU_PMEVTYPER_EL0(10),
1070 PMU_PMEVTYPER_EL0(11),
1071 PMU_PMEVTYPER_EL0(12),
1072 PMU_PMEVTYPER_EL0(13),
1073 PMU_PMEVTYPER_EL0(14),
1074 PMU_PMEVTYPER_EL0(15),
1075 PMU_PMEVTYPER_EL0(16),
1076 PMU_PMEVTYPER_EL0(17),
1077 PMU_PMEVTYPER_EL0(18),
1078 PMU_PMEVTYPER_EL0(19),
1079 PMU_PMEVTYPER_EL0(20),
1080 PMU_PMEVTYPER_EL0(21),
1081 PMU_PMEVTYPER_EL0(22),
1082 PMU_PMEVTYPER_EL0(23),
1083 PMU_PMEVTYPER_EL0(24),
1084 PMU_PMEVTYPER_EL0(25),
1085 PMU_PMEVTYPER_EL0(26),
1086 PMU_PMEVTYPER_EL0(27),
1087 PMU_PMEVTYPER_EL0(28),
1088 PMU_PMEVTYPER_EL0(29),
1089 PMU_PMEVTYPER_EL0(30),
1090 /* PMCCFILTR_EL0
1091 * This register resets as unknown in 64bit mode while it resets as zero
1092 * in 32bit mode. Here we choose to reset it as zero for consistency.
1093 */
1094 { Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b1111), Op2(0b111),
1095 access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1096
1097 /* DACR32_EL2 */
1098 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
1099 NULL, reset_unknown, DACR32_EL2 },
1100 /* IFSR32_EL2 */
1101 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
1102 NULL, reset_unknown, IFSR32_EL2 },
1103 /* FPEXC32_EL2 */
1104 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
1105 NULL, reset_val, FPEXC32_EL2, 0x70 },
1106 };
1107
1108 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1109 struct sys_reg_params *p,
1110 const struct sys_reg_desc *r)
1111 {
1112 if (p->is_write) {
1113 return ignore_write(vcpu, p);
1114 } else {
1115 u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
1116 u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
1117 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1118
1119 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1120 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1121 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1122 | (6 << 16) | (el3 << 14) | (el3 << 12));
1123 return true;
1124 }
1125 }
1126
1127 static bool trap_debug32(struct kvm_vcpu *vcpu,
1128 struct sys_reg_params *p,
1129 const struct sys_reg_desc *r)
1130 {
1131 if (p->is_write) {
1132 vcpu_cp14(vcpu, r->reg) = p->regval;
1133 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1134 } else {
1135 p->regval = vcpu_cp14(vcpu, r->reg);
1136 }
1137
1138 return true;
1139 }
1140
1141 /* AArch32 debug register mappings
1142 *
1143 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1144 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1145 *
1146 * All control registers and watchpoint value registers are mapped to
1147 * the lower 32 bits of their AArch64 equivalents. We share the trap
1148 * handlers with the above AArch64 code which checks what mode the
1149 * system is in.
1150 */
1151
1152 static bool trap_xvr(struct kvm_vcpu *vcpu,
1153 struct sys_reg_params *p,
1154 const struct sys_reg_desc *rd)
1155 {
1156 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1157
1158 if (p->is_write) {
1159 u64 val = *dbg_reg;
1160
1161 val &= 0xffffffffUL;
1162 val |= p->regval << 32;
1163 *dbg_reg = val;
1164
1165 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1166 } else {
1167 p->regval = *dbg_reg >> 32;
1168 }
1169
1170 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1171
1172 return true;
1173 }
1174
1175 #define DBG_BCR_BVR_WCR_WVR(n) \
1176 /* DBGBVRn */ \
1177 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1178 /* DBGBCRn */ \
1179 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1180 /* DBGWVRn */ \
1181 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1182 /* DBGWCRn */ \
1183 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1184
1185 #define DBGBXVR(n) \
1186 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1187
1188 /*
1189 * Trapped cp14 registers. We generally ignore most of the external
1190 * debug, on the principle that they don't really make sense to a
1191 * guest. Revisit this one day, would this principle change.
