/spare/repo/netdev-2.6 branch 'master'
[deliverable/linux.git] / arch / i386 / kernel / cpu / intel_cacheinfo.c
1 /*
2 * Routines to indentify caches on Intel CPU.
3 *
4 * Changes:
5 * Venkatesh Pallipadi : Adding cache identification through cpuid(4)
6 */
7
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/device.h>
11 #include <linux/compiler.h>
12 #include <linux/cpu.h>
13
14 #include <asm/processor.h>
15 #include <asm/smp.h>
16
17 #define LVL_1_INST 1
18 #define LVL_1_DATA 2
19 #define LVL_2 3
20 #define LVL_3 4
21 #define LVL_TRACE 5
22
23 struct _cache_table
24 {
25 unsigned char descriptor;
26 char cache_type;
27 short size;
28 };
29
30 /* all the cache descriptor types we care about (no TLB or trace cache entries) */
31 static struct _cache_table cache_table[] __devinitdata =
32 {
33 { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */
34 { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */
35 { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */
36 { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */
37 { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */
38 { 0x23, LVL_3, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
39 { 0x25, LVL_3, 2048 }, /* 8-way set assoc, sectored cache, 64 byte line size */
40 { 0x29, LVL_3, 4096 }, /* 8-way set assoc, sectored cache, 64 byte line size */
41 { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */
42 { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */
43 { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */
44 { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */
45 { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */
46 { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */
47 { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */
48 { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */
49 { 0x44, LVL_2, 1024 }, /* 4-way set assoc, 32 byte line size */
50 { 0x45, LVL_2, 2048 }, /* 4-way set assoc, 32 byte line size */
51 { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */
52 { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */
53 { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */
54 { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */
55 { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */
56 { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */
57 { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */
58 { 0x78, LVL_2, 1024 }, /* 4-way set assoc, 64 byte line size */
59 { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */
60 { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */
61 { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */
62 { 0x7c, LVL_2, 1024 }, /* 8-way set assoc, sectored cache, 64 byte line size */
63 { 0x7d, LVL_2, 2048 }, /* 8-way set assoc, 64 byte line size */
64 { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */
65 { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */
66 { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */
67 { 0x84, LVL_2, 1024 }, /* 8-way set assoc, 32 byte line size */
68 { 0x85, LVL_2, 2048 }, /* 8-way set assoc, 32 byte line size */
69 { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */
70 { 0x87, LVL_2, 1024 }, /* 8-way set assoc, 64 byte line size */
71 { 0x00, 0, 0}
72 };
73
74
75 enum _cache_type
76 {
77 CACHE_TYPE_NULL = 0,
78 CACHE_TYPE_DATA = 1,
79 CACHE_TYPE_INST = 2,
80 CACHE_TYPE_UNIFIED = 3
81 };
82
83 union _cpuid4_leaf_eax {
84 struct {
85 enum _cache_type type:5;
86 unsigned int level:3;
