[PATCH] tiny: Configure ELF core dump support
[deliverable/linux.git] / arch / i386 / kernel / process.c
1 /*
2 * linux/arch/i386/kernel/process.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9
10 /*
11 * This file handles the architecture-dependent parts of process handling..
12 */
13
14 #include <stdarg.h>
15
16 #include <linux/cpu.h>
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/elfcore.h>
23 #include <linux/smp.h>
24 #include <linux/smp_lock.h>
25 #include <linux/stddef.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/user.h>
29 #include <linux/a.out.h>
30 #include <linux/interrupt.h>
31 #include <linux/config.h>
32 #include <linux/utsname.h>
33 #include <linux/delay.h>
34 #include <linux/reboot.h>
35 #include <linux/init.h>
36 #include <linux/mc146818rtc.h>
37 #include <linux/module.h>
38 #include <linux/kallsyms.h>
39 #include <linux/ptrace.h>
40 #include <linux/random.h>
41 #include <linux/kprobes.h>
42
43 #include <asm/uaccess.h>
44 #include <asm/pgtable.h>
45 #include <asm/system.h>
46 #include <asm/io.h>
47 #include <asm/ldt.h>
48 #include <asm/processor.h>
49 #include <asm/i387.h>
50 #include <asm/desc.h>
51 #ifdef CONFIG_MATH_EMULATION
52 #include <asm/math_emu.h>
53 #endif
54
55 #include <linux/err.h>
56
57 #include <asm/tlbflush.h>
58 #include <asm/cpu.h>
59
60 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
61
62 static int hlt_counter;
63
64 unsigned long boot_option_idle_override = 0;
65 EXPORT_SYMBOL(boot_option_idle_override);
66
67 /*
68 * Return saved PC of a blocked thread.
69 */
70 unsigned long thread_saved_pc(struct task_struct *tsk)
71 {
72 return ((unsigned long *)tsk->thread.esp)[3];
73 }
74
75 /*
76 * Powermanagement idle function, if any..
77 */
78 void (*pm_idle)(void);
79 EXPORT_SYMBOL(pm_idle);
80 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
81
82 void disable_hlt(void)
83 {
84 hlt_counter++;
85 }
86
87 EXPORT_SYMBOL(disable_hlt);
88
89 void enable_hlt(void)
90 {
91 hlt_counter--;
92 }
93
94 EXPORT_SYMBOL(enable_hlt);
95
96 /*
97 * We use this if we don't have any better
98 * idle routine..
99 */
100 void default_idle(void)
101 {
102 local_irq_enable();
103
104 if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
105 clear_thread_flag(TIF_POLLING_NRFLAG);
106 smp_mb__after_clear_bit();
107 while (!need_resched()) {
108 local_irq_disable();
109 if (!need_resched())
110 safe_halt();
111 else
112 local_irq_enable();
113 }
114 set_thread_flag(TIF_POLLING_NRFLAG);
115 } else {
116 while (!need_resched())
117 cpu_relax();
118 }
119 }
120 #ifdef CONFIG_APM_MODULE
121 EXPORT_SYMBOL(default_idle);
122 #endif
123
124 /*
125 * On SMP it's slightly faster (but much more power-consuming!)
126 * to poll the ->work.need_resched flag instead of waiting for the
127 * cross-CPU IPI to arrive. Use this option with caution.