1192 */
1193 static const struct sys_reg_desc cp14_regs[] = {
1194 /* DBGIDR */
1195 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1196 /* DBGDTRRXext */
1197 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1198
1199 DBG_BCR_BVR_WCR_WVR(0),
1200 /* DBGDSCRint */
1201 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1202 DBG_BCR_BVR_WCR_WVR(1),
1203 /* DBGDCCINT */
1204 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1205 /* DBGDSCRext */
1206 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1207 DBG_BCR_BVR_WCR_WVR(2),
1208 /* DBGDTR[RT]Xint */
1209 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1210 /* DBGDTR[RT]Xext */
1211 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1212 DBG_BCR_BVR_WCR_WVR(3),
1213 DBG_BCR_BVR_WCR_WVR(4),
1214 DBG_BCR_BVR_WCR_WVR(5),
1215 /* DBGWFAR */
1216 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1217 /* DBGOSECCR */
1218 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1219 DBG_BCR_BVR_WCR_WVR(6),
1220 /* DBGVCR */
1221 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1222 DBG_BCR_BVR_WCR_WVR(7),
1223 DBG_BCR_BVR_WCR_WVR(8),
1224 DBG_BCR_BVR_WCR_WVR(9),
1225 DBG_BCR_BVR_WCR_WVR(10),
1226 DBG_BCR_BVR_WCR_WVR(11),
1227 DBG_BCR_BVR_WCR_WVR(12),
1228 DBG_BCR_BVR_WCR_WVR(13),
1229 DBG_BCR_BVR_WCR_WVR(14),
1230 DBG_BCR_BVR_WCR_WVR(15),
1231
1232 /* DBGDRAR (32bit) */
1233 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1234
1235 DBGBXVR(0),
1236 /* DBGOSLAR */
1237 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1238 DBGBXVR(1),
1239 /* DBGOSLSR */
1240 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1241 DBGBXVR(2),
1242 DBGBXVR(3),
1243 /* DBGOSDLR */
1244 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1245 DBGBXVR(4),
1246 /* DBGPRCR */
1247 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1248 DBGBXVR(5),
1249 DBGBXVR(6),
1250 DBGBXVR(7),
1251 DBGBXVR(8),
1252 DBGBXVR(9),
1253 DBGBXVR(10),
1254 DBGBXVR(11),
1255 DBGBXVR(12),
1256 DBGBXVR(13),
1257 DBGBXVR(14),
1258 DBGBXVR(15),
1259
1260 /* DBGDSAR (32bit) */
1261 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1262
1263 /* DBGDEVID2 */
1264 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1265 /* DBGDEVID1 */
1266 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1267 /* DBGDEVID */
1268 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1269 /* DBGCLAIMSET */
1270 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1271 /* DBGCLAIMCLR */
1272 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1273 /* DBGAUTHSTATUS */
1274 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1275 };
1276
1277 /* Trapped cp14 64bit registers */
1278 static const struct sys_reg_desc cp14_64_regs[] = {
1279 /* DBGDRAR (64bit) */
1280 { Op1( 0), CRm( 1), .access = trap_raz_wi },
1281
1282 /* DBGDSAR (64bit) */
1283 { Op1( 0), CRm( 2), .access = trap_raz_wi },
1284 };
1285
1286 /* Macro to expand the PMEVCNTRn register */
1287 #define PMU_PMEVCNTR(n) \
1288 /* PMEVCNTRn */ \
1289 { Op1(0), CRn(0b1110), \
1290 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1291 access_pmu_evcntr }
1292
1293 /* Macro to expand the PMEVTYPERn register */
1294 #define PMU_PMEVTYPER(n) \
1295 /* PMEVTYPERn */ \
1296 { Op1(0), CRn(0b1110), \
1297 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1298 access_pmu_evtyper }
1299
1300 /*
1301 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1302 * depending on the way they are accessed (as a 32bit or a 64bit
1303 * register).