87 unsigned int is_self_initializing:1;
88 unsigned int is_fully_associative:1;
89 unsigned int reserved:4;
90 unsigned int num_threads_sharing:12;
91 unsigned int num_cores_on_die:6;
92 } split;
93 u32 full;
94 };
95
96 union _cpuid4_leaf_ebx {
97 struct {
98 unsigned int coherency_line_size:12;
99 unsigned int physical_line_partition:10;
100 unsigned int ways_of_associativity:10;
101 } split;
102 u32 full;
103 };
104
105 union _cpuid4_leaf_ecx {
106 struct {
107 unsigned int number_of_sets:32;
108 } split;
109 u32 full;
110 };
111
112 struct _cpuid4_info {
113 union _cpuid4_leaf_eax eax;
114 union _cpuid4_leaf_ebx ebx;
115 union _cpuid4_leaf_ecx ecx;
116 unsigned long size;
117 cpumask_t shared_cpu_map;
118 };
119
120 #define MAX_CACHE_LEAVES 4
121 static unsigned short num_cache_leaves;
122
123 static int __devinit cpuid4_cache_lookup(int index, struct _cpuid4_info *this_leaf)
124 {
125 unsigned int eax, ebx, ecx, edx;
126 union _cpuid4_leaf_eax cache_eax;
127
128 cpuid_count(4, index, &eax, &ebx, &ecx, &edx);
129 cache_eax.full = eax;
130 if (cache_eax.split.type == CACHE_TYPE_NULL)
131 return -EIO; /* better error ? */
132
133 this_leaf->eax.full = eax;
134 this_leaf->ebx.full = ebx;
135 this_leaf->ecx.full = ecx;
136 this_leaf->size = (this_leaf->ecx.split.number_of_sets + 1) *
137 (this_leaf->ebx.split.coherency_line_size + 1) *
138 (this_leaf->ebx.split.physical_line_partition + 1) *
139 (this_leaf->ebx.split.ways_of_associativity + 1);
140 return 0;
141 }
142
143 static int __init find_num_cache_leaves(void)
144 {
145 unsigned int eax, ebx, ecx, edx;
146 union _cpuid4_leaf_eax cache_eax;
147 int i;
148 int retval;
149
150 retval = MAX_CACHE_LEAVES;
151 /* Do cpuid(4) loop to find out num_cache_leaves */
152 for (i = 0; i < MAX_CACHE_LEAVES; i++) {
153 cpuid_count(4, i, &eax, &ebx, &ecx, &edx);
154 cache_eax.full = eax;
155 if (cache_eax.split.type == CACHE_TYPE_NULL) {
156 retval = i;
157 break;
158 }
159 }
160 return retval;
161 }
162
163 unsigned int __devinit init_intel_cacheinfo(struct cpuinfo_x86 *c)
164 {
165 unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0; /* Cache sizes */
166 unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
167 unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
168
169 if (c->cpuid_level > 4) {
170 static int is_initialized;
171
172 if (is_initialized == 0) {
173 /* Init num_cache_leaves from boot CPU */
174 num_cache_leaves = find_num_cache_leaves();
175 is_initialized++;
176 }
177
178 /*
179 * Whenever possible use cpuid(4), deterministic cache
180 * parameters cpuid leaf to find the cache details
181 */
182 for (i = 0; i < num_cache_leaves; i++) {
183 struct _cpuid4_info this_leaf;
184
185 int retval;
186
187 retval = cpuid4_cache_lookup(i, &this_leaf);
188 if (retval >= 0) {
189 switch(this_leaf.eax.split.level) {
190 case 1:
191 if (this_leaf.eax.split.type ==
192 CACHE_TYPE_DATA)
193 new_l1d = this_leaf.size/1024;
194 else if (this_leaf.eax.split.type ==
195 CACHE_TYPE_INST)
196 new_l1i = this_leaf.size/1024;
197 break;
198 case 2:
199 new_l2 = this_leaf.size/1024;
200 break;
201 case 3:
202 new_l3 = this_leaf.size/1024;
203 break;
204 default:
205 break;
206 }
207 }
208 }
209 }
210 if (c->cpuid_level > 1) {
211 /* supports eax=2 call */
212 int i, j, n;
213 int regs[4];
214 unsigned char *dp = (unsigned char *)regs;
215
216 /* Number of times to iterate */
217 n = cpuid_eax(2) & 0xFF;
218
219 for ( i = 0 ; i < n ; i++ ) {