128 */
129 static void poll_idle (void)
130 {
131 local_irq_enable();
132
133 asm volatile(
134 "2:"
135 "testl %0, %1;"
136 "rep; nop;"
137 "je 2b;"
138 : : "i"(_TIF_NEED_RESCHED), "m" (current_thread_info()->flags));
139 }
140
141 #ifdef CONFIG_HOTPLUG_CPU
142 #include <asm/nmi.h>
143 /* We don't actually take CPU down, just spin without interrupts. */
144 static inline void play_dead(void)
145 {
146 /* This must be done before dead CPU ack */
147 cpu_exit_clear();
148 wbinvd();
149 mb();
150 /* Ack it */
151 __get_cpu_var(cpu_state) = CPU_DEAD;
152
153 /*
154 * With physical CPU hotplug, we should halt the cpu
155 */
156 local_irq_disable();
157 while (1)
158 halt();
159 }
160 #else
161 static inline void play_dead(void)
162 {
163 BUG();
164 }
165 #endif /* CONFIG_HOTPLUG_CPU */
166
167 /*
168 * The idle thread. There's no useful work to be
169 * done, so just try to conserve power and have a
170 * low exit latency (ie sit in a loop waiting for
171 * somebody to say that they'd like to reschedule)
172 */
173 void cpu_idle(void)
174 {
175 int cpu = smp_processor_id();
176
177 set_thread_flag(TIF_POLLING_NRFLAG);
178
179 /* endless idle loop with no priority at all */
180 while (1) {
181 while (!need_resched()) {
182 void (*idle)(void);
183
184 if (__get_cpu_var(cpu_idle_state))
185 __get_cpu_var(cpu_idle_state) = 0;
186
187 rmb();
188 idle = pm_idle;
189
190 if (!idle)
191 idle = default_idle;
192
193 if (cpu_is_offline(cpu))
194 play_dead();
195
196 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
197 idle();
198 }
199 preempt_enable_no_resched();
200 schedule();
201 preempt_disable();
202 }
203 }
204
205 void cpu_idle_wait(void)
206 {
207 unsigned int cpu, this_cpu = get_cpu();
208 cpumask_t map;
209
210 set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
211 put_cpu();
212
213 cpus_clear(map);
214 for_each_online_cpu(cpu) {
215 per_cpu(cpu_idle_state, cpu) = 1;
216 cpu_set(cpu, map);
217 }
218
219 __get_cpu_var(cpu_idle_state) = 0;
220
221 wmb();
222 do {
223 ssleep(1);
224 for_each_online_cpu(cpu) {
225 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
226 cpu_clear(cpu, map);
227 }
228 cpus_and(map, map, cpu_online_map);
229 } while (!cpus_empty(map));
230 }
231 EXPORT_SYMBOL_GPL(cpu_idle_wait);
232
233 /*
234 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
235 * which can obviate IPI to trigger checking of need_resched.
236 * We execute MONITOR against need_resched and enter optimized wait state
237 * through MWAIT. Whenever someone changes need_resched, we would be woken
238 * up from MWAIT (without an IPI).
239 */
240 static void mwait_idle(void)
241 {
242 local_irq_enable();
243
244 while (!need_resched()) {
245 __monitor((void *)&current_thread_info()->flags, 0, 0);
246 smp_mb();
247 if (need_resched())
248 break;
249 __mwait(0, 0);
250 }
251 }
252
253 void __devinit select_idle_routine(const struct cpuinfo_x86 *c)
254 {
255 if (cpu_has(c, X86_FEATURE_MWAIT)) {
256 printk("monitor/mwait feature present.\n");
257 /*
258 * Skip, if setup has overridden idle.
259 * One CPU supports mwait => All CPUs supports mwait
260 */
261 if (!pm_idle) {
262 printk("using mwait in idle threads.\n");
263 pm_idle = mwait_idle;
264 }
265 }
266 }
267
268 static int __init idle_setup (char *str)
269 {
270 if (!strncmp(str, "poll", 4)) {
271 printk("using polling idle threads.\n");
272 pm_idle = poll_idle;
273 #ifdef CONFIG_X86_SMP
274 if (smp_num_siblings > 1)
275 printk("WARNING: polling idle and HT enabled, performance may degrade.\n");
276 #endif
277 } else if (!strncmp(str, "halt", 4)) {
278 printk("using halt in idle threads.\n");
279 pm_idle = default_idle;
280 }
281
282 boot_option_idle_override = 1;
283 return 1;
284 }
285
286 __setup("idle=", idle_setup);
287
288 void show_regs(struct pt_regs * regs)
289 {
290 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
291
292 printk("\n");
293 printk("Pid: %d, comm: %20s\n", current->pid, current->comm);
294 printk("EIP: %04x:[<%08lx>] CPU: %d\n",0xffff & regs->xcs,regs->eip, smp_processor_id());
295 print_symbol("EIP is at %s\n", regs->eip);
296
297 if (user_mode(regs))
298 printk(" ESP: %04x:%08lx",0xffff & regs->xss,regs->esp);
299 printk(" EFLAGS: %08lx %s (%s)\n",
300 regs->eflags, print_tainted(), system_utsname.release);
301 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
302 regs->eax,regs->ebx,regs->ecx,regs->edx);
303 printk("ESI: %08lx EDI: %08lx EBP: %08lx",
304 regs->esi, regs->edi, regs->ebp);
305 printk(" DS: %04x ES: %04x\n",
306 0xffff & regs->xds,0xffff & regs->xes);
307
308 cr0 = read_cr0();
309 cr2 = read_cr2();
310 cr3 = read_cr3();
311 cr4 = read_cr4_safe();
312 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", cr0, cr2, cr3, cr4);
313 show_trace(NULL, &regs->esp);
314 }
315
316 /*
317 * This gets run with %ebx containing the
318 * function to call, and %edx containing
319 * the "args".