1304 */
1305 static const struct sys_reg_desc cp15_regs[] = {
1306 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1307
1308 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1309 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1310 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1311 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1312 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1313 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1314 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1315 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1316 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1317 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1318 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1319
1320 /*
1321 * DC{C,I,CI}SW operations:
1322 */
1323 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1324 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1325 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1326
1327 /* PMU */
1328 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1329 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1330 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1331 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1332 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1333 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1334 { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1335 { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1336 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1337 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1338 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1339 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1340 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1341 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1342 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1343
1344 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1345 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1346 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1347 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1348
1349 /* ICC_SRE */
1350 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1351
1352 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1353
1354 /* PMEVCNTRn */
1355 PMU_PMEVCNTR(0),
1356 PMU_PMEVCNTR(1),
1357 PMU_PMEVCNTR(2),
1358 PMU_PMEVCNTR(3),
1359 PMU_PMEVCNTR(4),
1360 PMU_PMEVCNTR(5),
1361 PMU_PMEVCNTR(6),
1362 PMU_PMEVCNTR(7),
1363 PMU_PMEVCNTR(8),
1364 PMU_PMEVCNTR(9),
1365 PMU_PMEVCNTR(10),
1366 PMU_PMEVCNTR(11),
1367 PMU_PMEVCNTR(12),
1368 PMU_PMEVCNTR(13),
1369 PMU_PMEVCNTR(14),
1370 PMU_PMEVCNTR(15),
1371 PMU_PMEVCNTR(16),
1372 PMU_PMEVCNTR(17),
1373 PMU_PMEVCNTR(18),
1374 PMU_PMEVCNTR(19),
1375 PMU_PMEVCNTR(20),
1376 PMU_PMEVCNTR(21),
1377 PMU_PMEVCNTR(22),
1378 PMU_PMEVCNTR(23),
1379 PMU_PMEVCNTR(24),
1380 PMU_PMEVCNTR(25),
1381 PMU_PMEVCNTR(26),
1382 PMU_PMEVCNTR(27),
1383 PMU_PMEVCNTR(28),
1384 PMU_PMEVCNTR(29),
1385 PMU_PMEVCNTR(30),
1386 /* PMEVTYPERn */
1387 PMU_PMEVTYPER(0),
1388 PMU_PMEVTYPER(1),
1389 PMU_PMEVTYPER(2),
1390 PMU_PMEVTYPER(3),
1391 PMU_PMEVTYPER(4),
1392 PMU_PMEVTYPER(5),
1393 PMU_PMEVTYPER(6),
1394 PMU_PMEVTYPER(7),
1395 PMU_PMEVTYPER(8),
1396 PMU_PMEVTYPER(9),
1397 PMU_PMEVTYPER(10),
1398 PMU_PMEVTYPER(11),
1399 PMU_PMEVTYPER(12),
1400 PMU_PMEVTYPER(13),
1401 PMU_PMEVTYPER(14),
1402 PMU_PMEVTYPER(15),
1403 PMU_PMEVTYPER(16),
1404 PMU_PMEVTYPER(17),
1405 PMU_PMEVTYPER(18),
1406 PMU_PMEVTYPER(19),
1407 PMU_PMEVTYPER(20),
1408 PMU_PMEVTYPER(21),
1409 PMU_PMEVTYPER(22),
1410 PMU_PMEVTYPER(23),
1411 PMU_PMEVTYPER(24),
1412 PMU_PMEVTYPER(25),
1413 PMU_PMEVTYPER(26),
1414 PMU_PMEVTYPER(27),
1415 PMU_PMEVTYPER(28),
1416 PMU_PMEVTYPER(29),
1417 PMU_PMEVTYPER(30),
1418 /* PMCCFILTR */
1419 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1420 };
1421
1422 static const struct sys_reg_desc cp15_64_regs[] = {
1423 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1424 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1425 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1426 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1427 };
1428
1429 /* Target specific emulation tables */
1430 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1431
1432 void kvm_register_target_sys_reg_table(unsigned int target,
1433 struct kvm_sys_reg_target_table *table)
1434 {
1435 target_tables[target] = table;
1436 }
1437
1438 /* Get specific register table for this target. */
1439 static const struct sys_reg_desc *get_target_table(unsigned target,
1440 bool mode_is_64,
1441 size_t *num)
1442 {
1443 struct kvm_sys_reg_target_table *table;
1444
1445 table = target_tables[target];
1446 if (mode_is_64) {
1447 *num = table->table64.num;
1448 return table->table64.table;
1449 } else {
1450 *num = table->table32.num;
1451 return table->table32.table;
1452 }
1453 }
1454
1455 #define reg_to_match_value(x) \
1456 ({ \
1457 unsigned long val; \
1458 val = (x)->Op0 << 14; \
1459 val |= (x)->Op1 << 11; \
1460 val |= (x)->CRn << 7; \
1461 val |= (x)->CRm << 3; \
1462 val |= (x)->Op2; \
1463 val; \
1464 })
1465
1466 static int match_sys_reg(const void *key, const void *elt)
1467 {
1468 const unsigned long pval = (unsigned long)key;
1469 const struct sys_reg_desc *r = elt;
1470
1471 return pval - reg_to_match_value(r);
1472 }
1473
1474 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1475 const struct sys_reg_desc table[],
1476 unsigned int num)
1477 {
1478 unsigned long pval = reg_to_match_value(params);
1479
1480 return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1481 }
1482
1483 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1484 {
1485 kvm_inject_undefined(vcpu);
1486 return 1;
1487 }
1488
1489 /*
1490 * emulate_cp -- tries to match a sys_reg access in a handling table, and
1491 * call the corresponding trap handler.