220 cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
221
222 /* If bit 31 is set, this is an unknown format */
223 for ( j = 0 ; j < 3 ; j++ ) {
224 if ( regs[j] < 0 ) regs[j] = 0;
225 }
226
227 /* Byte 0 is level count, not a descriptor */
228 for ( j = 1 ; j < 16 ; j++ ) {
229 unsigned char des = dp[j];
230 unsigned char k = 0;
231
232 /* look up this descriptor in the table */
233 while (cache_table[k].descriptor != 0)
234 {
235 if (cache_table[k].descriptor == des) {
236 switch (cache_table[k].cache_type) {
237 case LVL_1_INST:
238 l1i += cache_table[k].size;
239 break;
240 case LVL_1_DATA:
241 l1d += cache_table[k].size;
242 break;
243 case LVL_2:
244 l2 += cache_table[k].size;
245 break;
246 case LVL_3:
247 l3 += cache_table[k].size;
248 break;
249 case LVL_TRACE:
250 trace += cache_table[k].size;
251 break;
252 }
253
254 break;
255 }
256
257 k++;
258 }
259 }
260 }
261
262 if (new_l1d)
263 l1d = new_l1d;
264
265 if (new_l1i)
266 l1i = new_l1i;
267
268 if (new_l2)
269 l2 = new_l2;
270
271 if (new_l3)
272 l3 = new_l3;
273
274 if ( trace )
275 printk (KERN_INFO "CPU: Trace cache: %dK uops", trace);
276 else if ( l1i )
277 printk (KERN_INFO "CPU: L1 I cache: %dK", l1i);
278 if ( l1d )
279 printk(", L1 D cache: %dK\n", l1d);
280 else
281 printk("\n");
282 if ( l2 )
283 printk(KERN_INFO "CPU: L2 cache: %dK\n", l2);
284 if ( l3 )
285 printk(KERN_INFO "CPU: L3 cache: %dK\n", l3);
286
287 /*
288 * This assumes the L3 cache is shared; it typically lives in
289 * the northbridge. The L1 caches are included by the L2
290 * cache, and so should not be included for the purpose of
291 * SMP switching weights.
292 */
293 c->x86_cache_size = l2 ? l2 : (l1i+l1d);
294 }
295
296 return l2;
297 }
298
299 /* pointer to _cpuid4_info array (for each cache leaf) */
300 static struct _cpuid4_info *cpuid4_info[NR_CPUS];
301 #define CPUID4_INFO_IDX(x,y) (&((cpuid4_info[x])[y]))
302
303 #ifdef CONFIG_SMP
304 static void __devinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
305 {
306 struct _cpuid4_info *this_leaf;
307 unsigned long num_threads_sharing;
308
309 this_leaf = CPUID4_INFO_IDX(cpu, index);
310 num_threads_sharing = 1 + this_leaf->eax.split.num_threads_sharing;
311
312 if (num_threads_sharing == 1)
313 cpu_set(cpu, this_leaf->shared_cpu_map);
314 #ifdef CONFIG_X86_HT
315 else if (num_threads_sharing == smp_num_siblings)
316 this_leaf->shared_cpu_map = cpu_sibling_map[cpu];
317 #endif
318 else
319 printk(KERN_INFO "Number of CPUs sharing cache didn't match "
320 "any known set of CPUs\n");
321 }
322 #else
323 static void __init cache_shared_cpu_map_setup(unsigned int cpu, int index) {}
324 #endif
325
326 static void free_cache_attributes(unsigned int cpu)
327 {
328 kfree(cpuid4_info[cpu]);
329 cpuid4_info[cpu] = NULL;
330 }
331
332 static int __devinit detect_cache_attributes(unsigned int cpu)
333 {
334 struct _cpuid4_info *this_leaf;
335 unsigned long j;
336 int retval;
337 cpumask_t oldmask;
338
339 if (num_cache_leaves == 0)
340 return -ENOENT;
341
342 cpuid4_info[cpu] = kmalloc(
343 sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL);
344 if (unlikely(cpuid4_info[cpu] == NULL))
345 return -ENOMEM;
346 memset(cpuid4_info[cpu], 0,
347 sizeof(struct _cpuid4_info) * num_cache_leaves);
348
349 oldmask = current->cpus_allowed;
350 retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
351 if (retval)
352 goto out;
353
354 /* Do cpuid and store the results */
355 retval = 0;
356 for (j = 0; j < num_cache_leaves; j++) {