320 */
321 extern void kernel_thread_helper(void);
322 __asm__(".section .text\n"
323 ".align 4\n"
324 "kernel_thread_helper:\n\t"
325 "movl %edx,%eax\n\t"
326 "pushl %edx\n\t"
327 "call *%ebx\n\t"
328 "pushl %eax\n\t"
329 "call do_exit\n"
330 ".previous");
331
332 /*
333 * Create a kernel thread
334 */
335 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
336 {
337 struct pt_regs regs;
338
339 memset(&regs, 0, sizeof(regs));
340
341 regs.ebx = (unsigned long) fn;
342 regs.edx = (unsigned long) arg;
343
344 regs.xds = __USER_DS;
345 regs.xes = __USER_DS;
346 regs.orig_eax = -1;
347 regs.eip = (unsigned long) kernel_thread_helper;
348 regs.xcs = __KERNEL_CS;
349 regs.eflags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
350
351 /* Ok, create the new process.. */
352 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
353 }
354 EXPORT_SYMBOL(kernel_thread);
355
356 /*
357 * Free current thread data structures etc..
358 */
359 void exit_thread(void)
360 {
361 struct task_struct *tsk = current;
362 struct thread_struct *t = &tsk->thread;
363
364 /*
365 * Remove function-return probe instances associated with this task
366 * and put them back on the free list. Do not insert an exit probe for
367 * this function, it will be disabled by kprobe_flush_task if you do.
368 */
369 kprobe_flush_task(tsk);
370
371 /* The process may have allocated an io port bitmap... nuke it. */
372 if (unlikely(NULL != t->io_bitmap_ptr)) {
373 int cpu = get_cpu();
374 struct tss_struct *tss = &per_cpu(init_tss, cpu);
375
376 kfree(t->io_bitmap_ptr);
377 t->io_bitmap_ptr = NULL;
378 /*
379 * Careful, clear this in the TSS too:
380 */
381 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
382 t->io_bitmap_max = 0;
383 tss->io_bitmap_owner = NULL;
384 tss->io_bitmap_max = 0;
385 tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
386 put_cpu();
387 }
388 }
389
390 void flush_thread(void)
391 {
392 struct task_struct *tsk = current;
393
394 memset(tsk->thread.debugreg, 0, sizeof(unsigned long)*8);
395 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
396 /*
397 * Forget coprocessor state..
398 */
399 clear_fpu(tsk);
400 clear_used_math();
401 }
402
403 void release_thread(struct task_struct *dead_task)
404 {
405 BUG_ON(dead_task->mm);
406 release_vm86_irqs(dead_task);
407 }
408
409 /*
410 * This gets called before we allocate a new thread and copy
411 * the current task into it.
412 */
413 void prepare_to_copy(struct task_struct *tsk)
414 {
415 unlazy_fpu(tsk);
416 }
417
418 int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,
419 unsigned long unused,
420 struct task_struct * p, struct pt_regs * regs)
421 {
422 struct pt_regs * childregs;
423 struct task_struct *tsk;
424 int err;
425
426 childregs = ((struct pt_regs *) (THREAD_SIZE + (unsigned long) p->thread_info)) - 1;
427 /*
428 * The below -8 is to reserve 8 bytes on top of the ring0 stack.