1492 *
1493 * @params: pointer to the descriptor of the access
1494 * @table: array of trap descriptors
1495 * @num: size of the trap descriptor array
1496 *
1497 * Return 0 if the access has been handled, and -1 if not.
1498 */
1499 static int emulate_cp(struct kvm_vcpu *vcpu,
1500 struct sys_reg_params *params,
1501 const struct sys_reg_desc *table,
1502 size_t num)
1503 {
1504 const struct sys_reg_desc *r;
1505
1506 if (!table)
1507 return -1; /* Not handled */
1508
1509 r = find_reg(params, table, num);
1510
1511 if (r) {
1512 /*
1513 * Not having an accessor means that we have
1514 * configured a trap that we don't know how to
1515 * handle. This certainly qualifies as a gross bug
1516 * that should be fixed right away.
1517 */
1518 BUG_ON(!r->access);
1519
1520 if (likely(r->access(vcpu, params, r))) {
1521 /* Skip instruction, since it was emulated */
1522 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1523 /* Handled */
1524 return 0;
1525 }
1526 }
1527
1528 /* Not handled */
1529 return -1;
1530 }
1531
1532 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1533 struct sys_reg_params *params)
1534 {
1535 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1536 int cp = -1;
1537
1538 switch(hsr_ec) {
1539 case ESR_ELx_EC_CP15_32:
1540 case ESR_ELx_EC_CP15_64:
1541 cp = 15;
1542 break;
1543 case ESR_ELx_EC_CP14_MR:
1544 case ESR_ELx_EC_CP14_64:
1545 cp = 14;
1546 break;
1547 default:
1548 WARN_ON(1);
1549 }
1550
1551 kvm_err("Unsupported guest CP%d access at: %08lx\n",
1552 cp, *vcpu_pc(vcpu));
1553 print_sys_reg_instr(params);
1554 kvm_inject_undefined(vcpu);
1555 }
1556
1557 /**
1558 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1559 * @vcpu: The VCPU pointer
1560 * @run: The kvm_run struct
1561 */
1562 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1563 const struct sys_reg_desc *global,
1564 size_t nr_global,
1565 const struct sys_reg_desc *target_specific,
1566 size_t nr_specific)
1567 {
1568 struct sys_reg_params params;
1569 u32 hsr = kvm_vcpu_get_hsr(vcpu);
1570 int Rt = (hsr >> 5) & 0xf;
1571 int Rt2 = (hsr >> 10) & 0xf;
1572
1573 params.is_aarch32 = true;
1574 params.is_32bit = false;
1575 params.CRm = (hsr >> 1) & 0xf;
1576 params.is_write = ((hsr & 1) == 0);
1577
1578 params.Op0 = 0;
1579 params.Op1 = (hsr >> 16) & 0xf;
1580 params.Op2 = 0;
1581 params.CRn = 0;
1582
1583 /*
1584 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1585 * backends between AArch32 and AArch64, we get away with it.
1586 */
1587 if (params.is_write) {
1588 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1589 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1590 }
1591
1592 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1593 goto out;
1594 if (!emulate_cp(vcpu, &params, global, nr_global))
1595 goto out;
1596
1597 unhandled_cp_access(vcpu, &params);
1598
1599 out:
1600 /* Split up the value between registers for the read side */
1601 if (!params.is_write) {
1602 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1603 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1604 }
1605
1606 return 1;
1607 }
1608
1609 /**
1610 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1611 * @vcpu: The VCPU pointer
1612 * @run: The kvm_run struct
1613 */
1614 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1615 const struct sys_reg_desc *global,
1616 size_t nr_global,
1617 const struct sys_reg_desc *target_specific,
1618 size_t nr_specific)
1619 {
1620 struct sys_reg_params params;
1621 u32 hsr = kvm_vcpu_get_hsr(vcpu);
1622 int Rt = (hsr >> 5) & 0xf;
1623
1624 params.is_aarch32 = true;
1625 params.is_32bit = true;
1626 params.CRm = (hsr >> 1) & 0xf;
1627 params.regval = vcpu_get_reg(vcpu, Rt);
1628 params.is_write = ((hsr & 1) == 0);
1629 params.CRn = (hsr >> 10) & 0xf;
1630 params.Op0 = 0;
1631 params.Op1 = (hsr >> 14) & 0x7;
1632 params.Op2 = (hsr >> 17) & 0x7;
1633
1634 if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1635 !emulate_cp(vcpu, &params, global, nr_global)) {
1636 if (!params.is_write)
1637 vcpu_set_reg(vcpu, Rt, params.regval);
1638 return 1;
1639 }
1640
1641 unhandled_cp_access(vcpu, &params);
1642 return 1;
1643 }
1644
1645 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1646 {
1647 const struct sys_reg_desc *target_specific;
1648 size_t num;
1649
1650 target_specific = get_target_table(vcpu->arch.target, false, &num);
1651 return kvm_handle_cp_64(vcpu,
1652 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1653 target_specific, num);
1654 }
1655
1656 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1657 {
1658 const struct sys_reg_desc *target_specific;
1659 size_t num;
1660
1661 target_specific = get_target_table(vcpu->arch.target, false, &num);
1662 return kvm_handle_cp_32(vcpu,
1663 cp15_regs, ARRAY_SIZE(cp15_regs),
1664 target_specific, num);
