[PATCH] fix missing includes
[deliverable/linux.git] / arch / i386 / kernel / cpu / cpufreq / powernow-k8.c
1 /*
2 * (c) 2003, 2004, 2005 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
6 *
7 * Support : mark.langsdorf@amd.com
8 *
9 * Based on the powernow-k7.c module written by Dave Jones.
10 * (C) 2003 Dave Jones <davej@codemonkey.org.uk> on behalf of SuSE Labs
11 * (C) 2004 Dominik Brodowski <linux@brodo.de>
12 * (C) 2004 Pavel Machek <pavel@suse.cz>
13 * Licensed under the terms of the GNU GPL License version 2.
14 * Based upon datasheets & sample CPUs kindly provided by AMD.
15 *
16 * Valuable input gratefully received from Dave Jones, Pavel Machek,
17 * Dominik Brodowski, and others.
18 * Originally developed by Paul Devriendt.
19 * Processor information obtained from Chapter 9 (Power and Thermal Management)
20 * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21 * Opteron Processors" available for download from www.amd.com
22 *
23 * Tables for specific CPUs can be infrerred from
24 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
25 */
26
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35 #include <linux/sched.h> /* for current / set_cpus_allowed() */
36
37 #include <asm/msr.h>
38 #include <asm/io.h>
39 #include <asm/delay.h>
40
41 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
42 #include <linux/acpi.h>
43 #include <acpi/processor.h>
44 #endif
45
46 #define PFX "powernow-k8: "
47 #define BFX PFX "BIOS error: "
48 #define VERSION "version 1.50.4"
49 #include "powernow-k8.h"
50
51 /* serialize freq changes */
52 static DECLARE_MUTEX(fidvid_sem);
53
54 static struct powernow_k8_data *powernow_data[NR_CPUS];
55
56 #ifndef CONFIG_SMP
57 static cpumask_t cpu_core_map[1];
58 #endif
59
60 /* Return a frequency in MHz, given an input fid */
61 static u32 find_freq_from_fid(u32 fid)
62 {
63 return 800 + (fid * 100);
64 }
65
66 /* Return a frequency in KHz, given an input fid */
67 static u32 find_khz_freq_from_fid(u32 fid)
68 {
69 return 1000 * find_freq_from_fid(fid);
70 }
71
72 /* Return a voltage in miliVolts, given an input vid */
73 static u32 find_millivolts_from_vid(struct powernow_k8_data *data, u32 vid)
74 {
75 return 1550-vid*25;
76 }
77
78 /* Return the vco fid for an input fid
79 *
80 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
81 * only from corresponding high fids. This returns "high" fid corresponding to
82 * "low" one.
83 */
84 static u32 convert_fid_to_vco_fid(u32 fid)
85 {
86 if (fid < HI_FID_TABLE_BOTTOM) {
87 return 8 + (2 * fid);
88 } else {
89 return fid;
90 }
91 }
92
93 /*
94 * Return 1 if the pending bit is set. Unless we just instructed the processor
95 * to transition to a new state, seeing this bit set is really bad news.
96 */
97 static int pending_bit_stuck(void)
98 {
99 u32 lo, hi;
100
101 rdmsr(MSR_FIDVID_STATUS, lo, hi);
102 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
103 }
104
105 /*
106 * Update the global current fid / vid values from the status msr.
107 * Returns 1 on error.