429 * This is necessary to guarantee that the entire "struct pt_regs"
430 * is accessable even if the CPU haven't stored the SS/ESP registers
431 * on the stack (interrupt gate does not save these registers
432 * when switching to the same priv ring).
433 * Therefore beware: accessing the xss/esp fields of the
434 * "struct pt_regs" is possible, but they may contain the
435 * completely wrong values.
436 */
437 childregs = (struct pt_regs *) ((unsigned long) childregs - 8);
438 *childregs = *regs;
439 childregs->eax = 0;
440 childregs->esp = esp;
441
442 p->thread.esp = (unsigned long) childregs;
443 p->thread.esp0 = (unsigned long) (childregs+1);
444
445 p->thread.eip = (unsigned long) ret_from_fork;
446
447 savesegment(fs,p->thread.fs);
448 savesegment(gs,p->thread.gs);
449
450 tsk = current;
451 if (unlikely(NULL != tsk->thread.io_bitmap_ptr)) {
452 p->thread.io_bitmap_ptr = kmalloc(IO_BITMAP_BYTES, GFP_KERNEL);
453 if (!p->thread.io_bitmap_ptr) {
454 p->thread.io_bitmap_max = 0;
455 return -ENOMEM;
456 }
457 memcpy(p->thread.io_bitmap_ptr, tsk->thread.io_bitmap_ptr,
458 IO_BITMAP_BYTES);
459 }
460
461 /*
462 * Set a new TLS for the child thread?
463 */
464 if (clone_flags & CLONE_SETTLS) {
465 struct desc_struct *desc;
466 struct user_desc info;
467 int idx;
468
469 err = -EFAULT;
470 if (copy_from_user(&info, (void __user *)childregs->esi, sizeof(info)))
471 goto out;
472 err = -EINVAL;
473 if (LDT_empty(&info))
474 goto out;
475
476 idx = info.entry_number;
477 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
478 goto out;
479
480 desc = p->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
481 desc->a = LDT_entry_a(&info);
482 desc->b = LDT_entry_b(&info);
483 }
484
485 err = 0;
486 out:
487 if (err && p->thread.io_bitmap_ptr) {
488 kfree(p->thread.io_bitmap_ptr);
489 p->thread.io_bitmap_max = 0;
490 }
491 return err;
492 }
493
494 /*
495 * fill in the user structure for a core dump..
496 */
497 void dump_thread(struct pt_regs * regs, struct user * dump)
498 {
499 int i;
500
501 /* changed the size calculations - should hopefully work better. lbt */
502 dump->magic = CMAGIC;
503 dump->start_code = 0;
504 dump->start_stack = regs->esp & ~(PAGE_SIZE - 1);
505 dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT;
506 dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT;
507 dump->u_dsize -= dump->u_tsize;
508 dump->u_ssize = 0;
509 for (i = 0; i < 8; i++)
510 dump->u_debugreg[i] = current->thread.debugreg[i];
511
512 if (dump->start_stack < TASK_SIZE)
513 dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT;
514
515 dump->regs.ebx = regs->ebx;
516 dump->regs.ecx = regs->ecx;
517 dump->regs.edx = regs->edx;
518 dump->regs.esi = regs->esi;
519 dump->regs.edi = regs->edi;
520 dump->regs.ebp = regs->ebp;
521 dump->regs.eax = regs->eax;
522 dump->regs.ds = regs->xds;
523 dump->regs.es = regs->xes;
524 savesegment(fs,dump->regs.fs);
525 savesegment(gs,dump->regs.gs);
526 dump->regs.orig_eax = regs->orig_eax;
527 dump->regs.eip = regs->eip;
528 dump->regs.cs = regs->xcs;
529 dump->regs.eflags = regs->eflags;
530 dump->regs.esp = regs->esp;
531 dump->regs.ss = regs->xss;
532
533 dump->u_fpvalid = dump_fpu (regs, &dump->i387);
534 }
535 EXPORT_SYMBOL(dump_thread);
536
537 /*
538 * Capture the user space registers if the task is not running (in user space)
539 */
540 int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
541 {
542 struct pt_regs ptregs;
543
544 ptregs = *(struct pt_regs *)
545 ((unsigned long)tsk->thread_info +
546 /* see comments in copy_thread() about -8 */
547 THREAD_SIZE - sizeof(ptregs) - 8);
548 ptregs.xcs &= 0xffff;
549 ptregs.xds &= 0xffff;
550 ptregs.xes &= 0xffff;
551 ptregs.xss &= 0xffff;
552
553 elf_core_copy_regs(regs, &ptregs);
554
555 return 1;
556 }
557
558 static inline void
559 handle_io_bitmap(struct thread_struct *next, struct tss_struct *tss)
560 {
561 if (!next->io_bitmap_ptr) {
562 /*