1665 }
1666
1667 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1668 {
1669 return kvm_handle_cp_64(vcpu,
1670 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1671 NULL, 0);
1672 }
1673
1674 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1675 {
1676 return kvm_handle_cp_32(vcpu,
1677 cp14_regs, ARRAY_SIZE(cp14_regs),
1678 NULL, 0);
1679 }
1680
1681 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1682 struct sys_reg_params *params)
1683 {
1684 size_t num;
1685 const struct sys_reg_desc *table, *r;
1686
1687 table = get_target_table(vcpu->arch.target, true, &num);
1688
1689 /* Search target-specific then generic table. */
1690 r = find_reg(params, table, num);
1691 if (!r)
1692 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1693
1694 if (likely(r)) {
1695 /*
1696 * Not having an accessor means that we have
1697 * configured a trap that we don't know how to
1698 * handle. This certainly qualifies as a gross bug
1699 * that should be fixed right away.
1700 */
1701 BUG_ON(!r->access);
1702
1703 if (likely(r->access(vcpu, params, r))) {
1704 /* Skip instruction, since it was emulated */
1705 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1706 return 1;
1707 }
1708 /* If access function fails, it should complain. */
1709 } else {
1710 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1711 *vcpu_pc(vcpu));
1712 print_sys_reg_instr(params);
1713 }
1714 kvm_inject_undefined(vcpu);
1715 return 1;
1716 }
1717
1718 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1719 const struct sys_reg_desc *table, size_t num)
1720 {
1721 unsigned long i;
1722
1723 for (i = 0; i < num; i++)
1724 if (table[i].reset)
1725 table[i].reset(vcpu, &table[i]);
1726 }
1727
1728 /**
1729 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1730 * @vcpu: The VCPU pointer
1731 * @run: The kvm_run struct
1732 */
1733 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1734 {
1735 struct sys_reg_params params;
1736 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1737 int Rt = (esr >> 5) & 0x1f;
1738 int ret;
1739
1740 trace_kvm_handle_sys_reg(esr);
1741
1742 params.is_aarch32 = false;
1743 params.is_32bit = false;
1744 params.Op0 = (esr >> 20) & 3;
1745 params.Op1 = (esr >> 14) & 0x7;
1746 params.CRn = (esr >> 10) & 0xf;
1747 params.CRm = (esr >> 1) & 0xf;
1748 params.Op2 = (esr >> 17) & 0x7;
1749 params.regval = vcpu_get_reg(vcpu, Rt);
1750 params.is_write = !(esr & 1);
1751
1752 ret = emulate_sys_reg(vcpu, &params);
1753
1754 if (!params.is_write)
1755 vcpu_set_reg(vcpu, Rt, params.regval);
1756 return ret;
1757 }
1758
1759 /******************************************************************************
1760 * Userspace API
1761 *****************************************************************************/
1762
1763 static bool index_to_params(u64 id, struct sys_reg_params *params)
1764 {
1765 switch (id & KVM_REG_SIZE_MASK) {
1766 case KVM_REG_SIZE_U64:
1767 /* Any unused index bits means it's not valid. */
1768 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1769 | KVM_REG_ARM_COPROC_MASK
1770 | KVM_REG_ARM64_SYSREG_OP0_MASK
1771 | KVM_REG_ARM64_SYSREG_OP1_MASK
1772 | KVM_REG_ARM64_SYSREG_CRN_MASK
1773 | KVM_REG_ARM64_SYSREG_CRM_MASK
1774 | KVM_REG_ARM64_SYSREG_OP2_MASK))
1775 return false;
1776 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1777 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1778 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1779 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1780 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1781 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1782 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1783 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1784 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1785 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1786 return true;
1787 default:
1788 return false;
1789 }
1790 }
1791
1792 /* Decode an index value, and find the sys_reg_desc entry. */
1793 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1794 u64 id)
1795 {
1796 size_t num;
1797 const struct sys_reg_desc *table, *r;
1798 struct sys_reg_params params;
1799
1800 /* We only do sys_reg for now. */
1801 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1802 return NULL;
1803
1804 if (!index_to_params(id, &params))
1805 return NULL;
1806
1807 table = get_target_table(vcpu->arch.target, true, &num);
1808 r = find_reg(&params, table, num);
1809 if (!r)
1810 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1811
1812 /* Not saved in the sys_reg array? */
1813 if (r && !r->reg)
1814 r = NULL;
1815
1816 return r;
1817 }
1818
1819 /*
1820 * These are the invariant sys_reg registers: we let the guest see the
1821 * host versions of these, so they're part of the guest state.
