Merge tag 'clk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux
[deliverable/linux.git] / arch / c6x / platforms / dscr.c
1 /*
2 * Device State Control Registers driver
3 *
4 * Copyright (C) 2011 Texas Instruments Incorporated
5 * Author: Mark Salter <msalter@redhat.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 /*
13 * The Device State Control Registers (DSCR) provide SoC level control over
14 * a number of peripherals. Details vary considerably among the various SoC
15 * parts. In general, the DSCR block will provide one or more configuration
16 * registers often protected by a lock register. One or more key values must
17 * be written to a lock register in order to unlock the configuration register.
18 * The configuration register may be used to enable (and disable in some
19 * cases) SoC pin drivers, peripheral clock sources (internal or pin), etc.
20 * In some cases, a configuration register is write once or the individual
21 * bits are write once. That is, you may be able to enable a device, but
22 * will not be able to disable it.
23 *
24 * In addition to device configuration, the DSCR block may provide registers
25 * which are used to reset SoC peripherals, provide device ID information,
26 * provide MAC addresses, and other miscellaneous functions.
27 */
28
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_platform.h>
32 #include <linux/module.h>
33 #include <linux/io.h>
34 #include <linux/delay.h>
35 #include <asm/soc.h>
36 #include <asm/dscr.h>
37
38 #define MAX_DEVSTATE_IDS 32
39 #define MAX_DEVCTL_REGS 8
40 #define MAX_DEVSTAT_REGS 8
41 #define MAX_LOCKED_REGS 4
42 #define MAX_SOC_EMACS 2
43
44 struct rmii_reset_reg {
45 u32 reg;
46 u32 mask;
47 };
48
49 /*
50 * Some registerd may be locked. In order to write to these
51 * registers, the key value must first be written to the lockreg.
52 */
53 struct locked_reg {
54 u32 reg; /* offset from base */
55 u32 lockreg; /* offset from base */
56 u32 key; /* unlock key */
57 };
58
59 /*
60 * This describes a contiguous area of like control bits used to enable/disable
61 * SoC devices. Each controllable device is given an ID which is used by the
62 * individual device drivers to control the device state. These IDs start at
63 * zero and are assigned sequentially to the control bitfield ranges described
64 * by this structure.
65 */
66 struct devstate_ctl_reg {
67 u32 reg; /* register holding the control bits */
68 u8 start_id; /* start id of this range */
69 u8 num_ids; /* number of devices in this range */
70 u8 enable_only; /* bits are write-once to enable only */
71 u8 enable; /* value used to enable device */
72 u8 disable; /* value used to disable device */
73 u8 shift; /* starting (rightmost) bit in range */
74 u8 nbits; /* number of bits per device */
75 };
76
77
78 /*
79 * This describes a region of status bits indicating the state of
80 * various devices. This is used internally to wait for status
81 * change completion when enabling/disabling a device. Status is
82 * optional and not all device controls will have a corresponding
83 * status.
84 */
85 struct devstate_stat_reg {
86 u32 reg; /* register holding the status bits */
87 u8 start_id; /* start id of this range */
88 u8 num_ids; /* number of devices in this range */
89 u8 enable; /* value indicating enabled state */
90 u8 disable; /* value indicating disabled state */
91 u8 shift; /* starting (rightmost) bit in range */
92 u8 nbits; /* number of bits per device */
93 };
94
95 struct devstate_info {
96 struct devstate_ctl_reg *ctl;
97 struct devstate_stat_reg *stat;
98 };
99
100 /* These are callbacks to SOC-specific code. */
101 struct dscr_ops {
102 void (*init)(struct device_node *node);
103 };
104
105 struct dscr_regs {
106 spinlock_t lock;
107 void __iomem *base;
108 u32 kick_reg[2];
109 u32 kick_key[2];
110 struct locked_reg locked[MAX_LOCKED_REGS];
111 struct devstate_info devstate_info[MAX_DEVSTATE_IDS];
112 struct rmii_reset_reg rmii_resets[MAX_SOC_EMACS];
113 struct devstate_ctl_reg devctl[MAX_DEVCTL_REGS];
114 struct devstate_stat_reg devstat[MAX_DEVSTAT_REGS];
115 };
116
117 static struct dscr_regs dscr;
118
119 static struct locked_reg *find_locked_reg(u32 reg)
120 {
121 int i;
122
123 for (i = 0; i < MAX_LOCKED_REGS; i++)
124 if (dscr.locked[i].key && reg == dscr.locked[i].reg)
125 return &dscr.locked[i];
126 return NULL;
127 }
128
129 /*
130 * Write to a register with one lock
131 */
132 static void dscr_write_locked1(u32 reg, u32 val,
133 u32 lock, u32 key)
134 {
135 void __iomem *reg_addr = dscr.base + reg;
136 void __iomem *lock_addr = dscr.base + lock;
137
138 /*
139 * For some registers, the lock is relocked after a short number
140 * of cycles. We have to put the lock write and register write in
141 * the same fetch packet to meet this timing. The .align ensures
142 * the two stw instructions are in the same fetch packet.