563 * Disable the bitmap via an invalid offset. We still cache
564 * the previous bitmap owner and the IO bitmap contents:
565 */
566 tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
567 return;
568 }
569 if (likely(next == tss->io_bitmap_owner)) {
570 /*
571 * Previous owner of the bitmap (hence the bitmap content)
572 * matches the next task, we dont have to do anything but
573 * to set a valid offset in the TSS:
574 */
575 tss->io_bitmap_base = IO_BITMAP_OFFSET;
576 return;
577 }
578 /*
579 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
580 * and we let the task to get a GPF in case an I/O instruction
581 * is performed. The handler of the GPF will verify that the
582 * faulting task has a valid I/O bitmap and, it true, does the
583 * real copy and restart the instruction. This will save us
584 * redundant copies when the currently switched task does not
585 * perform any I/O during its timeslice.
586 */
587 tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
588 }
589
590 /*
591 * This function selects if the context switch from prev to next
592 * has to tweak the TSC disable bit in the cr4.
593 */
594 static inline void disable_tsc(struct task_struct *prev_p,
595 struct task_struct *next_p)
596 {
597 struct thread_info *prev, *next;
598
599 /*
600 * gcc should eliminate the ->thread_info dereference if
601 * has_secure_computing returns 0 at compile time (SECCOMP=n).
602 */
603 prev = prev_p->thread_info;
604 next = next_p->thread_info;
605
606 if (has_secure_computing(prev) || has_secure_computing(next)) {
607 /* slow path here */
608 if (has_secure_computing(prev) &&
609 !has_secure_computing(next)) {
610 write_cr4(read_cr4() & ~X86_CR4_TSD);
611 } else if (!has_secure_computing(prev) &&
612 has_secure_computing(next))
613 write_cr4(read_cr4() | X86_CR4_TSD);
614 }
615 }
616
617 /*
618 * switch_to(x,yn) should switch tasks from x to y.
619 *
620 * We fsave/fwait so that an exception goes off at the right time
621 * (as a call from the fsave or fwait in effect) rather than to
622 * the wrong process. Lazy FP saving no longer makes any sense
623 * with modern CPU's, and this simplifies a lot of things (SMP
624 * and UP become the same).
625 *
626 * NOTE! We used to use the x86 hardware context switching. The
627 * reason for not using it any more becomes apparent when you
628 * try to recover gracefully from saved state that is no longer
629 * valid (stale segment register values in particular). With the
630 * hardware task-switch, there is no way to fix up bad state in
631 * a reasonable manner.
632 *
633 * The fact that Intel documents the hardware task-switching to
634 * be slow is a fairly red herring - this code is not noticeably
635 * faster. However, there _is_ some room for improvement here,
636 * so the performance issues may eventually be a valid point.
637 * More important, however, is the fact that this allows us much
638 * more flexibility.
639 *
640 * The return value (in %eax) will be the "prev" task after
641 * the task-switch, and shows up in ret_from_fork in entry.S,
642 * for example.
643 */
644 struct task_struct fastcall * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
645 {
646 struct thread_struct *prev = &prev_p->thread,
647 *next = &next_p->thread;
648 int cpu = smp_processor_id();
649 struct tss_struct *tss = &per_cpu(init_tss, cpu);
650
651 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
652
653 __unlazy_fpu(prev_p);
654
655 /*
656 * Reload esp0.
657 */
658 load_esp0(tss, next);
659
660 /*
661 * Save away %fs and %gs. No need to save %es and %ds, as
662 * those are always kernel segments while inside the kernel.
663 * Doing this before setting the new TLS descriptors avoids
664 * the situation where we temporarily have non-reloadable
665 * segments in %fs and %gs. This could be an issue if the
666 * NMI handler ever used %fs or %gs (it does not today), or
667 * if the kernel is running inside of a hypervisor layer.