108 */
109 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
110 {
111 u32 lo, hi;
112 u32 i = 0;
113
114 do {
115 if (i++ > 10000) {
116 dprintk("detected change pending stuck\n");
117 return 1;
118 }
119 rdmsr(MSR_FIDVID_STATUS, lo, hi);
120 } while (lo & MSR_S_LO_CHANGE_PENDING);
121
122 data->currvid = hi & MSR_S_HI_CURRENT_VID;
123 data->currfid = lo & MSR_S_LO_CURRENT_FID;
124
125 return 0;
126 }
127
128 /* the isochronous relief time */
129 static void count_off_irt(struct powernow_k8_data *data)
130 {
131 udelay((1 << data->irt) * 10);
132 return;
133 }
134
135 /* the voltage stabalization time */
136 static void count_off_vst(struct powernow_k8_data *data)
137 {
138 udelay(data->vstable * VST_UNITS_20US);
139 return;
140 }
141
142 /* need to init the control msr to a safe value (for each cpu) */
143 static void fidvid_msr_init(void)
144 {
145 u32 lo, hi;
146 u8 fid, vid;
147
148 rdmsr(MSR_FIDVID_STATUS, lo, hi);
149 vid = hi & MSR_S_HI_CURRENT_VID;
150 fid = lo & MSR_S_LO_CURRENT_FID;
151 lo = fid | (vid << MSR_C_LO_VID_SHIFT);
152 hi = MSR_C_HI_STP_GNT_BENIGN;
153 dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
154 wrmsr(MSR_FIDVID_CTL, lo, hi);
155 }
156
157
158 /* write the new fid value along with the other control fields to the msr */
159 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
160 {
161 u32 lo;
162 u32 savevid = data->currvid;
163 u32 i = 0;
164
165 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
166 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
167 return 1;
168 }
169
170 lo = fid | (data->currvid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
171
172 dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
173 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
174
175 do {
176 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
177 if (i++ > 100) {
178 printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n");
179 return 1;
180 }
181 } while (query_current_values_with_pending_wait(data));
182
183 count_off_irt(data);
184
185 if (savevid != data->currvid) {
186 printk(KERN_ERR PFX "vid change on fid trans, old 0x%x, new 0x%x\n",
187 savevid, data->currvid);
188 return 1;
189 }
190
191 if (fid != data->currfid) {
192 printk(KERN_ERR PFX "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
193 data->currfid);
194 return 1;
195 }
196
197 return 0;
198 }
199
200 /* Write a new vid to the hardware */
201 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
202 {
203 u32 lo;
204 u32 savefid = data->currfid;
205 int i = 0;
206
207 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
208 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
209 return 1;
210 }
211
212 lo = data->currfid | (vid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
213
214 dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
215 vid, lo, STOP_GRANT_5NS);
216
217 do {
218 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
219 if (i++ > 100) {
220 printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n");
221 return 1;
222 }
223 } while (query_current_values_with_pending_wait(data));
224
225 if (savefid != data->currfid) {
226 printk(KERN_ERR PFX "fid changed on vid trans, old 0x%x new 0x%x\n",
227 savefid, data->currfid);
228 return 1;
229 }
230
231 if (vid != data->currvid) {
232 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, curr 0x%x\n", vid,
233 data->currvid);
234 return 1;
235 }
236
237 return 0;
238 }
239
240 /*
241 * Reduce the vid by the max of step or reqvid.
242 * Decreasing vid codes represent increasing voltages:
243 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
244 */
245 static int decrease_vid_code_by_step(struct powernow_k8_data *data, u32 reqvid, u32 step)
246 {
247 if ((data->currvid - reqvid) > step)
248 reqvid = data->currvid - step;
249
250 if (write_new_vid(data, reqvid))
251 return 1;
252
253 count_off_vst(data);
254
255 return 0;
256 }
257
258 /* Change the fid and vid, by the 3 phases. */
259 static int transition_fid_vid(struct powernow_k8_data *data, u32 reqfid, u32 reqvid)
260 {
261 if (core_voltage_pre_transition(data, reqvid))
262 return 1;
263
264 if (core_frequency_transition(data, reqfid))
265 return 1;
266
267 if (core_voltage_post_transition(data, reqvid))
268 return 1;
269
270 if (query_current_values_with_pending_wait(data))
271 return 1;
272
273 if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
274 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
275 smp_processor_id(),
276 reqfid, reqvid, data->currfid, data->currvid);
277 return 1;
278 }
279
280 dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
281 smp_processor_id(), data->currfid, data->currvid);
282
283 return 0;
284 }
285
286 /* Phase 1 - core voltage transition ... setup voltage */
287 static int core_voltage_pre_transition(struct powernow_k8_data *data, u32 reqvid)
288 {
289 u32 rvosteps = data->rvo;
290 u32 savefid = data->currfid;
291 u32 maxvid, lo;
292
293 dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