357 this_leaf = CPUID4_INFO_IDX(cpu, j);
358 retval = cpuid4_cache_lookup(j, this_leaf);
359 if (unlikely(retval < 0))
360 break;
361 cache_shared_cpu_map_setup(cpu, j);
362 }
363 set_cpus_allowed(current, oldmask);
364
365 out:
366 if (retval)
367 free_cache_attributes(cpu);
368 return retval;
369 }
370
371 #ifdef CONFIG_SYSFS
372
373 #include <linux/kobject.h>
374 #include <linux/sysfs.h>
375
376 extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */
377
378 /* pointer to kobject for cpuX/cache */
379 static struct kobject * cache_kobject[NR_CPUS];
380
381 struct _index_kobject {
382 struct kobject kobj;
383 unsigned int cpu;
384 unsigned short index;
385 };
386
387 /* pointer to array of kobjects for cpuX/cache/indexY */
388 static struct _index_kobject *index_kobject[NR_CPUS];
389 #define INDEX_KOBJECT_PTR(x,y) (&((index_kobject[x])[y]))
390
391 #define show_one_plus(file_name, object, val) \
392 static ssize_t show_##file_name \
393 (struct _cpuid4_info *this_leaf, char *buf) \
394 { \
395 return sprintf (buf, "%lu\n", (unsigned long)this_leaf->object + val); \
396 }
397
398 show_one_plus(level, eax.split.level, 0);
399 show_one_plus(coherency_line_size, ebx.split.coherency_line_size, 1);
400 show_one_plus(physical_line_partition, ebx.split.physical_line_partition, 1);
401 show_one_plus(ways_of_associativity, ebx.split.ways_of_associativity, 1);
402 show_one_plus(number_of_sets, ecx.split.number_of_sets, 1);
403
404 static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf)
405 {
406 return sprintf (buf, "%luK\n", this_leaf->size / 1024);
407 }
408
409 static ssize_t show_shared_cpu_map(struct _cpuid4_info *this_leaf, char *buf)
410 {
411 char mask_str[NR_CPUS];
412 cpumask_scnprintf(mask_str, NR_CPUS, this_leaf->shared_cpu_map);
413 return sprintf(buf, "%s\n", mask_str);
414 }
415
416 static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf) {
417 switch(this_leaf->eax.split.type) {
418 case CACHE_TYPE_DATA:
419 return sprintf(buf, "Data\n");
420 break;
421 case CACHE_TYPE_INST:
422 return sprintf(buf, "Instruction\n");
423 break;
424 case CACHE_TYPE_UNIFIED:
425 return sprintf(buf, "Unified\n");
426 break;
427 default:
428 return sprintf(buf, "Unknown\n");
429 break;
430 }
431 }
432
433 struct _cache_attr {
434 struct attribute attr;
435 ssize_t (*show)(struct _cpuid4_info *, char *);
436 ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count);
437 };
438
439 #define define_one_ro(_name) \
440 static struct _cache_attr _name = \
441 __ATTR(_name, 0444, show_##_name, NULL)
442
443 define_one_ro(level);
444 define_one_ro(type);
445 define_one_ro(coherency_line_size);
446 define_one_ro(physical_line_partition);
447 define_one_ro(ways_of_associativity);
448 define_one_ro(number_of_sets);
449 define_one_ro(size);
450 define_one_ro(shared_cpu_map);
451
452 static struct attribute * default_attrs[] = {
453 &type.attr,
454 &level.attr,
455 &coherency_line_size.attr,
456 &physical_line_partition.attr,
457 &ways_of_associativity.attr,
458 &number_of_sets.attr,
459 &size.attr,
460 &shared_cpu_map.attr,
461 NULL
462 };
463
464 #define to_object(k) container_of(k, struct _index_kobject, kobj)
465 #define to_attr(a) container_of(a, struct _cache_attr, attr)
466
467 static ssize_t show(struct kobject * kobj, struct attribute * attr, char * buf)
468 {
469 struct _cache_attr *fattr = to_attr(attr);
470 struct _index_kobject *this_leaf = to_object(kobj);
471 ssize_t ret;
472
473 ret = fattr->show ?