143 */
144 asm volatile ("b .s2 0f\n"
145 "nop 5\n"
146 " .align 5\n"
147 "0:\n"
148 "stw .D1T2 %3,*%2\n"
149 "stw .D1T2 %1,*%0\n"
150 :
151 : "a"(reg_addr), "b"(val), "a"(lock_addr), "b"(key)
152 );
153
154 /* in case the hw doesn't reset the lock */
155 soc_writel(0, lock_addr);
156 }
157
158 /*
159 * Write to a register protected by two lock registers
160 */
161 static void dscr_write_locked2(u32 reg, u32 val,
162 u32 lock0, u32 key0,
163 u32 lock1, u32 key1)
164 {
165 soc_writel(key0, dscr.base + lock0);
166 soc_writel(key1, dscr.base + lock1);
167 soc_writel(val, dscr.base + reg);
168 soc_writel(0, dscr.base + lock0);
169 soc_writel(0, dscr.base + lock1);
170 }
171
172 static void dscr_write(u32 reg, u32 val)
173 {
174 struct locked_reg *lock;
175
176 lock = find_locked_reg(reg);
177 if (lock)
178 dscr_write_locked1(reg, val, lock->lockreg, lock->key);
179 else if (dscr.kick_key[0])
180 dscr_write_locked2(reg, val, dscr.kick_reg[0], dscr.kick_key[0],
181 dscr.kick_reg[1], dscr.kick_key[1]);
182 else
183 soc_writel(val, dscr.base + reg);
184 }
185
186
187 /*
188 * Drivers can use this interface to enable/disable SoC IP blocks.
189 */
190 void dscr_set_devstate(int id, enum dscr_devstate_t state)
191 {
192 struct devstate_ctl_reg *ctl;
193 struct devstate_stat_reg *stat;
194 struct devstate_info *info;
195 u32 ctl_val, val;
196 int ctl_shift, ctl_mask;
197 unsigned long flags;
198
199 if (!dscr.base)
200 return;
201
202 if (id < 0 || id >= MAX_DEVSTATE_IDS)
203 return;
204
205 info = &dscr.devstate_info[id];
206 ctl = info->ctl;
207 stat = info->stat;
208
209 if (ctl == NULL)
210 return;
211
212 ctl_shift = ctl->shift + ctl->nbits * (id - ctl->start_id);
213 ctl_mask = ((1 << ctl->nbits) - 1) << ctl_shift;
214
215 switch (state) {
216 case DSCR_DEVSTATE_ENABLED:
217 ctl_val = ctl->enable << ctl_shift;
218 break;
219 case DSCR_DEVSTATE_DISABLED:
220 if (ctl->enable_only)
221 return;
222 ctl_val = ctl->disable << ctl_shift;
223 break;
224 default:
225 return;
226 }
227
228 spin_lock_irqsave(&dscr.lock, flags);
229
230 val = soc_readl(dscr.base + ctl->reg);
231 val &= ~ctl_mask;
232 val |= ctl_val;
233
234 dscr_write(ctl->reg, val);
235
236 spin_unlock_irqrestore(&dscr.lock, flags);
237
238 if (!stat)
239 return;
240
241 ctl_shift = stat->shift + stat->nbits * (id - stat->start_id);
242
243 if (state == DSCR_DEVSTATE_ENABLED)
244 ctl_val = stat->enable;
245 else
246 ctl_val = stat->disable;
247
248 do {
249 val = soc_readl(dscr.base + stat->reg);
250 val >>= ctl_shift;
251 val &= ((1 << stat->nbits) - 1);
252 } while (val != ctl_val);
253 }
254 EXPORT_SYMBOL(dscr_set_devstate);
255
256 /*
257 * Drivers can use this to reset RMII module.