294 smp_processor_id(),
295 data->currfid, data->currvid, reqvid, data->rvo);
296
297 rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
298 maxvid = 0x1f & (maxvid >> 16);
299 dprintk("ph1 maxvid=0x%x\n", maxvid);
300 if (reqvid < maxvid) /* lower numbers are higher voltages */
301 reqvid = maxvid;
302
303 while (data->currvid > reqvid) {
304 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
305 data->currvid, reqvid);
306 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
307 return 1;
308 }
309
310 while ((rvosteps > 0) && ((data->rvo + data->currvid) > reqvid)) {
311 if (data->currvid == maxvid) {
312 rvosteps = 0;
313 } else {
314 dprintk("ph1: changing vid for rvo, req 0x%x\n",
315 data->currvid - 1);
316 if (decrease_vid_code_by_step(data, data->currvid - 1, 1))
317 return 1;
318 rvosteps--;
319 }
320 }
321
322 if (query_current_values_with_pending_wait(data))
323 return 1;
324
325 if (savefid != data->currfid) {
326 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", data->currfid);
327 return 1;
328 }
329
330 dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
331 data->currfid, data->currvid);
332
333 return 0;
334 }
335
336 /* Phase 2 - core frequency transition */
337 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
338 {
339 u32 vcoreqfid, vcocurrfid, vcofiddiff, savevid = data->currvid;
340
341 if ((reqfid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
342 printk(KERN_ERR PFX "ph2: illegal lo-lo transition 0x%x 0x%x\n",
343 reqfid, data->currfid);
344 return 1;
345 }
346
347 if (data->currfid == reqfid) {
348 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", data->currfid);
349 return 0;
350 }
351
352 dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
353 smp_processor_id(),
354 data->currfid, data->currvid, reqfid);
355
356 vcoreqfid = convert_fid_to_vco_fid(reqfid);
357 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
358 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
359 : vcoreqfid - vcocurrfid;
360
361 while (vcofiddiff > 2) {
362 if (reqfid > data->currfid) {
363 if (data->currfid > LO_FID_TABLE_TOP) {
364 if (write_new_fid(data, data->currfid + 2)) {
365 return 1;
366 }
367 } else {
368 if (write_new_fid
369 (data, 2 + convert_fid_to_vco_fid(data->currfid))) {
370 return 1;
371 }
372 }
373 } else {
374 if (write_new_fid(data, data->currfid - 2))
375 return 1;
376 }
377
378 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
379 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
380 : vcoreqfid - vcocurrfid;
381 }
382
383 if (write_new_fid(data, reqfid))
384 return 1;
385
386 if (query_current_values_with_pending_wait(data))
387 return 1;
388
389 if (data->currfid != reqfid) {
390 printk(KERN_ERR PFX
391 "ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
392 data->currfid, reqfid);
393 return 1;
394 }
395
396 if (savevid != data->currvid) {
397 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
398 savevid, data->currvid);
399 return 1;
400 }
401
402 dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
403 data->currfid, data->currvid);
404
405 return 0;
406 }
407
408 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
409 static int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid)
410 {
411 u32 savefid = data->currfid;
412 u32 savereqvid = reqvid;
413
414 dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
415 smp_processor_id(),
416 data->currfid, data->currvid);
417
418 if (reqvid != data->currvid) {
419 if (write_new_vid(data, reqvid))
420 return 1;
421
422 if (savefid != data->currfid) {
423 printk(KERN_ERR PFX
424 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
425 savefid, data->currfid);
426 return 1;
427 }
428
429 if (data->currvid != reqvid) {
430 printk(KERN_ERR PFX
431 "ph3: failed vid transition\n, req 0x%x, curr 0x%x",
432 reqvid, data->currvid);
433 return 1;
434 }
435 }
436
437 if (query_current_values_with_pending_wait(data))
438 return 1;
439
440 if (savereqvid != data->currvid) {
441 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
442 return 1;
443 }
444
445 if (savefid != data->currfid) {
446 dprintk("ph3 failed, currfid changed 0x%x\n",
447 data->currfid);
448 return 1;
449 }
450
451 dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
452 data->currfid, data->currvid);
453
454 return 0;
455 }
456
457 static int check_supported_cpu(unsigned int cpu)
458 {
459 cpumask_t oldmask = CPU_MASK_ALL;
460 u32 eax, ebx, ecx, edx;
461 unsigned int rc = 0;
462
463 oldmask = current->cpus_allowed;
464 set_cpus_allowed(current, cpumask_of_cpu(cpu));
465 schedule();
466
467 if (smp_processor_id() != cpu) {
468 printk(KERN_ERR "limiting to cpu %u failed\n", cpu);
469 goto out;
470 }
471
472 if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
473 goto out;
474
475 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
476 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
477 ((eax & CPUID_XFAM) != CPUID_XFAM_K8) ||
