Merge tag 'drivers-for-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[deliverable/linux.git] / arch / hexagon / kernel / time.c
1 /*
2 * Time related functions for Hexagon architecture
3 *
4 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 and
8 * only version 2 as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
18 * 02110-1301, USA.
19 */
20
21 #include <linux/init.h>
22 #include <linux/clockchips.h>
23 #include <linux/clocksource.h>
24 #include <linux/interrupt.h>
25 #include <linux/err.h>
26 #include <linux/platform_device.h>
27 #include <linux/ioport.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/module.h>
32
33 #include <asm/timer-regs.h>
34 #include <asm/hexagon_vm.h>
35
36 /*
37 * For the clocksource we need:
38 * pcycle frequency (600MHz)
39 * For the loops_per_jiffy we need:
40 * thread/cpu frequency (100MHz)
41 * And for the timer, we need:
42 * sleep clock rate
43 */
44
45 cycles_t pcycle_freq_mhz;
46 cycles_t thread_freq_mhz;
47 cycles_t sleep_clk_freq;
48
49 static struct resource rtos_timer_resources[] = {
50 {
51 .start = RTOS_TIMER_REGS_ADDR,
52 .end = RTOS_TIMER_REGS_ADDR+PAGE_SIZE-1,
53 .flags = IORESOURCE_MEM,
54 },
55 };
56
57 static struct platform_device rtos_timer_device = {
58 .name = "rtos_timer",
59 .id = -1,
60 .num_resources = ARRAY_SIZE(rtos_timer_resources),
61 .resource = rtos_timer_resources,
62 };
63
64 /* A lot of this stuff should move into a platform specific section. */
65 struct adsp_hw_timer_struct {
66 u32 match; /* Match value */
67 u32 count;
68 u32 enable; /* [1] - CLR_ON_MATCH_EN, [0] - EN */
69 u32 clear; /* one-shot register that clears the count */
70 };
71
72 /* Look for "TCX0" for related constants. */
73 static __iomem struct adsp_hw_timer_struct *rtos_timer;
74
75 static cycle_t timer_get_cycles(struct clocksource *cs)
76 {
77 return (cycle_t) __vmgettime();
78 }
79
80 static struct clocksource hexagon_clocksource = {
81 .name = "pcycles",
82 .rating = 250,
83 .read = timer_get_cycles,
84 .mask = CLOCKSOURCE_MASK(64),
85 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
86 };
87
88 static int set_next_event(unsigned long delta, struct clock_event_device *evt)
89 {
90 /* Assuming the timer will be disabled when we enter here. */
91
92 iowrite32(1, &rtos_timer->clear);
93 iowrite32(0, &rtos_timer->clear);
94
95 iowrite32(delta, &rtos_timer->match);
96 iowrite32(1 << TIMER_ENABLE, &rtos_timer->enable);
97 return 0;
98 }
99
100 /*
101 * Sets the mode (periodic, shutdown, oneshot, etc) of a timer.