1822 *
1823 * A future CPU may provide a mechanism to present different values to
1824 * the guest, or a future kvm may trap them.
1825 */
1826
1827 #define FUNCTION_INVARIANT(reg) \
1828 static void get_##reg(struct kvm_vcpu *v, \
1829 const struct sys_reg_desc *r) \
1830 { \
1831 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
1832 }
1833
1834 FUNCTION_INVARIANT(midr_el1)
1835 FUNCTION_INVARIANT(ctr_el0)
1836 FUNCTION_INVARIANT(revidr_el1)
1837 FUNCTION_INVARIANT(id_pfr0_el1)
1838 FUNCTION_INVARIANT(id_pfr1_el1)
1839 FUNCTION_INVARIANT(id_dfr0_el1)
1840 FUNCTION_INVARIANT(id_afr0_el1)
1841 FUNCTION_INVARIANT(id_mmfr0_el1)
1842 FUNCTION_INVARIANT(id_mmfr1_el1)
1843 FUNCTION_INVARIANT(id_mmfr2_el1)
1844 FUNCTION_INVARIANT(id_mmfr3_el1)
1845 FUNCTION_INVARIANT(id_isar0_el1)
1846 FUNCTION_INVARIANT(id_isar1_el1)
1847 FUNCTION_INVARIANT(id_isar2_el1)
1848 FUNCTION_INVARIANT(id_isar3_el1)
1849 FUNCTION_INVARIANT(id_isar4_el1)
1850 FUNCTION_INVARIANT(id_isar5_el1)
1851 FUNCTION_INVARIANT(clidr_el1)
1852 FUNCTION_INVARIANT(aidr_el1)
1853
1854 /* ->val is filled in by kvm_sys_reg_table_init() */
1855 static struct sys_reg_desc invariant_sys_regs[] = {
1856 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1857 NULL, get_midr_el1 },
1858 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1859 NULL, get_revidr_el1 },
1860 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1861 NULL, get_id_pfr0_el1 },
1862 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1863 NULL, get_id_pfr1_el1 },
1864 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1865 NULL, get_id_dfr0_el1 },
1866 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1867 NULL, get_id_afr0_el1 },
1868 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1869 NULL, get_id_mmfr0_el1 },
1870 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1871 NULL, get_id_mmfr1_el1 },
1872 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1873 NULL, get_id_mmfr2_el1 },
1874 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1875 NULL, get_id_mmfr3_el1 },
1876 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1877 NULL, get_id_isar0_el1 },
1878 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1879 NULL, get_id_isar1_el1 },
1880 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1881 NULL, get_id_isar2_el1 },
1882 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1883 NULL, get_id_isar3_el1 },
1884 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1885 NULL, get_id_isar4_el1 },
1886 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1887 NULL, get_id_isar5_el1 },
1888 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1889 NULL, get_clidr_el1 },
1890 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1891 NULL, get_aidr_el1 },
1892 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1893 NULL, get_ctr_el0 },
1894 };
1895
1896 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1897 {
1898 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1899 return -EFAULT;
1900 return 0;
1901 }
1902
1903 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1904 {
1905 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1906 return -EFAULT;
1907 return 0;
1908 }
1909
1910 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1911 {
1912 struct sys_reg_params params;
1913 const struct sys_reg_desc *r;
1914
1915 if (!index_to_params(id, &params))
1916 return -ENOENT;
1917
1918 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1919 if (!r)
1920 return -ENOENT;
1921
1922 return reg_to_user(uaddr, &r->val, id);
1923 }
1924
1925 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1926 {
1927 struct sys_reg_params params;
1928 const struct sys_reg_desc *r;
1929 int err;
1930 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1931
1932 if (!index_to_params(id, &params))
1933 return -ENOENT;
1934 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1935 if (!r)
1936 return -ENOENT;
1937
1938 err = reg_from_user(&val, uaddr, id);
1939 if (err)
1940 return err;
1941
1942 /* This is what we mean by invariant: you can't change it. */
1943 if (r->val != val)
1944 return -EINVAL;
1945
1946 return 0;
1947 }
1948
1949 static bool is_valid_cache(u32 val)
1950 {
1951 u32 level, ctype;
1952
1953 if (val >= CSSELR_MAX)
1954 return false;
1955
1956 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
1957 level = (val >> 1);
1958 ctype = (cache_levels >> (level * 3)) & 7;
1959
1960 switch (ctype) {
1961 case 0: /* No cache */
1962 return false;
1963 case 1: /* Instruction cache only */
