[PATCH] i386: fix dubious segment register clear in cpu_init()
[deliverable/linux.git] / arch / i386 / kernel / cpu / common.c
1 #include <linux/init.h>
2 #include <linux/string.h>
3 #include <linux/delay.h>
4 #include <linux/smp.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/bootmem.h>
8 #include <asm/semaphore.h>
9 #include <asm/processor.h>
10 #include <asm/i387.h>
11 #include <asm/msr.h>
12 #include <asm/io.h>
13 #include <asm/mmu_context.h>
14 #include <asm/mtrr.h>
15 #include <asm/mce.h>
16 #ifdef CONFIG_X86_LOCAL_APIC
17 #include <asm/mpspec.h>
18 #include <asm/apic.h>
19 #include <mach_apic.h>
20 #endif
21
22 #include "cpu.h"
23
24 DEFINE_PER_CPU(struct Xgt_desc_struct, cpu_gdt_descr);
25 EXPORT_PER_CPU_SYMBOL(cpu_gdt_descr);
26
27 DEFINE_PER_CPU(unsigned char, cpu_16bit_stack[CPU_16BIT_STACK_SIZE]);
28 EXPORT_PER_CPU_SYMBOL(cpu_16bit_stack);
29
30 static int cachesize_override __cpuinitdata = -1;
31 static int disable_x86_fxsr __cpuinitdata;
32 static int disable_x86_serial_nr __cpuinitdata = 1;
33 static int disable_x86_sep __cpuinitdata;
34
35 struct cpu_dev * cpu_devs[X86_VENDOR_NUM] = {};
36
37 extern int disable_pse;
38
39 static void default_init(struct cpuinfo_x86 * c)
40 {
41 /* Not much we can do here... */
42 /* Check if at least it has cpuid */
43 if (c->cpuid_level == -1) {
44 /* No cpuid. It must be an ancient CPU */
45 if (c->x86 == 4)
46 strcpy(c->x86_model_id, "486");
47 else if (c->x86 == 3)
48 strcpy(c->x86_model_id, "386");
49 }
50 }
51
52 static struct cpu_dev default_cpu = {
53 .c_init = default_init,
54 .c_vendor = "Unknown",
55 };
56 static struct cpu_dev * this_cpu = &default_cpu;
57
58 static int __init cachesize_setup(char *str)
59 {
60 get_option (&str, &cachesize_override);
61 return 1;
62 }
63 __setup("cachesize=", cachesize_setup);
64
65 int __cpuinit get_model_name(struct cpuinfo_x86 *c)
66 {
67 unsigned int *v;
68 char *p, *q;
69
70 if (cpuid_eax(0x80000000) < 0x80000004)
71 return 0;
72
73 v = (unsigned int *) c->x86_model_id;
74 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
75 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
76 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
77 c->x86_model_id[48] = 0;
78
79 /* Intel chips right-justify this string for some dumb reason;
80 undo that brain damage */
81 p = q = &c->x86_model_id[0];
82 while ( *p == ' ' )
83 p++;
84 if ( p != q ) {
85 while ( *p )
86 *q++ = *p++;
87 while ( q <= &c->x86_model_id[48] )
88 *q++ = '\0'; /* Zero-pad the rest */
89 }
90
91 return 1;
92 }
93
94
95 void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
96 {
97 unsigned int n, dummy, ecx, edx, l2size;
98
99 n = cpuid_eax(0x80000000);
100
101 if (n >= 0x80000005) {
102 cpuid(0x80000005, &dummy, &dummy, &ecx, &edx);
103 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
104 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
105 c->x86_cache_size=(ecx>>24)+(edx>>24);