258 */
259 void dscr_rmii_reset(int id, int assert)
260 {
261 struct rmii_reset_reg *r;
262 unsigned long flags;
263 u32 val;
264
265 if (id < 0 || id >= MAX_SOC_EMACS)
266 return;
267
268 r = &dscr.rmii_resets[id];
269 if (r->mask == 0)
270 return;
271
272 spin_lock_irqsave(&dscr.lock, flags);
273
274 val = soc_readl(dscr.base + r->reg);
275 if (assert)
276 dscr_write(r->reg, val | r->mask);
277 else
278 dscr_write(r->reg, val & ~(r->mask));
279
280 spin_unlock_irqrestore(&dscr.lock, flags);
281 }
282 EXPORT_SYMBOL(dscr_rmii_reset);
283
284 static void __init dscr_parse_devstat(struct device_node *node,
285 void __iomem *base)
286 {
287 u32 val;
288 int err;
289
290 err = of_property_read_u32_array(node, "ti,dscr-devstat", &val, 1);
291 if (!err)
292 c6x_devstat = soc_readl(base + val);
293 printk(KERN_INFO "DEVSTAT: %08x\n", c6x_devstat);
294 }
295
296 static void __init dscr_parse_silicon_rev(struct device_node *node,
297 void __iomem *base)
298 {
299 u32 vals[3];
300 int err;
301
302 err = of_property_read_u32_array(node, "ti,dscr-silicon-rev", vals, 3);
303 if (!err) {
304 c6x_silicon_rev = soc_readl(base + vals[0]);
305 c6x_silicon_rev >>= vals[1];
306 c6x_silicon_rev &= vals[2];
307 }
308 }
309
310 /*
311 * Some SoCs will have a pair of fuse registers which hold
312 * an ethernet MAC address. The "ti,dscr-mac-fuse-regs"
313 * property is a mapping from fuse register bytes to MAC
314 * address bytes. The expected format is:
315 *
316 * ti,dscr-mac-fuse-regs = <reg0 b3 b2 b1 b0
317 * reg1 b3 b2 b1 b0>
318 *
319 * reg0 and reg1 are the offsets of the two fuse registers.
320 * b3-b0 positionally represent bytes within the fuse register.
321 * b3 is the most significant byte and b0 is the least.
322 * Allowable values for b3-b0 are:
323 *
324 * 0 = fuse register byte not used in MAC address
325 * 1-6 = index+1 into c6x_fuse_mac[]
326 */
327 static void __init dscr_parse_mac_fuse(struct device_node *node,
328 void __iomem *base)
329 {
330 u32 vals[10], fuse;
331 int f, i, j, err;
332
333 err = of_property_read_u32_array(node, "ti,dscr-mac-fuse-regs",
334 vals, 10);
335 if (err)
336 return;
337
338 for (f = 0; f < 2; f++) {
339 fuse = soc_readl(base + vals[f * 5]);
340 for (j = (f * 5) + 1, i = 24; i >= 0; i -= 8, j++)
341 if (vals[j] && vals[j] <= 6)
342 c6x_fuse_mac[vals[j] - 1] = fuse >> i;
343 }
344 }
345
346 static void __init dscr_parse_rmii_resets(struct device_node *node,
347 void __iomem *base)
348 {
349 const __be32 *p;
350 int i, size;
351
352 /* look for RMII reset registers */
353 p = of_get_property(node, "ti,dscr-rmii-resets", &size);
354 if (p) {
355 /* parse all the reg/mask pairs we can handle */
356 size /= (sizeof(*p) * 2);
357 if (size > MAX_SOC_EMACS)
358 size = MAX_SOC_EMACS;
359
360 for (i = 0; i < size; i++) {
361 dscr.rmii_resets[i].reg = be32_to_cpup(p++);
362 dscr.rmii_resets[i].mask = be32_to_cpup(p++);
363 }
364 }
365 }
366
367
368 static void __init dscr_parse_privperm(struct device_node *node,
369 void __iomem *base)
370 {
371 u32 vals[2];
372 int err;
373
374 err = of_property_read_u32_array(node, "ti,dscr-privperm", vals, 2);
375 if (err)
376 return;
377 dscr_write(vals[0], vals[1]);
378 }
379
380 /*
381 * SoCs may have "locked" DSCR registers which can only be written
382 * to only after writing a key value to a lock registers. These
383 * regisers can be described with the "ti,dscr-locked-regs" property.
