[PATCH] i386/x86_64: ACPI cpu_idle_wait() fix
[deliverable/linux.git] / arch / i386 / kernel / process.c
1 /*
2 * linux/arch/i386/kernel/process.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9
10 /*
11 * This file handles the architecture-dependent parts of process handling..
12 */
13
14 #include <stdarg.h>
15
16 #include <linux/cpu.h>
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/elfcore.h>
23 #include <linux/smp.h>
24 #include <linux/smp_lock.h>
25 #include <linux/stddef.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/user.h>
29 #include <linux/a.out.h>
30 #include <linux/interrupt.h>
31 #include <linux/utsname.h>
32 #include <linux/delay.h>
33 #include <linux/reboot.h>
34 #include <linux/init.h>
35 #include <linux/mc146818rtc.h>
36 #include <linux/module.h>
37 #include <linux/kallsyms.h>
38 #include <linux/ptrace.h>
39 #include <linux/random.h>
40 #include <linux/personality.h>
41
42 #include <asm/uaccess.h>
43 #include <asm/pgtable.h>
44 #include <asm/system.h>
45 #include <asm/io.h>
46 #include <asm/ldt.h>
47 #include <asm/processor.h>
48 #include <asm/i387.h>
49 #include <asm/desc.h>
50 #include <asm/vm86.h>
51 #ifdef CONFIG_MATH_EMULATION
52 #include <asm/math_emu.h>
53 #endif
54
55 #include <linux/err.h>
56
57 #include <asm/tlbflush.h>
58 #include <asm/cpu.h>
59
60 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
61
62 static int hlt_counter;
63
64 unsigned long boot_option_idle_override = 0;
65 EXPORT_SYMBOL(boot_option_idle_override);
66
67 /*
68 * Return saved PC of a blocked thread.
69 */
70 unsigned long thread_saved_pc(struct task_struct *tsk)
71 {
72 return ((unsigned long *)tsk->thread.esp)[3];
73 }
74
75 /*
76 * Powermanagement idle function, if any..
77 */
78 void (*pm_idle)(void);
79 EXPORT_SYMBOL(pm_idle);
80 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
81
82 void disable_hlt(void)
83 {
84 hlt_counter++;
85 }
86
87 EXPORT_SYMBOL(disable_hlt);
88
89 void enable_hlt(void)
90 {
91 hlt_counter--;
92 }
93
94 EXPORT_SYMBOL(enable_hlt);
95
96 /*
97 * We use this if we don't have any better
98 * idle routine..
99 */
100 void default_idle(void)
101 {
102 local_irq_enable();
103
104 if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
105 current_thread_info()->status &= ~TS_POLLING;
106 smp_mb__after_clear_bit();
107 while (!need_resched()) {
108 local_irq_disable();
109 if (!need_resched())
110 safe_halt();
111 else
112 local_irq_enable();
113 }
114 current_thread_info()->status |= TS_POLLING;
115 } else {
116 while (!need_resched())
117 cpu_relax();
118 }
119 }
120 #ifdef CONFIG_APM_MODULE
121 EXPORT_SYMBOL(default_idle);
122 #endif
123
124 /*
125 * On SMP it's slightly faster (but much more power-consuming!)
126 * to poll the ->work.need_resched flag instead of waiting for the
127 * cross-CPU IPI to arrive. Use this option with caution.
128 */
129 static void poll_idle (void)
130 {
131 local_irq_enable();
132
133 asm volatile(
134 "2:"
135 "testl %0, %1;"
136 "rep; nop;"
137 "je 2b;"
138 : : "i"(_TIF_NEED_RESCHED), "m" (current_thread_info()->flags));
139 }
140
141 #ifdef CONFIG_HOTPLUG_CPU
142 #include <asm/nmi.h>
143 /* We don't actually take CPU down, just spin without interrupts. */
144 static inline void play_dead(void)
145 {
146 /* This must be done before dead CPU ack */
147 cpu_exit_clear();
148 wbinvd();
149 mb();
150 /* Ack it */
151 __get_cpu_var(cpu_state) = CPU_DEAD;
152
153 /*
154 * With physical CPU hotplug, we should halt the cpu
155 */
156 local_irq_disable();
157 while (1)
158 halt();
159 }
160 #else
161 static inline void play_dead(void)
162 {
163 BUG();
164 }
165 #endif /* CONFIG_HOTPLUG_CPU */
166
167 /*
168 * The idle thread. There's no useful work to be
169 * done, so just try to conserve power and have a
170 * low exit latency (ie sit in a loop waiting for
171 * somebody to say that they'd like to reschedule)
172 */
173 void cpu_idle(void)
174 {
175 int cpu = smp_processor_id();
176
177 current_thread_info()->status |= TS_POLLING;
178