106 }
107
108 if (n < 0x80000006) /* Some chips just has a large L1. */
109 return;
110
111 ecx = cpuid_ecx(0x80000006);
112 l2size = ecx >> 16;
113
114 /* do processor-specific cache resizing */
115 if (this_cpu->c_size_cache)
116 l2size = this_cpu->c_size_cache(c,l2size);
117
118 /* Allow user to override all this if necessary. */
119 if (cachesize_override != -1)
120 l2size = cachesize_override;
121
122 if ( l2size == 0 )
123 return; /* Again, no L2 cache is possible */
124
125 c->x86_cache_size = l2size;
126
127 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
128 l2size, ecx & 0xFF);
129 }
130
131 /* Naming convention should be: <Name> [(<Codename>)] */
132 /* This table only is used unless init_<vendor>() below doesn't set it; */
133 /* in particular, if CPUID levels 0x80000002..4 are supported, this isn't used */
134
135 /* Look up CPU names by table lookup. */
136 static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
137 {
138 struct cpu_model_info *info;
139
140 if ( c->x86_model >= 16 )
141 return NULL; /* Range check */
142
143 if (!this_cpu)
144 return NULL;
145
146 info = this_cpu->c_models;
147
148 while (info && info->family) {
149 if (info->family == c->x86)
150 return info->model_names[c->x86_model];
151 info++;
152 }
153 return NULL; /* Not found */
154 }
155
156
157 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c, int early)
158 {
159 char *v = c->x86_vendor_id;
160 int i;
161 static int printed;
162
163 for (i = 0; i < X86_VENDOR_NUM; i++) {
164 if (cpu_devs[i]) {
165 if (!strcmp(v,cpu_devs[i]->c_ident[0]) ||
166 (cpu_devs[i]->c_ident[1] &&
167 !strcmp(v,cpu_devs[i]->c_ident[1]))) {
168 c->x86_vendor = i;
169 if (!early)
170 this_cpu = cpu_devs[i];
171 return;
172 }
173 }
174 }
175 if (!printed) {
176 printed++;
177 printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n");
178 printk(KERN_ERR "CPU: Your system may be unstable.\n");
179 }
180 c->x86_vendor = X86_VENDOR_UNKNOWN;
181 this_cpu = &default_cpu;
182 }
183
184
185 static int __init x86_fxsr_setup(char * s)
186 {
187 disable_x86_fxsr = 1;
188 return 1;
189 }
190 __setup("nofxsr", x86_fxsr_setup);
191
192
193 static int __init x86_sep_setup(char * s)
194 {
195 disable_x86_sep = 1;
196 return 1;
197 }
198 __setup("nosep", x86_sep_setup);
199
200
201 /* Standard macro to see if a specific flag is changeable */
202 static inline int flag_is_changeable_p(u32 flag)
203 {
204 u32 f1, f2;
205
206 asm("pushfl\n\t"
207 "pushfl\n\t"
208 "popl %0\n\t"
209 "movl %0,%1\n\t"
210 "xorl %2,%0\n\t"
211 "pushl %0\n\t"
212 "popfl\n\t"
213 "pushfl\n\t"
214 "popl %0\n\t"
215 "popfl\n\t"
216 : "=&r" (f1), "=&r" (f2)
217 : "ir" (flag));
218
219 return ((f1^f2) & flag) != 0;
220 }
221
222
223 /* Probe for the CPUID instruction */
224 static int __cpuinit have_cpuid_p(void)
225 {
226 return flag_is_changeable_p(X86_EFLAGS_ID);
227 }
228
229 /* Do minimum CPU detection early.
