CRIS v32: increase NR_IRQS
[deliverable/linux.git] / arch / cris / include / arch-v32 / arch / irq.h
1 #ifndef _ASM_ARCH_IRQ_H
2 #define _ASM_ARCH_IRQ_H
3
4 #include <hwregs/intr_vect.h>
5
6 /* Number of non-cpu interrupts. */
7 #define NR_IRQS (NBR_INTR_VECT + 256) /* Exceptions + IRQs */
8 #define FIRST_IRQ 0x31 /* Exception number for first IRQ */
9 #define NR_REAL_IRQS (NBR_INTR_VECT - FIRST_IRQ) /* IRQs */
10 #if NR_REAL_IRQS > 32
11 #define MACH_IRQS 64
12 #else
13 #define MACH_IRQS 32
14 #endif
15
16 #ifndef __ASSEMBLY__
17 /* Global IRQ vector. */
18 typedef void (*irqvectptr)(void);
19
20 struct etrax_interrupt_vector {
21 irqvectptr v[256];
22 };
23
24 extern struct etrax_interrupt_vector *etrax_irv; /* head.S */
25
26 void crisv32_mask_irq(int irq);
27 void crisv32_unmask_irq(int irq);
28
29 void set_exception_vector(int n, irqvectptr addr);
30
31 /* Save registers so that they match pt_regs. */
32 #define SAVE_ALL \
33 "subq 12,$sp\n\t" \
34 "move $erp,[$sp]\n\t" \
35 "subq 4,$sp\n\t" \
36 "move $srp,[$sp]\n\t" \
37 "subq 4,$sp\n\t" \
38 "move $ccs,[$sp]\n\t" \
39 "subq 4,$sp\n\t" \
40 "move $spc,[$sp]\n\t" \
41 "subq 4,$sp\n\t" \
42 "move $mof,[$sp]\n\t" \
43 "subq 4,$sp\n\t" \
44 "move $srs,[$sp]\n\t" \
45 "subq 4,$sp\n\t" \
46 "move.d $acr,[$sp]\n\t" \
47 "subq 14*4,$sp\n\t" \
48 "movem $r13,[$sp]\n\t" \
49 "subq 4,$sp\n\t" \
50 "move.d $r10,[$sp]\n"
51
52 #define STR2(x) #x
53 #define STR(x) STR2(x)
54
55 #define IRQ_NAME2(nr) nr##_interrupt(void)
56 #define IRQ_NAME(nr) IRQ_NAME2(IRQ##nr)
57
58 /*
59 * The reason for setting the S-bit when debugging the kernel is that we want
60 * hardware breakpoints to remain active while we are in an exception handler.
61 * Note that we cannot simply copy S1, since we may come here from user-space,
62 * or any context where the S-bit wasn't set.
63 */
64 #ifdef CONFIG_ETRAX_KGDB
65 #define KGDB_FIXUP \
66 "move $ccs, $r10\n\t" \
67 "or.d (1<<9), $r10\n\t" \
68 "move $r10, $ccs\n\t"
69 #else
70 #define KGDB_FIXUP ""
71 #endif
72
73 /*
74 * Make sure the causing IRQ is blocked, then call do_IRQ. After that, unblock
75 * and jump to ret_from_intr which is found in entry.S.
76 *
77 * The reason for blocking the IRQ is to allow an sti() before the handler,
78 * which will acknowledge the interrupt, is run. The actual blocking is made
79 * by crisv32_do_IRQ.
80 */
81 #define BUILD_IRQ(nr) \
82 void IRQ_NAME(nr); \
83 __asm__ ( \
84 ".text\n\t" \
85 "IRQ" #nr "_interrupt:\n\t" \
86 SAVE_ALL \
87 KGDB_FIXUP \
88 "move.d "#nr",$r10\n\t" \
89 "move.d $sp, $r12\n\t" \
90 "jsr crisv32_do_IRQ\n\t" \
91 "moveq 1, $r11\n\t" \
92 "jump ret_from_intr\n\t" \
93 "nop\n\t");
94 /*
95 * This is subtle. The timer interrupt is crucial and it should not be disabled
96 * for too long. However, if it had been a normal interrupt as per BUILD_IRQ, it
97 * would have been BLOCK'ed, and then softirq's are run before we return here to
98 * UNBLOCK. If the softirq's take too much time to run, the timer irq won't run
99 * and the watchdog will kill us.
100 *
101 * Furthermore, if a lot of other irq's occur before we return here, the
102 * multiple_irq handler is run and it prioritizes the timer interrupt. However
103 * if we had BLOCK'edit here, we would not get the multiple_irq at all.
104 *
105 * The non-blocking here is based on the knowledge that the timer interrupt runs
106 * with interrupts disabled, and therefore there will not be an sti() before the
107 * timer irq handler is run to acknowledge the interrupt.
108 */
109 #define BUILD_TIMER_IRQ(nr, mask) \
110 void IRQ_NAME(nr); \
111 __asm__ ( \
112 ".text\n\t" \
113 "IRQ" #nr "_interrupt:\n\t" \
114 SAVE_ALL \
115 KGDB_FIXUP \
116 "move.d "#nr",$r10\n\t" \
117 "move.d $sp,$r12\n\t" \
118 "jsr crisv32_do_IRQ\n\t" \
119 "moveq 0,$r11\n\t" \
120 "jump ret_from_intr\n\t" \
121 "nop\n\t");
122
123 #endif /* __ASSEMBLY__ */
124 #endif /* _ASM_ARCH_IRQ_H */
This page took 0.060018 seconds and 5 git commands to generate.