478 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_F)) {
479 printk(KERN_INFO PFX "Processor cpuid %x not supported\n", eax);
480 goto out;
481 }
482
483 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
484 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
485 printk(KERN_INFO PFX
486 "No frequency change capabilities detected\n");
487 goto out;
488 }
489
490 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
491 if ((edx & P_STATE_TRANSITION_CAPABLE) != P_STATE_TRANSITION_CAPABLE) {
492 printk(KERN_INFO PFX "Power state transitions not supported\n");
493 goto out;
494 }
495
496 rc = 1;
497
498 out:
499 set_cpus_allowed(current, oldmask);
500 schedule();
501 return rc;
502
503 }
504
505 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
506 {
507 unsigned int j;
508 u8 lastfid = 0xff;
509
510 for (j = 0; j < data->numps; j++) {
511 if (pst[j].vid > LEAST_VID) {
512 printk(KERN_ERR PFX "vid %d invalid : 0x%x\n", j, pst[j].vid);
513 return -EINVAL;
514 }
515 if (pst[j].vid < data->rvo) { /* vid + rvo >= 0 */
516 printk(KERN_ERR BFX "0 vid exceeded with pstate %d\n", j);
517 return -ENODEV;
518 }
519 if (pst[j].vid < maxvid + data->rvo) { /* vid + rvo >= maxvid */
520 printk(KERN_ERR BFX "maxvid exceeded with pstate %d\n", j);
521 return -ENODEV;
522 }
523 if ((pst[j].fid > MAX_FID)
524 || (pst[j].fid & 1)
525 || (j && (pst[j].fid < HI_FID_TABLE_BOTTOM))) {
526 /* Only first fid is allowed to be in "low" range */
527 printk(KERN_ERR PFX "two low fids - %d : 0x%x\n", j, pst[j].fid);
528 return -EINVAL;
529 }
530 if (pst[j].fid < lastfid)
531 lastfid = pst[j].fid;
532 }
533 if (lastfid & 1) {
534 printk(KERN_ERR PFX "lastfid invalid\n");
535 return -EINVAL;
536 }
537 if (lastfid > LO_FID_TABLE_TOP)
538 printk(KERN_INFO PFX "first fid not from lo freq table\n");
539
540 return 0;
541 }
542
543 static void print_basics(struct powernow_k8_data *data)
544 {
545 int j;
546 for (j = 0; j < data->numps; j++) {
547 if (data->powernow_table[j].frequency != CPUFREQ_ENTRY_INVALID)
548 printk(KERN_INFO PFX " %d : fid 0x%x (%d MHz), vid 0x%x (%d mV)\n", j,
549 data->powernow_table[j].index & 0xff,
550 data->powernow_table[j].frequency/1000,
551 data->powernow_table[j].index >> 8,
552 find_millivolts_from_vid(data, data->powernow_table[j].index >> 8));
553 }
554 if (data->batps)
555 printk(KERN_INFO PFX "Only %d pstates on battery\n", data->batps);
556 }
557
558 static int fill_powernow_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
559 {
560 struct cpufreq_frequency_table *powernow_table;
561 unsigned int j;
562
563 if (data->batps) { /* use ACPI support to get full speed on mains power */
564 printk(KERN_WARNING PFX "Only %d pstates usable (use ACPI driver for full range\n", data->batps);
565 data->numps = data->batps;
566 }
567
568 for ( j=1; j<data->numps; j++ ) {
569 if (pst[j-1].fid >= pst[j].fid) {
570 printk(KERN_ERR PFX "PST out of sequence\n");
571 return -EINVAL;
572 }
573 }
574
575 if (data->numps < 2) {
576 printk(KERN_ERR PFX "no p states to transition\n");
577 return -ENODEV;
578 }
579
580 if (check_pst_table(data, pst, maxvid))
581 return -EINVAL;
582
583 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
584 * (data->numps + 1)), GFP_KERNEL);
585 if (!powernow_table) {
586 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
587 return -ENOMEM;
588 }
589
590 for (j = 0; j < data->numps; j++) {
591 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
592 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
593 powernow_table[j].frequency = find_khz_freq_from_fid(pst[j].fid);
594 }
595 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
596 powernow_table[data->numps].index = 0;
597
598 if (query_current_values_with_pending_wait(data)) {
599 kfree(powernow_table);
600 return -EIO;
601 }
602
603 dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
604 data->powernow_table = powernow_table;
605 print_basics(data);
606
607 for (j = 0; j < data->numps; j++)
608 if ((pst[j].fid==data->currfid) && (pst[j].vid==data->currvid))
609 return 0;
610
611 dprintk("currfid/vid do not match PST, ignoring\n");
612 return 0;
613 }
614
615 /* Find and validate the PSB/PST table in BIOS. */
616 static int find_psb_table(struct powernow_k8_data *data)
617 {
618 struct psb_s *psb;
619 unsigned int i;
620 u32 mvs;
621 u8 maxvid;
622 u32 cpst = 0;
623 u32 thiscpuid;
624
625 for (i = 0xc0000; i < 0xffff0; i += 0x10) {
626 /* Scan BIOS looking for the signature. */
627 /* It can not be at ffff0 - it is too big. */
628
629 psb = phys_to_virt(i);
630 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
631 continue;
632
633 dprintk("found PSB header at 0x%p\n", psb);
634
635 dprintk("table vers: 0x%x\n", psb->tableversion);
636 if (psb->tableversion != PSB_VERSION_1_4) {
637 printk(KERN_INFO BFX "PSB table is not v1.4\n");
638 return -ENODEV;
639 }
640
641 dprintk("flags: 0x%x\n", psb->flags1);
642 if (psb->flags1) {
643 printk(KERN_ERR BFX "unknown flags\n");
644 return -ENODEV;