230 Fields really needed: vendor, cpuid_level, family, model, mask, cache alignment.
231 The others are not touched to avoid unwanted side effects.
232
233 WARNING: this function is only called on the BP. Don't add code here
234 that is supposed to run on all CPUs. */
235 static void __init early_cpu_detect(void)
236 {
237 struct cpuinfo_x86 *c = &boot_cpu_data;
238
239 c->x86_cache_alignment = 32;
240
241 if (!have_cpuid_p())
242 return;
243
244 /* Get vendor name */
245 cpuid(0x00000000, &c->cpuid_level,
246 (int *)&c->x86_vendor_id[0],
247 (int *)&c->x86_vendor_id[8],
248 (int *)&c->x86_vendor_id[4]);
249
250 get_cpu_vendor(c, 1);
251
252 c->x86 = 4;
253 if (c->cpuid_level >= 0x00000001) {
254 u32 junk, tfms, cap0, misc;
255 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
256 c->x86 = (tfms >> 8) & 15;
257 c->x86_model = (tfms >> 4) & 15;
258 if (c->x86 == 0xf)
259 c->x86 += (tfms >> 20) & 0xff;
260 if (c->x86 >= 0x6)
261 c->x86_model += ((tfms >> 16) & 0xF) << 4;
262 c->x86_mask = tfms & 15;
263 if (cap0 & (1<<19))
264 c->x86_cache_alignment = ((misc >> 8) & 0xff) * 8;
265 }
266 }
267
268 void __cpuinit generic_identify(struct cpuinfo_x86 * c)
269 {
270 u32 tfms, xlvl;
271 int ebx;
272
273 if (have_cpuid_p()) {
274 /* Get vendor name */
275 cpuid(0x00000000, &c->cpuid_level,
276 (int *)&c->x86_vendor_id[0],
277 (int *)&c->x86_vendor_id[8],
278 (int *)&c->x86_vendor_id[4]);
279
280 get_cpu_vendor(c, 0);
281 /* Initialize the standard set of capabilities */
282 /* Note that the vendor-specific code below might override */
283
284 /* Intel-defined flags: level 0x00000001 */
285 if ( c->cpuid_level >= 0x00000001 ) {
286 u32 capability, excap;
287 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
288 c->x86_capability[0] = capability;
289 c->x86_capability[4] = excap;
290 c->x86 = (tfms >> 8) & 15;
291 c->x86_model = (tfms >> 4) & 15;
292 if (c->x86 == 0xf)
293 c->x86 += (tfms >> 20) & 0xff;
294 if (c->x86 >= 0x6)
295 c->x86_model += ((tfms >> 16) & 0xF) << 4;
296 c->x86_mask = tfms & 15;
297 #ifdef CONFIG_X86_HT
298 c->apicid = phys_pkg_id((ebx >> 24) & 0xFF, 0);
299 #else
300 c->apicid = (ebx >> 24) & 0xFF;
301 #endif
302 } else {
303 /* Have CPUID level 0 only - unheard of */
304 c->x86 = 4;
305 }
306
307 /* AMD-defined flags: level 0x80000001 */
308 xlvl = cpuid_eax(0x80000000);
309 if ( (xlvl & 0xffff0000) == 0x80000000 ) {
310 if ( xlvl >= 0x80000001 ) {
311 c->x86_capability[1] = cpuid_edx(0x80000001);
312 c->x86_capability[6] = cpuid_ecx(0x80000001);
313 }
314 if ( xlvl >= 0x80000004 )
315 get_model_name(c); /* Default name */
316 }
317 }
318
319 early_intel_workaround(c);
320
321 #ifdef CONFIG_X86_HT
322 c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
323 #endif
324 }
325
326 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
327 {
328 if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr ) {
329 /* Disable processor serial number */
330 unsigned long lo,hi;
331 rdmsr(MSR_IA32_BBL_CR_CTL,lo,hi);
332 lo |= 0x200000;
333 wrmsr(MSR_IA32_BBL_CR_CTL,lo,hi);
334 printk(KERN_NOTICE "CPU serial number disabled.\n");
335 clear_bit(X86_FEATURE_PN, c->x86_capability);
336
337 /* Disabling the serial number may affect the cpuid level */
338 c->cpuid_level = cpuid_eax(0);
339 }
340 }
341
342 static int __init x86_serial_nr_setup(char *s)
343 {
344 disable_x86_serial_nr = 0;
345 return 1;
346 }
347 __setup("serialnumber", x86_serial_nr_setup);
348
349
350
351 /*
352 * This does the hard work of actually picking apart the CPU stuff...