668 */
669 savesegment(fs, prev->fs);
670 savesegment(gs, prev->gs);
671
672 /*
673 * Load the per-thread Thread-Local Storage descriptor.
674 */
675 load_TLS(next, cpu);
676
677 /*
678 * Restore %fs and %gs if needed.
679 *
680 * Glibc normally makes %fs be zero, and %gs is one of
681 * the TLS segments.
682 */
683 if (unlikely(prev->fs | next->fs))
684 loadsegment(fs, next->fs);
685
686 if (prev->gs | next->gs)
687 loadsegment(gs, next->gs);
688
689 /*
690 * Restore IOPL if needed.
691 */
692 if (unlikely(prev->iopl != next->iopl))
693 set_iopl_mask(next->iopl);
694
695 /*
696 * Now maybe reload the debug registers
697 */
698 if (unlikely(next->debugreg[7])) {
699 set_debugreg(next->debugreg[0], 0);
700 set_debugreg(next->debugreg[1], 1);
701 set_debugreg(next->debugreg[2], 2);
702 set_debugreg(next->debugreg[3], 3);
703 /* no 4 and 5 */
704 set_debugreg(next->debugreg[6], 6);
705 set_debugreg(next->debugreg[7], 7);
706 }
707
708 if (unlikely(prev->io_bitmap_ptr || next->io_bitmap_ptr))
709 handle_io_bitmap(next, tss);
710
711 disable_tsc(prev_p, next_p);
712
713 return prev_p;
714 }
715
716 asmlinkage int sys_fork(struct pt_regs regs)
717 {
718 return do_fork(SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
719 }
720
721 asmlinkage int sys_clone(struct pt_regs regs)
722 {
723 unsigned long clone_flags;
724 unsigned long newsp;
725 int __user *parent_tidptr, *child_tidptr;
726
727 clone_flags = regs.ebx;
728 newsp = regs.ecx;
729 parent_tidptr = (int __user *)regs.edx;
730 child_tidptr = (int __user *)regs.edi;
731 if (!newsp)
732 newsp = regs.esp;
733 return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
734 }
735
736 /*
737 * This is trivial, and on the face of it looks like it
738 * could equally well be done in user mode.
739 *
740 * Not so, for quite unobvious reasons - register pressure.
741 * In user mode vfork() cannot have a stack frame, and if
742 * done by calling the "clone()" system call directly, you
743 * do not have enough call-clobbered registers to hold all
744 * the information you need.
745 */
746 asmlinkage int sys_vfork(struct pt_regs regs)
747 {
748 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
749 }
750
751 /*
752 * sys_execve() executes a new program.
753 */
754 asmlinkage int sys_execve(struct pt_regs regs)
755 {
756 int error;
757 char * filename;
758
759 filename = getname((char __user *) regs.ebx);
760 error = PTR_ERR(filename);
761 if (IS_ERR(filename))
762 goto out;
763 error = do_execve(filename,
764 (char __user * __user *) regs.ecx,
765 (char __user * __user *) regs.edx,
766 &regs);
767 if (error == 0) {
768 task_lock(current);
769 current->ptrace &= ~PT_DTRACE;
770 task_unlock(current);
771 /* Make sure we don't return using sysenter.. */
772 set_thread_flag(TIF_IRET);
773 }
774 putname(filename);
775 out:
776 return error;
777 }
778
779 #define top_esp (THREAD_SIZE - sizeof(unsigned long))
780 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
781
782 unsigned long get_wchan(struct task_struct *p)
783 {
784 unsigned long ebp, esp, eip;
785 unsigned long stack_page;
786 int count = 0;
787 if (!p || p == current || p->state == TASK_RUNNING)
788 return 0;
789 stack_page = (unsigned long)p->thread_info;
790 esp = p->thread.esp;
791 if (!stack_page || esp < stack_page || esp > top_esp+stack_page)
792 return 0;
793 /* include/asm-i386/system.h:switch_to() pushes ebp last. */
794 ebp = *(unsigned long *) esp;
795 do {
796 if (ebp < stack_page || ebp > top_ebp+stack_page)
797 return 0;
798 eip = *(unsigned long *) (ebp+4);
799 if (!in_sched_functions(eip))
800 return eip;
801 ebp = *(unsigned long *) ebp;
802 } while (count++ < 16);
803 return 0;
804 }
805 EXPORT_SYMBOL(get_wchan);
806
807 /*
808 * sys_alloc_thread_area: get a yet unused TLS descriptor index.