384 * This property provides a list of register descriptions with each
385 * description consisting of three values.
386 *
387 * ti,dscr-locked-regs = <reg0 lockreg0 key0
388 * ...
389 * regN lockregN keyN>;
390 *
391 * reg is the offset of the locked register
392 * lockreg is the offset of the lock register
393 * key is the unlock key written to lockreg
394 *
395 */
396 static void __init dscr_parse_locked_regs(struct device_node *node,
397 void __iomem *base)
398 {
399 struct locked_reg *r;
400 const __be32 *p;
401 int i, size;
402
403 p = of_get_property(node, "ti,dscr-locked-regs", &size);
404 if (p) {
405 /* parse all the register descriptions we can handle */
406 size /= (sizeof(*p) * 3);
407 if (size > MAX_LOCKED_REGS)
408 size = MAX_LOCKED_REGS;
409
410 for (i = 0; i < size; i++) {
411 r = &dscr.locked[i];
412
413 r->reg = be32_to_cpup(p++);
414 r->lockreg = be32_to_cpup(p++);
415 r->key = be32_to_cpup(p++);
416 }
417 }
418 }
419
420 /*
421 * SoCs may have DSCR registers which are only write enabled after
422 * writing specific key values to two registers. The two key registers
423 * and the key values can be parsed from a "ti,dscr-kick-regs"
424 * propety with the following layout:
425 *
426 * ti,dscr-kick-regs = <kickreg0 key0 kickreg1 key1>
427 *
428 * kickreg is the offset of the "kick" register
429 * key is the value which unlocks writing for protected regs
430 */
431 static void __init dscr_parse_kick_regs(struct device_node *node,
432 void __iomem *base)
433 {
434 u32 vals[4];
435 int err;
436
437 err = of_property_read_u32_array(node, "ti,dscr-kick-regs", vals, 4);
438 if (!err) {
439 dscr.kick_reg[0] = vals[0];
440 dscr.kick_key[0] = vals[1];
441 dscr.kick_reg[1] = vals[2];
442 dscr.kick_key[1] = vals[3];
443 }
444 }
445
446
447 /*
448 * SoCs may provide controls to enable/disable individual IP blocks. These
449 * controls in the DSCR usually control pin drivers but also may control
450 * clocking and or resets. The device tree is used to describe the bitfields
451 * in registers used to control device state. The number of bits and their
452 * values may vary even within the same register.
453 *
454 * The layout of these bitfields is described by the ti,dscr-devstate-ctl-regs
455 * property. This property is a list where each element describes a contiguous
456 * range of control fields with like properties. Each element of the list
457 * consists of 7 cells with the following values:
458 *
459 * start_id num_ids reg enable disable start_bit nbits
460 *
461 * start_id is device id for the first device control in the range
462 * num_ids is the number of device controls in the range
463 * reg is the offset of the register holding the control bits
464 * enable is the value to enable a device
465 * disable is the value to disable a device (0xffffffff if cannot disable)
466 * start_bit is the bit number of the first bit in the range
467 * nbits is the number of bits per device control
468 */
469 static void __init dscr_parse_devstate_ctl_regs(struct device_node *node,
470 void __iomem *base)
471 {
472 struct devstate_ctl_reg *r;
473 const __be32 *p;
474 int i, j, size;
475
476 p = of_get_property(node, "ti,dscr-devstate-ctl-regs", &size);
477 if (p) {
478 /* parse all the ranges we can handle */
479 size /= (sizeof(*p) * 7);
480 if (size > MAX_DEVCTL_REGS)
481 size = MAX_DEVCTL_REGS;
482
483 for (i = 0; i < size; i++) {
484 r = &dscr.devctl[i];
485
486 r->start_id = be32_to_cpup(p++);
487 r->num_ids = be32_to_cpup(p++);
488 r->reg = be32_to_cpup(p++);
489 r->enable = be32_to_cpup(p++);
490 r->disable = be32_to_cpup(p++);
491 if (r->disable == 0xffffffff)
492 r->enable_only = 1;
493 r->shift = be32_to_cpup(p++);
494 r->nbits = be32_to_cpup(p++);
495
496 for (j = r->start_id;
497 j < (r->start_id + r->num_ids);
498 j++)
499 dscr.devstate_info[j].ctl = r;
500 }
501 }
502 }
503
504 /*
505 * SoCs may provide status registers indicating the state (enabled/disabled) of
506 * devices on the SoC. The device tree is used to describe the bitfields in
507 * registers used to provide device status. The number of bits and their
508 * values used to provide status may vary even within the same register.