353 */
354 void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
355 {
356 int i;
357
358 c->loops_per_jiffy = loops_per_jiffy;
359 c->x86_cache_size = -1;
360 c->x86_vendor = X86_VENDOR_UNKNOWN;
361 c->cpuid_level = -1; /* CPUID not detected */
362 c->x86_model = c->x86_mask = 0; /* So far unknown... */
363 c->x86_vendor_id[0] = '\0'; /* Unset */
364 c->x86_model_id[0] = '\0'; /* Unset */
365 c->x86_max_cores = 1;
366 memset(&c->x86_capability, 0, sizeof c->x86_capability);
367
368 if (!have_cpuid_p()) {
369 /* First of all, decide if this is a 486 or higher */
370 /* It's a 486 if we can modify the AC flag */
371 if ( flag_is_changeable_p(X86_EFLAGS_AC) )
372 c->x86 = 4;
373 else
374 c->x86 = 3;
375 }
376
377 generic_identify(c);
378
379 printk(KERN_DEBUG "CPU: After generic identify, caps:");
380 for (i = 0; i < NCAPINTS; i++)
381 printk(" %08lx", c->x86_capability[i]);
382 printk("\n");
383
384 if (this_cpu->c_identify) {
385 this_cpu->c_identify(c);
386
387 printk(KERN_DEBUG "CPU: After vendor identify, caps:");
388 for (i = 0; i < NCAPINTS; i++)
389 printk(" %08lx", c->x86_capability[i]);
390 printk("\n");
391 }
392
393 /*
394 * Vendor-specific initialization. In this section we
395 * canonicalize the feature flags, meaning if there are
396 * features a certain CPU supports which CPUID doesn't
397 * tell us, CPUID claiming incorrect flags, or other bugs,
398 * we handle them here.
399 *
400 * At the end of this section, c->x86_capability better
401 * indicate the features this CPU genuinely supports!
402 */
403 if (this_cpu->c_init)
404 this_cpu->c_init(c);
405
406 /* Disable the PN if appropriate */
407 squash_the_stupid_serial_number(c);
408
409 /*
410 * The vendor-specific functions might have changed features. Now
411 * we do "generic changes."
412 */
413
414 /* TSC disabled? */
415 if ( tsc_disable )
416 clear_bit(X86_FEATURE_TSC, c->x86_capability);
417
418 /* FXSR disabled? */
419 if (disable_x86_fxsr) {
420 clear_bit(X86_FEATURE_FXSR, c->x86_capability);
421 clear_bit(X86_FEATURE_XMM, c->x86_capability);
422 }
423
424 /* SEP disabled? */
425 if (disable_x86_sep)
426 clear_bit(X86_FEATURE_SEP, c->x86_capability);
427
428 if (disable_pse)
429 clear_bit(X86_FEATURE_PSE, c->x86_capability);
430
431 /* If the model name is still unset, do table lookup. */
432 if ( !c->x86_model_id[0] ) {
433 char *p;
434 p = table_lookup_model(c);
435 if ( p )
436 strcpy(c->x86_model_id, p);
437 else
438 /* Last resort... */
439 sprintf(c->x86_model_id, "%02x/%02x",
440 c->x86, c->x86_model);
441 }
442
443 /* Now the feature flags better reflect actual CPU features! */
444
445 printk(KERN_DEBUG "CPU: After all inits, caps:");
446 for (i = 0; i < NCAPINTS; i++)
447 printk(" %08lx", c->x86_capability[i]);
448 printk("\n");
449
450 /*
451 * On SMP, boot_cpu_data holds the common feature set between
452 * all CPUs; so make sure that we indicate which features are
453 * common between the CPUs. The first time this routine gets
454 * executed, c == &boot_cpu_data.