474 fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
475 buf) :
476 0;
477 return ret;
478 }
479
480 static ssize_t store(struct kobject * kobj, struct attribute * attr,
481 const char * buf, size_t count)
482 {
483 return 0;
484 }
485
486 static struct sysfs_ops sysfs_ops = {
487 .show = show,
488 .store = store,
489 };
490
491 static struct kobj_type ktype_cache = {
492 .sysfs_ops = &sysfs_ops,
493 .default_attrs = default_attrs,
494 };
495
496 static struct kobj_type ktype_percpu_entry = {
497 .sysfs_ops = &sysfs_ops,
498 };
499
500 static void cpuid4_cache_sysfs_exit(unsigned int cpu)
501 {
502 kfree(cache_kobject[cpu]);
503 kfree(index_kobject[cpu]);
504 cache_kobject[cpu] = NULL;
505 index_kobject[cpu] = NULL;
506 free_cache_attributes(cpu);
507 }
508
509 static int __devinit cpuid4_cache_sysfs_init(unsigned int cpu)
510 {
511
512 if (num_cache_leaves == 0)
513 return -ENOENT;
514
515 detect_cache_attributes(cpu);
516 if (cpuid4_info[cpu] == NULL)
517 return -ENOENT;
518
519 /* Allocate all required memory */
520 cache_kobject[cpu] = kmalloc(sizeof(struct kobject), GFP_KERNEL);
521 if (unlikely(cache_kobject[cpu] == NULL))
522 goto err_out;
523 memset(cache_kobject[cpu], 0, sizeof(struct kobject));
524
525 index_kobject[cpu] = kmalloc(
526 sizeof(struct _index_kobject ) * num_cache_leaves, GFP_KERNEL);
527 if (unlikely(index_kobject[cpu] == NULL))
528 goto err_out;
529 memset(index_kobject[cpu], 0,
530 sizeof(struct _index_kobject) * num_cache_leaves);
531
532 return 0;
533
534 err_out:
535 cpuid4_cache_sysfs_exit(cpu);
536 return -ENOMEM;
537 }
538
539 /* Add/Remove cache interface for CPU device */
540 static int __devinit cache_add_dev(struct sys_device * sys_dev)
541 {
542 unsigned int cpu = sys_dev->id;
543 unsigned long i, j;
544 struct _index_kobject *this_object;
545 int retval = 0;
546
547 retval = cpuid4_cache_sysfs_init(cpu);
548 if (unlikely(retval < 0))
549 return retval;
550
551 cache_kobject[cpu]->parent = &sys_dev->kobj;
552 kobject_set_name(cache_kobject[cpu], "%s", "cache");
553 cache_kobject[cpu]->ktype = &ktype_percpu_entry;
554 retval = kobject_register(cache_kobject[cpu]);
555
556 for (i = 0; i < num_cache_leaves; i++) {
557 this_object = INDEX_KOBJECT_PTR(cpu,i);
558 this_object->cpu = cpu;
559 this_object->index = i;
560 this_object->kobj.parent = cache_kobject[cpu];
561 kobject_set_name(&(this_object->kobj), "index%1lu", i);
562 this_object->kobj.ktype = &ktype_cache;
563 retval = kobject_register(&(this_object->kobj));
564 if (unlikely(retval)) {
565 for (j = 0; j < i; j++) {
566 kobject_unregister(
567 &(INDEX_KOBJECT_PTR(cpu,j)->kobj));
568 }
569 kobject_unregister(cache_kobject[cpu]);
570 cpuid4_cache_sysfs_exit(cpu);
571 break;
572 }
573 }
574 return retval;
575 }
576
577 static int __devexit cache_remove_dev(struct sys_device * sys_dev)
578 {
579 unsigned int cpu = sys_dev->id;
580 unsigned long i;
581
582 for (i = 0; i < num_cache_leaves; i++)
583 kobject_unregister(&(INDEX_KOBJECT_PTR(cpu,i)->kobj));
584 kobject_unregister(cache_kobject[cpu]);
585 cpuid4_cache_sysfs_exit(cpu);
586 return 0;
587 }
588
589 static struct sysdev_driver cache_sysdev_driver = {
590 .add = cache_add_dev,
591 .remove = __devexit_p(cache_remove_dev),
592 };
593
594 /* Register/Unregister the cpu_cache driver */
595 static int __devinit cache_register_driver(void)
596 {
597 if (num_cache_leaves == 0)
598 return 0;
599
600 return sysdev_driver_register(&cpu_sysdev_class,&cache_sysdev_driver);
601 }
602
603 device_initcall(cache_register_driver);
604
605 #endif
606
This page took 0.05394 seconds and 5 git commands to generate.