1964 return (val & 1);
1965 case 2: /* Data cache only */
1966 case 4: /* Unified cache */
1967 return !(val & 1);
1968 case 3: /* Separate instruction and data caches */
1969 return true;
1970 default: /* Reserved: we can't know instruction or data. */
1971 return false;
1972 }
1973 }
1974
1975 static int demux_c15_get(u64 id, void __user *uaddr)
1976 {
1977 u32 val;
1978 u32 __user *uval = uaddr;
1979
1980 /* Fail if we have unknown bits set. */
1981 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1982 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1983 return -ENOENT;
1984
1985 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1986 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1987 if (KVM_REG_SIZE(id) != 4)
1988 return -ENOENT;
1989 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1990 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1991 if (!is_valid_cache(val))
1992 return -ENOENT;
1993
1994 return put_user(get_ccsidr(val), uval);
1995 default:
1996 return -ENOENT;
1997 }
1998 }
1999
2000 static int demux_c15_set(u64 id, void __user *uaddr)
2001 {
2002 u32 val, newval;
2003 u32 __user *uval = uaddr;
2004
2005 /* Fail if we have unknown bits set. */
2006 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2007 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2008 return -ENOENT;
2009
2010 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2011 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2012 if (KVM_REG_SIZE(id) != 4)
2013 return -ENOENT;
2014 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2015 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2016 if (!is_valid_cache(val))
2017 return -ENOENT;
2018
2019 if (get_user(newval, uval))
2020 return -EFAULT;
2021
2022 /* This is also invariant: you can't change it. */
2023 if (newval != get_ccsidr(val))
2024 return -EINVAL;
2025 return 0;
2026 default:
2027 return -ENOENT;
2028 }
2029 }
2030
2031 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2032 {
2033 const struct sys_reg_desc *r;
2034 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2035
2036 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2037 return demux_c15_get(reg->id, uaddr);
2038
2039 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2040 return -ENOENT;
2041
2042 r = index_to_sys_reg_desc(vcpu, reg->id);
2043 if (!r)
2044 return get_invariant_sys_reg(reg->id, uaddr);
2045
2046 if (r->get_user)
2047 return (r->get_user)(vcpu, r, reg, uaddr);
2048
2049 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
2050 }
2051
2052 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2053 {
2054 const struct sys_reg_desc *r;
2055 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2056
2057 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2058 return demux_c15_set(reg->id, uaddr);
2059
2060 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2061 return -ENOENT;
2062
2063 r = index_to_sys_reg_desc(vcpu, reg->id);
2064 if (!r)
2065 return set_invariant_sys_reg(reg->id, uaddr);
2066
2067 if (r->set_user)
2068 return (r->set_user)(vcpu, r, reg, uaddr);
2069
2070 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2071 }
2072
2073 static unsigned int num_demux_regs(void)
2074 {
2075 unsigned int i, count = 0;
2076
2077 for (i = 0; i < CSSELR_MAX; i++)
2078 if (is_valid_cache(i))
2079 count++;
2080
2081 return count;
2082 }
2083
2084 static int write_demux_regids(u64 __user *uindices)
2085 {
2086 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2087 unsigned int i;
2088
2089 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2090 for (i = 0; i < CSSELR_MAX; i++) {
2091 if (!is_valid_cache(i))
2092 continue;
2093 if (put_user(val | i, uindices))
2094 return -EFAULT;
2095 uindices++;
2096 }
2097 return 0;
2098 }
2099
2100 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2101 {
2102 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2103 KVM_REG_ARM64_SYSREG |
2104 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2105 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2106 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2107 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2108 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2109 }
2110
2111 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2112 {
2113 if (!*uind)
2114 return true;
2115
2116 if (put_user(sys_reg_to_index(reg), *uind))
2117 return false;
2118
2119 (*uind)++;
2120 return true;
2121 }
2122