455 */
456 if ( c != &boot_cpu_data ) {
457 /* AND the already accumulated flags with these */
458 for ( i = 0 ; i < NCAPINTS ; i++ )
459 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
460 }
461
462 /* Init Machine Check Exception if available. */
463 mcheck_init(c);
464
465 if (c == &boot_cpu_data)
466 sysenter_setup();
467 enable_sep_cpu();
468
469 if (c == &boot_cpu_data)
470 mtrr_bp_init();
471 else
472 mtrr_ap_init();
473 }
474
475 #ifdef CONFIG_X86_HT
476 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
477 {
478 u32 eax, ebx, ecx, edx;
479 int index_msb, core_bits;
480
481 cpuid(1, &eax, &ebx, &ecx, &edx);
482
483 if (!cpu_has(c, X86_FEATURE_HT) || cpu_has(c, X86_FEATURE_CMP_LEGACY))
484 return;
485
486 smp_num_siblings = (ebx & 0xff0000) >> 16;
487
488 if (smp_num_siblings == 1) {
489 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
490 } else if (smp_num_siblings > 1 ) {
491
492 if (smp_num_siblings > NR_CPUS) {
493 printk(KERN_WARNING "CPU: Unsupported number of the "
494 "siblings %d", smp_num_siblings);
495 smp_num_siblings = 1;
496 return;
497 }
498
499 index_msb = get_count_order(smp_num_siblings);
500 c->phys_proc_id = phys_pkg_id((ebx >> 24) & 0xFF, index_msb);
501
502 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
503 c->phys_proc_id);
504
505 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
506
507 index_msb = get_count_order(smp_num_siblings) ;
508
509 core_bits = get_count_order(c->x86_max_cores);
510
511 c->cpu_core_id = phys_pkg_id((ebx >> 24) & 0xFF, index_msb) &
512 ((1 << core_bits) - 1);
513
514 if (c->x86_max_cores > 1)
515 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
516 c->cpu_core_id);
517 }
518 }
519 #endif
520
521 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
522 {
523 char *vendor = NULL;
524
525 if (c->x86_vendor < X86_VENDOR_NUM)
526 vendor = this_cpu->c_vendor;
527 else if (c->cpuid_level >= 0)
528 vendor = c->x86_vendor_id;
529
530 if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor)))
531 printk("%s ", vendor);
532
533 if (!c->x86_model_id[0])
534 printk("%d86", c->x86);
535 else
536 printk("%s", c->x86_model_id);
537
538 if (c->x86_mask || c->cpuid_level >= 0)
539 printk(" stepping %02x\n", c->x86_mask);
540 else
541 printk("\n");
542 }
543
544 cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
545
546 /* This is hacky. :)
547 * We're emulating future behavior.
548 * In the future, the cpu-specific init functions will be called implicitly
549 * via the magic of initcalls.
550 * They will insert themselves into the cpu_devs structure.
551 * Then, when cpu_init() is called, we can just iterate over that array.
552 */
553
554 extern int intel_cpu_init(void);
555 extern int cyrix_init_cpu(void);
556 extern int nsc_init_cpu(void);
557 extern int amd_init_cpu(void);
558 extern int centaur_init_cpu(void);
559 extern int transmeta_init_cpu(void);
560 extern int rise_init_cpu(void);
561 extern int nexgen_init_cpu(void);
562 extern int umc_init_cpu(void);
563
564 void __init early_cpu_init(void)
565 {
566 intel_cpu_init();
567 cyrix_init_cpu();
568 nsc_init_cpu();
569 amd_init_cpu();
570 centaur_init_cpu();
571 transmeta_init_cpu();
572 rise_init_cpu();
573 nexgen_init_cpu();
574 umc_init_cpu();
575 early_cpu_detect();
576
577 #ifdef CONFIG_DEBUG_PAGEALLOC
578 /* pse is not compatible with on-the-fly unmapping,
579 * disable it even if the cpus claim to support it.
580 */
581 clear_bit(X86_FEATURE_PSE, boot_cpu_data.x86_capability);
582 disable_pse = 1;
583 #endif
584 }
585 /*
586 * cpu_init() initializes state that is per-CPU. Some data is already
587 * initialized (naturally) in the bootstrap process, such as the GDT
588 * and IDT. We reload them nevertheless, this function acts as a
589 * 'CPU state barrier', nothing should get across.