645 }
646
647 data->vstable = psb->vstable;
648 dprintk("voltage stabilization time: %d(*20us)\n", data->vstable);
649
650 dprintk("flags2: 0x%x\n", psb->flags2);
651 data->rvo = psb->flags2 & 3;
652 data->irt = ((psb->flags2) >> 2) & 3;
653 mvs = ((psb->flags2) >> 4) & 3;
654 data->vidmvs = 1 << mvs;
655 data->batps = ((psb->flags2) >> 6) & 3;
656
657 dprintk("ramp voltage offset: %d\n", data->rvo);
658 dprintk("isochronous relief time: %d\n", data->irt);
659 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
660
661 dprintk("numpst: 0x%x\n", psb->num_tables);
662 cpst = psb->num_tables;
663 if ((psb->cpuid == 0x00000fc0) || (psb->cpuid == 0x00000fe0) ){
664 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
665 if ((thiscpuid == 0x00000fc0) || (thiscpuid == 0x00000fe0) ) {
666 cpst = 1;
667 }
668 }
669 if (cpst != 1) {
670 printk(KERN_ERR BFX "numpst must be 1\n");
671 return -ENODEV;
672 }
673
674 data->plllock = psb->plllocktime;
675 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
676 dprintk("maxfid: 0x%x\n", psb->maxfid);
677 dprintk("maxvid: 0x%x\n", psb->maxvid);
678 maxvid = psb->maxvid;
679
680 data->numps = psb->numps;
681 dprintk("numpstates: 0x%x\n", data->numps);
682 return fill_powernow_table(data, (struct pst_s *)(psb+1), maxvid);
683 }
684 /*
685 * If you see this message, complain to BIOS manufacturer. If
686 * he tells you "we do not support Linux" or some similar
687 * nonsense, remember that Windows 2000 uses the same legacy
688 * mechanism that the old Linux PSB driver uses. Tell them it
689 * is broken with Windows 2000.
690 *
691 * The reference to the AMD documentation is chapter 9 in the
692 * BIOS and Kernel Developer's Guide, which is available on
693 * www.amd.com
694 */
695 printk(KERN_INFO PFX "BIOS error - no PSB or ACPI _PSS objects\n");
696 return -ENODEV;
697 }
698
699 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
700 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index)
701 {
702 if (!data->acpi_data.state_count)
703 return;
704
705 data->irt = (data->acpi_data.states[index].control >> IRT_SHIFT) & IRT_MASK;
706 data->rvo = (data->acpi_data.states[index].control >> RVO_SHIFT) & RVO_MASK;
707 data->exttype = (data->acpi_data.states[index].control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
708 data->plllock = (data->acpi_data.states[index].control >> PLL_L_SHIFT) & PLL_L_MASK;
709 data->vidmvs = 1 << ((data->acpi_data.states[index].control >> MVS_SHIFT) & MVS_MASK);
710 data->vstable = (data->acpi_data.states[index].control >> VST_SHIFT) & VST_MASK;
711 }
712
713 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
714 {
715 int i;
716 int cntlofreq = 0;
717 struct cpufreq_frequency_table *powernow_table;
718
719 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
720 dprintk("register performance failed: bad ACPI data\n");
721 return -EIO;
722 }
723
724 /* verify the data contained in the ACPI structures */
725 if (data->acpi_data.state_count <= 1) {
726 dprintk("No ACPI P-States\n");
727 goto err_out;
728 }
729
730 if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
731 (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
732 dprintk("Invalid control/status registers (%x - %x)\n",
733 data->acpi_data.control_register.space_id,
734 data->acpi_data.status_register.space_id);
735 goto err_out;
736 }
737
738 /* fill in data->powernow_table */
739 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
740 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
741 if (!powernow_table) {
742 dprintk("powernow_table memory alloc failure\n");
743 goto err_out;
744 }
745
746 for (i = 0; i < data->acpi_data.state_count; i++) {
747 u32 fid;
748 u32 vid;
749
750 if (data->exttype) {
751 fid = data->acpi_data.states[i].status & FID_MASK;
752 vid = (data->acpi_data.states[i].status >> VID_SHIFT) & VID_MASK;
753 } else {
754 fid = data->acpi_data.states[i].control & FID_MASK;
755 vid = (data->acpi_data.states[i].control >> VID_SHIFT) & VID_MASK;
756 }
757
758 dprintk(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
759
760 powernow_table[i].index = fid; /* lower 8 bits */
761 powernow_table[i].index |= (vid << 8); /* upper 8 bits */
762 powernow_table[i].frequency = find_khz_freq_from_fid(fid);
763
764 /* verify frequency is OK */
765 if ((powernow_table[i].frequency > (MAX_FREQ * 1000)) ||
766 (powernow_table[i].frequency < (MIN_FREQ * 1000))) {
767 dprintk("invalid freq %u kHz, ignoring\n", powernow_table[i].frequency);
768 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
769 continue;
770 }
771
772 /* verify voltage is OK - BIOSs are using "off" to indicate invalid */
773 if (vid == VID_OFF) {
774 dprintk("invalid vid %u, ignoring\n", vid);
775 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
776 continue;
777 }
778
779 /* verify only 1 entry from the lo frequency table */
780 if (fid < HI_FID_TABLE_BOTTOM) {
781 if (cntlofreq) {
782 /* if both entries are the same, ignore this
783 * one...