509 *
510 * The layout of these bitfields is described by the ti,dscr-devstate-stat-regs
511 * property. This property is a list where each element describes a contiguous
512 * range of status fields with like properties. Each element of the list
513 * consists of 7 cells with the following values:
514 *
515 * start_id num_ids reg enable disable start_bit nbits
516 *
517 * start_id is device id for the first device status in the range
518 * num_ids is the number of devices covered by the range
519 * reg is the offset of the register holding the status bits
520 * enable is the value indicating device is enabled
521 * disable is the value indicating device is disabled
522 * start_bit is the bit number of the first bit in the range
523 * nbits is the number of bits per device status
524 */
525 static void __init dscr_parse_devstate_stat_regs(struct device_node *node,
526 void __iomem *base)
527 {
528 struct devstate_stat_reg *r;
529 const __be32 *p;
530 int i, j, size;
531
532 p = of_get_property(node, "ti,dscr-devstate-stat-regs", &size);
533 if (p) {
534 /* parse all the ranges we can handle */
535 size /= (sizeof(*p) * 7);
536 if (size > MAX_DEVSTAT_REGS)
537 size = MAX_DEVSTAT_REGS;
538
539 for (i = 0; i < size; i++) {
540 r = &dscr.devstat[i];
541
542 r->start_id = be32_to_cpup(p++);
543 r->num_ids = be32_to_cpup(p++);
544 r->reg = be32_to_cpup(p++);
545 r->enable = be32_to_cpup(p++);
546 r->disable = be32_to_cpup(p++);
547 r->shift = be32_to_cpup(p++);
548 r->nbits = be32_to_cpup(p++);
549
550 for (j = r->start_id;
551 j < (r->start_id + r->num_ids);
552 j++)
553 dscr.devstate_info[j].stat = r;
554 }
555 }
556 }
557
558 static struct of_device_id dscr_ids[] __initdata = {
559 { .compatible = "ti,c64x+dscr" },
560 {}
561 };
562
563 /*
564 * Probe for DSCR area.
565 *
566 * This has to be done early on in case timer or interrupt controller
567 * needs something. e.g. On C6455 SoC, timer must be enabled through
568 * DSCR before it is functional.
569 */
570 void __init dscr_probe(void)
571 {
572 struct device_node *node;
573 void __iomem *base;
574
575 spin_lock_init(&dscr.lock);
576
577 node = of_find_matching_node(NULL, dscr_ids);
578 if (!node)
579 return;
580
581 base = of_iomap(node, 0);
582 if (!base) {
583 of_node_put(node);
584 return;
585 }
586
587 dscr.base = base;
588
589 dscr_parse_devstat(node, base);
590 dscr_parse_silicon_rev(node, base);
591 dscr_parse_mac_fuse(node, base);
592 dscr_parse_rmii_resets(node, base);
593 dscr_parse_locked_regs(node, base);
594 dscr_parse_kick_regs(node, base);
595 dscr_parse_devstate_ctl_regs(node, base);
596 dscr_parse_devstate_stat_regs(node, base);
597 dscr_parse_privperm(node, base);
598 }
This page took 0.042082 seconds and 5 git commands to generate.