590 */
591 void __cpuinit cpu_init(void)
592 {
593 int cpu = smp_processor_id();
594 struct tss_struct * t = &per_cpu(init_tss, cpu);
595 struct thread_struct *thread = &current->thread;
596 struct desc_struct *gdt;
597 __u32 stk16_off = (__u32)&per_cpu(cpu_16bit_stack, cpu);
598 struct Xgt_desc_struct *cpu_gdt_descr = &per_cpu(cpu_gdt_descr, cpu);
599
600 if (cpu_test_and_set(cpu, cpu_initialized)) {
601 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
602 for (;;) local_irq_enable();
603 }
604 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
605
606 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
607 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
608 if (tsc_disable && cpu_has_tsc) {
609 printk(KERN_NOTICE "Disabling TSC...\n");
610 /**** FIX-HPA: DOES THIS REALLY BELONG HERE? ****/
611 clear_bit(X86_FEATURE_TSC, boot_cpu_data.x86_capability);
612 set_in_cr4(X86_CR4_TSD);
613 }
614
615 /* The CPU hotplug case */
616 if (cpu_gdt_descr->address) {
617 gdt = (struct desc_struct *)cpu_gdt_descr->address;
618 memset(gdt, 0, PAGE_SIZE);
619 goto old_gdt;
620 }
621 /*
622 * This is a horrible hack to allocate the GDT. The problem
623 * is that cpu_init() is called really early for the boot CPU
624 * (and hence needs bootmem) but much later for the secondary
625 * CPUs, when bootmem will have gone away
626 */
627 if (NODE_DATA(0)->bdata->node_bootmem_map) {
628 gdt = (struct desc_struct *)alloc_bootmem_pages(PAGE_SIZE);
629 /* alloc_bootmem_pages panics on failure, so no check */
630 memset(gdt, 0, PAGE_SIZE);
631 } else {
632 gdt = (struct desc_struct *)get_zeroed_page(GFP_KERNEL);
633 if (unlikely(!gdt)) {
634 printk(KERN_CRIT "CPU%d failed to allocate GDT\n", cpu);
635 for (;;)
636 local_irq_enable();
637 }
638 }
639 old_gdt:
640 /*
641 * Initialize the per-CPU GDT with the boot GDT,
642 * and set up the GDT descriptor:
643 */
644 memcpy(gdt, cpu_gdt_table, GDT_SIZE);
645
646 /* Set up GDT entry for 16bit stack */
647 *(__u64 *)(&gdt[GDT_ENTRY_ESPFIX_SS]) |=
648 ((((__u64)stk16_off) << 16) & 0x000000ffffff0000ULL) |
649 ((((__u64)stk16_off) << 32) & 0xff00000000000000ULL) |
650 (CPU_16BIT_STACK_SIZE - 1);
651
652 cpu_gdt_descr->size = GDT_SIZE - 1;
653 cpu_gdt_descr->address = (unsigned long)gdt;
654
655 load_gdt(cpu_gdt_descr);
656 load_idt(&idt_descr);
657
658 /*
659 * Set up and load the per-CPU TSS and LDT
660 */
661 atomic_inc(&init_mm.mm_count);
662 current->active_mm = &init_mm;
663 if (current->mm)
664 BUG();
665 enter_lazy_tlb(&init_mm, current);
666
667 load_esp0(t, thread);
668 set_tss_desc(cpu,t);
669 load_TR_desc();
670 load_LDT(&init_mm.context);
671
672 #ifdef CONFIG_DOUBLEFAULT
673 /* Set up doublefault TSS pointer in the GDT */
674 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
675 #endif
676
677 /* Clear %fs and %gs. */
678 asm volatile ("movl %0, %%fs; movl %0, %%gs" : : "r" (0));
679
680 /* Clear all 6 debug registers: */
681 set_debugreg(0, 0);
682 set_debugreg(0, 1);
683 set_debugreg(0, 2);
684 set_debugreg(0, 3);
685 set_debugreg(0, 6);
686 set_debugreg(0, 7);
687
688 /*
689 * Force FPU initialization:
690 */
691 current_thread_info()->status = 0;
692 clear_used_math();
693 mxcsr_feature_mask_init();
694 }
695
696 #ifdef CONFIG_HOTPLUG_CPU
697 void __cpuinit cpu_uninit(void)
698 {
699 int cpu = raw_smp_processor_id();
700 cpu_clear(cpu, cpu_initialized);
701
702 /* lazy TLB state */
703 per_cpu(cpu_tlbstate, cpu).state = 0;
704 per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm;
705 }
706 #endif
This page took 0.04776 seconds and 5 git commands to generate.