784 */
785 if ((powernow_table[i].frequency != powernow_table[cntlofreq].frequency) ||
786 (powernow_table[i].index != powernow_table[cntlofreq].index)) {
787 printk(KERN_ERR PFX "Too many lo freq table entries\n");
788 goto err_out_mem;
789 }
790
791 dprintk("double low frequency table entry, ignoring it.\n");
792 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
793 continue;
794 } else
795 cntlofreq = i;
796 }
797
798 if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) {
799 printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
800 powernow_table[i].frequency,
801 (unsigned int) (data->acpi_data.states[i].core_frequency * 1000));
802 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
803 continue;
804 }
805 }
806
807 powernow_table[data->acpi_data.state_count].frequency = CPUFREQ_TABLE_END;
808 powernow_table[data->acpi_data.state_count].index = 0;
809 data->powernow_table = powernow_table;
810
811 /* fill in data */
812 data->numps = data->acpi_data.state_count;
813 print_basics(data);
814 powernow_k8_acpi_pst_values(data, 0);
815
816 /* notify BIOS that we exist */
817 acpi_processor_notify_smm(THIS_MODULE);
818
819 return 0;
820
821 err_out_mem:
822 kfree(powernow_table);
823
824 err_out:
825 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
826
827 /* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */
828 data->acpi_data.state_count = 0;
829
830 return -ENODEV;
831 }
832
833 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
834 {
835 if (data->acpi_data.state_count)
836 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
837 }
838
839 #else
840 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { return -ENODEV; }
841 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { return; }
842 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { return; }
843 #endif /* CONFIG_X86_POWERNOW_K8_ACPI */
844
845 /* Take a frequency, and issue the fid/vid transition command */
846 static int transition_frequency(struct powernow_k8_data *data, unsigned int index)
847 {
848 u32 fid;
849 u32 vid;
850 int res, i;
851 struct cpufreq_freqs freqs;
852
853 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
854
855 /* fid are the lower 8 bits of the index we stored into
856 * the cpufreq frequency table in find_psb_table, vid are
857 * the upper 8 bits.