2123 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2124 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2125 {
2126 const struct sys_reg_desc *i1, *i2, *end1, *end2;
2127 unsigned int total = 0;
2128 size_t num;
2129
2130 /* We check for duplicates here, to allow arch-specific overrides. */
2131 i1 = get_target_table(vcpu->arch.target, true, &num);
2132 end1 = i1 + num;
2133 i2 = sys_reg_descs;
2134 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2135
2136 BUG_ON(i1 == end1 || i2 == end2);
2137
2138 /* Walk carefully, as both tables may refer to the same register. */
2139 while (i1 || i2) {
2140 int cmp = cmp_sys_reg(i1, i2);
2141 /* target-specific overrides generic entry. */
2142 if (cmp <= 0) {
2143 /* Ignore registers we trap but don't save. */
2144 if (i1->reg) {
2145 if (!copy_reg_to_user(i1, &uind))
2146 return -EFAULT;
2147 total++;
2148 }
2149 } else {
2150 /* Ignore registers we trap but don't save. */
2151 if (i2->reg) {
2152 if (!copy_reg_to_user(i2, &uind))
2153 return -EFAULT;
2154 total++;
2155 }
2156 }
2157
2158 if (cmp <= 0 && ++i1 == end1)
2159 i1 = NULL;
2160 if (cmp >= 0 && ++i2 == end2)
2161 i2 = NULL;
2162 }
2163 return total;
2164 }
2165
2166 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2167 {
2168 return ARRAY_SIZE(invariant_sys_regs)
2169 + num_demux_regs()
2170 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2171 }
2172
2173 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2174 {
2175 unsigned int i;
2176 int err;
2177
2178 /* Then give them all the invariant registers' indices. */
2179 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2180 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2181 return -EFAULT;
2182 uindices++;
2183 }
2184
2185 err = walk_sys_regs(vcpu, uindices);
2186 if (err < 0)
2187 return err;
2188 uindices += err;
2189
2190 return write_demux_regids(uindices);
2191 }
2192
2193 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2194 {
2195 unsigned int i;
2196
2197 for (i = 1; i < n; i++) {
2198 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2199 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2200 return 1;
2201 }
2202 }
2203
2204 return 0;
2205 }
2206
2207 void kvm_sys_reg_table_init(void)
2208 {
2209 unsigned int i;
2210 struct sys_reg_desc clidr;
2211
2212 /* Make sure tables are unique and in order. */
2213 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2214 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2215 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2216 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2217 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2218 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2219
2220 /* We abuse the reset function to overwrite the table itself. */
2221 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2222 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2223
2224 /*
2225 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
2226 *
2227 * If software reads the Cache Type fields from Ctype1
2228 * upwards, once it has seen a value of 0b000, no caches
2229 * exist at further-out levels of the hierarchy. So, for
2230 * example, if Ctype3 is the first Cache Type field with a
2231 * value of 0b000, the values of Ctype4 to Ctype7 must be
2232 * ignored.
2233 */
2234 get_clidr_el1(NULL, &clidr); /* Ugly... */
2235 cache_levels = clidr.val;
2236 for (i = 0; i < 7; i++)
2237 if (((cache_levels >> (i*3)) & 7) == 0)
2238 break;
2239 /* Clear all higher bits. */
2240 cache_levels &= (1 << (i*3))-1;
2241 }
2242
2243 /**
2244 * kvm_reset_sys_regs - sets system registers to reset value
2245 * @vcpu: The VCPU pointer
2246 *
2247 * This function finds the right table above and sets the registers on the
2248 * virtual CPU struct to their architecturally defined reset values.
2249 */
2250 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2251 {
2252 size_t num;
2253 const struct sys_reg_desc *table;
2254
2255 /* Catch someone adding a register without putting in reset entry. */
2256 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2257
2258 /* Generic chip reset first (so target could override). */
2259 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2260
2261 table = get_target_table(vcpu->arch.target, true, &num);
2262 reset_sys_reg_descs(vcpu, table, num);
2263
2264 for (num = 1; num < NR_SYS_REGS; num++)
2265 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
2266 panic("Didn't reset vcpu_sys_reg(%zi)", num);
2267 }
This page took 0.195127 seconds and 5 git commands to generate.