102 */
103 static void set_mode(enum clock_event_mode mode,
104 struct clock_event_device *evt)
105 {
106 switch (mode) {
107 case CLOCK_EVT_MODE_SHUTDOWN:
108 /* XXX implement me */
109 default:
110 break;
111 }
112 }
113
114 #ifdef CONFIG_SMP
115 /* Broadcast mechanism */
116 static void broadcast(const struct cpumask *mask)
117 {
118 send_ipi(mask, IPI_TIMER);
119 }
120 #endif
121
122 static struct clock_event_device hexagon_clockevent_dev = {
123 .name = "clockevent",
124 .features = CLOCK_EVT_FEAT_ONESHOT,
125 .rating = 400,
126 .irq = RTOS_TIMER_INT,
127 .set_next_event = set_next_event,
128 .set_mode = set_mode,
129 #ifdef CONFIG_SMP
130 .broadcast = broadcast,
131 #endif
132 };
133
134 #ifdef CONFIG_SMP
135 static DEFINE_PER_CPU(struct clock_event_device, clock_events);
136
137 void setup_percpu_clockdev(void)
138 {
139 int cpu = smp_processor_id();
140 struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
141 struct clock_event_device *dummy_clock_dev =
142 &per_cpu(clock_events, cpu);
143
144 memcpy(dummy_clock_dev, ce_dev, sizeof(*dummy_clock_dev));
145 INIT_LIST_HEAD(&dummy_clock_dev->list);
146
147 dummy_clock_dev->features = CLOCK_EVT_FEAT_DUMMY;
148 dummy_clock_dev->cpumask = cpumask_of(cpu);
149 dummy_clock_dev->mode = CLOCK_EVT_MODE_UNUSED;
150
151 clockevents_register_device(dummy_clock_dev);
152 }
153
154 /* Called from smp.c for each CPU's timer ipi call */
155 void ipi_timer(void)
156 {
157 int cpu = smp_processor_id();
158 struct clock_event_device *ce_dev = &per_cpu(clock_events, cpu);
159
160 ce_dev->event_handler(ce_dev);
161 }
162 #endif /* CONFIG_SMP */
163
164 static irqreturn_t timer_interrupt(int irq, void *devid)
165 {
166 struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
167
168 iowrite32(0, &rtos_timer->enable);
169 ce_dev->event_handler(ce_dev);
170
171 return IRQ_HANDLED;
172 }
173
174 /* This should also be pulled from devtree */
175 static struct irqaction rtos_timer_intdesc = {
176 .handler = timer_interrupt,
177 .flags = IRQF_TIMER | IRQF_TRIGGER_RISING,
178 .name = "rtos_timer"
179 };
180
181 /*
182 * time_init_deferred - called by start_kernel to set up timer/clock source
183 *
184 * Install the IRQ handler for the clock, setup timers.
185 * This is done late, as that way, we can use ioremap().
186 *
187 * This runs just before the delay loop is calibrated, and
188 * is used for delay calibration.
189 */
190 void __init time_init_deferred(void)
191 {
192 struct resource *resource = NULL;
193 struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
194
195 ce_dev->cpumask = cpu_all_mask;
196
197 if (!resource)
198 resource = rtos_timer_device.resource;
199
200 /* ioremap here means this has to run later, after paging init */
201 rtos_timer = ioremap(resource->start, resource_size(resource));
202
203 if (!rtos_timer) {
204 release_mem_region(resource->start, resource_size(resource));
205 }
206 clocksource_register_khz(&hexagon_clocksource, pcycle_freq_mhz * 1000);
207
208 /* Note: the sim generic RTOS clock is apparently really 18750Hz */
209
210 /*
211 * Last arg is some guaranteed seconds for which the conversion will
212 * work without overflow.
213 */
214 clockevents_calc_mult_shift(ce_dev, sleep_clk_freq, 4);
215
216 ce_dev->max_delta_ns = clockevent_delta2ns(0x7fffffff, ce_dev);
217 ce_dev->min_delta_ns = clockevent_delta2ns(0xf, ce_dev);
218
219 #ifdef CONFIG_SMP
220 setup_percpu_clockdev();
221 #endif
222
223 clockevents_register_device(ce_dev);
224 setup_irq(ce_dev->irq, &rtos_timer_intdesc);
225 }
226
227 void __init time_init(void)
228 {
229 late_time_init = time_init_deferred;
230 }
231
232 void __delay(unsigned long cycles)
233 {
234 unsigned long long start = __vmgettime();
235
236 while ((__vmgettime() - start) < cycles)
237 cpu_relax();
238 }
239 EXPORT_SYMBOL(__delay);
240
241 /*
242 * This could become parametric or perhaps even computed at run-time,
243 * but for now we take the observed simulator jitter.
244 */
245 static long long fudgefactor = 350; /* Maybe lower if kernel optimized. */
246
247 void __udelay(unsigned long usecs)
248 {
249 unsigned long long start = __vmgettime();
250 unsigned long long finish = (pcycle_freq_mhz * usecs) - fudgefactor;
251
252 while ((__vmgettime() - start) < finish)
253 cpu_relax(); /* not sure how this improves readability */
254 }
255 EXPORT_SYMBOL(__udelay);
This page took 0.049605 seconds and 5 git commands to generate.