858 */
859
860 fid = data->powernow_table[index].index & 0xFF;
861 vid = (data->powernow_table[index].index & 0xFF00) >> 8;
862
863 dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
864
865 if (query_current_values_with_pending_wait(data))
866 return 1;
867
868 if ((data->currvid == vid) && (data->currfid == fid)) {
869 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
870 fid, vid);
871 return 0;
872 }
873
874 if ((fid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
875 printk(KERN_ERR PFX
876 "ignoring illegal change in lo freq table-%x to 0x%x\n",
877 data->currfid, fid);
878 return 1;
879 }
880
881 dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
882 smp_processor_id(), fid, vid);
883
884 freqs.cpu = data->cpu;
885 freqs.old = find_khz_freq_from_fid(data->currfid);
886 freqs.new = find_khz_freq_from_fid(fid);
887 for_each_cpu_mask(i, cpu_core_map[data->cpu]) {
888 freqs.cpu = i;
889 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
890 }
891
892 res = transition_fid_vid(data, fid, vid);
893
894 freqs.new = find_khz_freq_from_fid(data->currfid);
895 for_each_cpu_mask(i, cpu_core_map[data->cpu]) {
896 freqs.cpu = i;
897 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
898 }
899 return res;
900 }
901
902 /* Driver entry point to switch to the target frequency */
903 static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsigned relation)
904 {
905 cpumask_t oldmask = CPU_MASK_ALL;
906 struct powernow_k8_data *data = powernow_data[pol->cpu];
907 u32 checkfid = data->currfid;
908 u32 checkvid = data->currvid;
909 unsigned int newstate;
910 int ret = -EIO;
911 int i;
912
913 /* only run on specific CPU from here on */
914 oldmask = current->cpus_allowed;
915 set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
916 schedule();
917
918 if (smp_processor_id() != pol->cpu) {
919 printk(KERN_ERR "limiting to cpu %u failed\n", pol->cpu);
920 goto err_out;
921 }
922
923 if (pending_bit_stuck()) {
924 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
925 goto err_out;
926 }
927
928 dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
929 pol->cpu, targfreq, pol->min, pol->max, relation);
930
931 if (query_current_values_with_pending_wait(data)) {
932 ret = -EIO;
933 goto err_out;
934 }
935
936 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
937 data->currfid, data->currvid);
938
939 if ((checkvid != data->currvid) || (checkfid != data->currfid)) {
940 printk(KERN_INFO PFX
941 "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
942 checkfid, data->currfid, checkvid, data->currvid);
943 }
944
945 if (cpufreq_frequency_table_target(pol, data->powernow_table, targfreq, relation, &newstate))
946 goto err_out;
947
948 down(&fidvid_sem);
949
950 powernow_k8_acpi_pst_values(data, newstate);
951
952 if (transition_frequency(data, newstate)) {
953 printk(KERN_ERR PFX "transition frequency failed\n");
954 ret = 1;
955 up(&fidvid_sem);
956 goto err_out;
957 }
958
959 /* Update all the fid/vids of our siblings */
960 for_each_cpu_mask(i, cpu_core_map[pol->cpu]) {
961 powernow_data[i]->currvid = data->currvid;
962 powernow_data[i]->currfid = data->currfid;
963 }
964 up(&fidvid_sem);
965
966 pol->cur = find_khz_freq_from_fid(data->currfid);
967 ret = 0;
968
969 err_out:
970 set_cpus_allowed(current, oldmask);
971 schedule();
972
973 return ret;
974 }
975
976 /* Driver entry point to verify the policy and range of frequencies */
977 static int powernowk8_verify(struct cpufreq_policy *pol)
978 {
979 struct powernow_k8_data *data = powernow_data[pol->cpu];
980
981 return cpufreq_frequency_table_verify(pol, data->powernow_table);
982 }
983
984 /* per CPU init entry point to the driver */
985 static int __init powernowk8_cpu_init(struct cpufreq_policy *pol)
986 {
987 struct powernow_k8_data *data;
988 cpumask_t oldmask = CPU_MASK_ALL;
989 int rc, i;
990
991 if (!check_supported_cpu(pol->cpu))
992 return -ENODEV;
993
994 data = kmalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
995 if (!data) {
996 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
997 return -ENOMEM;
998 }
999 memset(data,0,sizeof(struct powernow_k8_data));
1000
1001 data->cpu = pol->cpu;
1002
1003 if (powernow_k8_cpu_init_acpi(data)) {
1004 /*
1005 * Use the PSB BIOS structure. This is only availabe on
1006 * an UP version, and is deprecated by AMD.
1007 */
1008
1009 if ((num_online_cpus() != 1) || (num_possible_cpus() != 1)) {
1010 printk(KERN_ERR PFX "MP systems not supported by PSB BIOS structure\n");
1011 kfree(data);
1012 return -ENODEV;
1013 }
1014 if (pol->cpu != 0) {
1015 printk(KERN_ERR PFX "init not cpu 0\n");
1016 kfree(data);
1017 return -ENODEV;
1018 }
1019 rc = find_psb_table(data);
1020 if (rc) {
1021 kfree(data);
1022 return -ENODEV;
1023 }
1024 }
1025
1026 /* only run on specific CPU from here on */
1027 oldmask = current->cpus_allowed;
1028 set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
1029 schedule();
1030
1031 if (smp_processor_id() != pol->cpu) {
1032 printk(KERN_ERR "limiting to cpu %u failed\n", pol->cpu);
1033 goto err_out;
1034 }
1035
1036 if (pending_bit_stuck()) {
1037 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1038 goto err_out;
1039 }
1040
1041 if (query_current_values_with_pending_wait(data))
1042 goto err_out;
1043
1044 fidvid_msr_init();
1045
1046 /* run on any CPU again */
1047 set_cpus_allowed(current, oldmask);
1048 schedule();
1049
1050 pol->governor = CPUFREQ_DEFAULT_GOVERNOR;
1051 pol->cpus = cpu_core_map[pol->cpu];
1052
1053 /* Take a crude guess here.