809 */
810 static int get_free_idx(void)
811 {
812 struct thread_struct *t = &current->thread;
813 int idx;
814
815 for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
816 if (desc_empty(t->tls_array + idx))
817 return idx + GDT_ENTRY_TLS_MIN;
818 return -ESRCH;
819 }
820
821 /*
822 * Set a given TLS descriptor:
823 */
824 asmlinkage int sys_set_thread_area(struct user_desc __user *u_info)
825 {
826 struct thread_struct *t = &current->thread;
827 struct user_desc info;
828 struct desc_struct *desc;
829 int cpu, idx;
830
831 if (copy_from_user(&info, u_info, sizeof(info)))
832 return -EFAULT;
833 idx = info.entry_number;
834
835 /*
836 * index -1 means the kernel should try to find and
837 * allocate an empty descriptor:
838 */
839 if (idx == -1) {
840 idx = get_free_idx();
841 if (idx < 0)
842 return idx;
843 if (put_user(idx, &u_info->entry_number))
844 return -EFAULT;
845 }
846
847 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
848 return -EINVAL;
849
850 desc = t->tls_array + idx - GDT_ENTRY_TLS_MIN;
851
852 /*
853 * We must not get preempted while modifying the TLS.
854 */
855 cpu = get_cpu();
856
857 if (LDT_empty(&info)) {
858 desc->a = 0;
859 desc->b = 0;
860 } else {
861 desc->a = LDT_entry_a(&info);
862 desc->b = LDT_entry_b(&info);
863 }
864 load_TLS(t, cpu);
865
866 put_cpu();
867
868 return 0;
869 }
870
871 /*
872 * Get the current Thread-Local Storage area:
873 */
874
875 #define GET_BASE(desc) ( \
876 (((desc)->a >> 16) & 0x0000ffff) | \
877 (((desc)->b << 16) & 0x00ff0000) | \
878 ( (desc)->b & 0xff000000) )
879
880 #define GET_LIMIT(desc) ( \
881 ((desc)->a & 0x0ffff) | \
882 ((desc)->b & 0xf0000) )
883
884 #define GET_32BIT(desc) (((desc)->b >> 22) & 1)
885 #define GET_CONTENTS(desc) (((desc)->b >> 10) & 3)
886 #define GET_WRITABLE(desc) (((desc)->b >> 9) & 1)
887 #define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1)
888 #define GET_PRESENT(desc) (((desc)->b >> 15) & 1)
889 #define GET_USEABLE(desc) (((desc)->b >> 20) & 1)
890
891 asmlinkage int sys_get_thread_area(struct user_desc __user *u_info)
892 {
893 struct user_desc info;
894 struct desc_struct *desc;
895 int idx;
896
897 if (get_user(idx, &u_info->entry_number))
898 return -EFAULT;
899 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
900 return -EINVAL;
901
902 memset(&info, 0, sizeof(info));
903
904 desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
905
906 info.entry_number = idx;
907 info.base_addr = GET_BASE(desc);
908 info.limit = GET_LIMIT(desc);
909 info.seg_32bit = GET_32BIT(desc);
910 info.contents = GET_CONTENTS(desc);
911 info.read_exec_only = !GET_WRITABLE(desc);
912 info.limit_in_pages = GET_LIMIT_PAGES(desc);
913 info.seg_not_present = !GET_PRESENT(desc);
914 info.useable = GET_USEABLE(desc);
915
916 if (copy_to_user(u_info, &info, sizeof(info)))
917 return -EFAULT;
918 return 0;
919 }
920
921 unsigned long arch_align_stack(unsigned long sp)
922 {
923 if (randomize_va_space)
924 sp -= get_random_int() % 8192;
925 return sp & ~0xf;
926 }
This page took 0.072237 seconds and 5 git commands to generate.