1054 * That guess was in microseconds, so multiply with 1000 */
1055 pol->cpuinfo.transition_latency = (((data->rvo + 8) * data->vstable * VST_UNITS_20US)
1056 + (3 * (1 << data->irt) * 10)) * 1000;
1057
1058 pol->cur = find_khz_freq_from_fid(data->currfid);
1059 dprintk("policy current frequency %d kHz\n", pol->cur);
1060
1061 /* min/max the cpu is capable of */
1062 if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1063 printk(KERN_ERR PFX "invalid powernow_table\n");
1064 powernow_k8_cpu_exit_acpi(data);
1065 kfree(data->powernow_table);
1066 kfree(data);
1067 return -EINVAL;
1068 }
1069
1070 cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1071
1072 printk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1073 data->currfid, data->currvid);
1074
1075 for_each_cpu_mask(i, cpu_core_map[pol->cpu]) {
1076 powernow_data[i] = data;
1077 }
1078
1079 return 0;
1080
1081 err_out:
1082 set_cpus_allowed(current, oldmask);
1083 schedule();
1084 powernow_k8_cpu_exit_acpi(data);
1085
1086 kfree(data);
1087 return -ENODEV;
1088 }
1089
1090 static int __devexit powernowk8_cpu_exit (struct cpufreq_policy *pol)
1091 {
1092 struct powernow_k8_data *data = powernow_data[pol->cpu];
1093
1094 if (!data)
1095 return -EINVAL;
1096
1097 powernow_k8_cpu_exit_acpi(data);
1098
1099 cpufreq_frequency_table_put_attr(pol->cpu);
1100
1101 kfree(data->powernow_table);
1102 kfree(data);
1103
1104 return 0;
1105 }
1106
1107 static unsigned int powernowk8_get (unsigned int cpu)
1108 {
1109 struct powernow_k8_data *data = powernow_data[cpu];
1110 cpumask_t oldmask = current->cpus_allowed;
1111 unsigned int khz = 0;
1112
1113 set_cpus_allowed(current, cpumask_of_cpu(cpu));
1114 if (smp_processor_id() != cpu) {
1115 printk(KERN_ERR PFX "limiting to CPU %d failed in powernowk8_get\n", cpu);
1116 set_cpus_allowed(current, oldmask);
1117 return 0;
1118 }
1119 preempt_disable();
1120
1121 if (query_current_values_with_pending_wait(data))
1122 goto out;
1123
1124 khz = find_khz_freq_from_fid(data->currfid);
1125
1126 out:
1127 preempt_enable_no_resched();
1128 set_cpus_allowed(current, oldmask);
1129
1130 return khz;
1131 }
1132
1133 static struct freq_attr* powernow_k8_attr[] = {
1134 &cpufreq_freq_attr_scaling_available_freqs,
1135 NULL,
1136 };
1137
1138 static struct cpufreq_driver cpufreq_amd64_driver = {
1139 .verify = powernowk8_verify,
1140 .target = powernowk8_target,
1141 .init = powernowk8_cpu_init,
1142 .exit = __devexit_p(powernowk8_cpu_exit),
1143 .get = powernowk8_get,
1144 .name = "powernow-k8",
1145 .owner = THIS_MODULE,
1146 .attr = powernow_k8_attr,
1147 };
1148
1149 /* driver entry point for init */
1150 static int __init powernowk8_init(void)
1151 {
1152 unsigned int i, supported_cpus = 0;
1153
1154 for (i=0; i<NR_CPUS; i++) {
1155 if (!cpu_online(i))
1156 continue;
1157 if (check_supported_cpu(i))
1158 supported_cpus++;
1159 }
1160
1161 if (supported_cpus == num_online_cpus()) {
1162 printk(KERN_INFO PFX "Found %d AMD Athlon 64 / Opteron processors (" VERSION ")\n",
1163 supported_cpus);
1164 return cpufreq_register_driver(&cpufreq_amd64_driver);
1165 }
1166
1167 return -ENODEV;
1168 }
1169
1170 /* driver entry point for term */
1171 static void __exit powernowk8_exit(void)
1172 {
1173 dprintk("exit\n");
1174
1175 cpufreq_unregister_driver(&cpufreq_amd64_driver);
1176 }
1177
1178 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and Mark Langsdorf <mark.langsdorf@amd.com.");
1179 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1180 MODULE_LICENSE("GPL");
1181
1182 late_initcall(powernowk8_init);
1183 module_exit(powernowk8_exit);
1184
This page took 0.098567 seconds and 5 git commands to generate.