179 /* endless idle loop with no priority at all */
180 while (1) {
181 while (!need_resched()) {
182 void (*idle)(void);
183
184 if (__get_cpu_var(cpu_idle_state))
185 __get_cpu_var(cpu_idle_state) = 0;
186
187 rmb();
188 idle = pm_idle;
189
190 if (!idle)
191 idle = default_idle;
192
193 if (cpu_is_offline(cpu))
194 play_dead();
195
196 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
197 idle();
198 }
199 preempt_enable_no_resched();
200 schedule();
201 preempt_disable();
202 }
203 }
204
205 void cpu_idle_wait(void)
206 {
207 unsigned int cpu, this_cpu = get_cpu();
208 cpumask_t map, tmp = current->cpus_allowed;
209
210 set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
211 put_cpu();
212
213 cpus_clear(map);
214 for_each_online_cpu(cpu) {
215 per_cpu(cpu_idle_state, cpu) = 1;
216 cpu_set(cpu, map);
217 }
218
219 __get_cpu_var(cpu_idle_state) = 0;
220
221 wmb();
222 do {
223 ssleep(1);
224 for_each_online_cpu(cpu) {
225 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
226 cpu_clear(cpu, map);
227 }
228 cpus_and(map, map, cpu_online_map);
229 } while (!cpus_empty(map));
230
231 set_cpus_allowed(current, tmp);
232 }
233 EXPORT_SYMBOL_GPL(cpu_idle_wait);
234
235 /*
236 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
237 * which can obviate IPI to trigger checking of need_resched.
238 * We execute MONITOR against need_resched and enter optimized wait state
239 * through MWAIT. Whenever someone changes need_resched, we would be woken
240 * up from MWAIT (without an IPI).
241 *
242 * New with Core Duo processors, MWAIT can take some hints based on CPU
243 * capability.
244 */
245 void mwait_idle_with_hints(unsigned long eax, unsigned long ecx)
246 {
247 if (!need_resched()) {
248 __monitor((void *)&current_thread_info()->flags, 0, 0);
249 smp_mb();
250 if (!need_resched())
251 __mwait(eax, ecx);
252 }
253 }
254
255 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
256 static void mwait_idle(void)
257 {
258 local_irq_enable();
259 while (!need_resched())
260 mwait_idle_with_hints(0, 0);
261 }
262
263 void __devinit select_idle_routine(const struct cpuinfo_x86 *c)
264 {
265 if (cpu_has(c, X86_FEATURE_MWAIT)) {
266 printk("monitor/mwait feature present.\n");
267 /*
268 * Skip, if setup has overridden idle.
269 * One CPU supports mwait => All CPUs supports mwait
270 */
271 if (!pm_idle) {
272 printk("using mwait in idle threads.\n");
273 pm_idle = mwait_idle;
274 }
275 }
276 }
277
278 static int __init idle_setup (char *str)
279 {
280 if (!strncmp(str, "poll", 4)) {
281 printk("using polling idle threads.\n");
282 pm_idle = poll_idle;
283 #ifdef CONFIG_X86_SMP
284 if (smp_num_siblings > 1)
285 printk("WARNING: polling idle and HT enabled, performance may degrade.\n");
286 #endif
287 } else if (!strncmp(str, "halt", 4)) {
288 printk("using halt in idle threads.\n");
289 pm_idle = default_idle;
290 }
291
292 boot_option_idle_override = 1;
293 return 1;
294 }
295
296 __setup("idle=", idle_setup);
297
298 void show_regs(struct pt_regs * regs)
299 {
300 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
301
302 printk("\n");
303 printk("Pid: %d, comm: %20s\n", current->pid, current->comm);
304 printk("EIP: %04x:[<%08lx>] CPU: %d\n",0xffff & regs->xcs,regs->eip, smp_processor_id());
305 print_symbol("EIP is at %s\n", regs->eip);
306
307 if (user_mode_vm(regs))
308 printk(" ESP: %04x:%08lx",0xffff & regs->xss,regs->esp);
309 printk(" EFLAGS: %08lx %s (%s %.*s)\n",
310 regs->eflags, print_tainted(), init_utsname()->release,
311 (int)strcspn(init_utsname()->version, " "),
312 init_utsname()->version);
313 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
314 regs->eax,regs->ebx,regs->ecx,regs->edx);
315 printk("ESI: %08lx EDI: %08lx EBP: %08lx",
316 regs->esi, regs->edi, regs->ebp);
317 printk(" DS: %04x ES: %04x\n",
318 0xffff & regs->xds,0xffff & regs->xes);
319
320 cr0 = read_cr0();
321 cr2 = read_cr2();
322 cr3 = read_cr3();
323 cr4 = read_cr4_safe();
324 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", cr0, cr2, cr3, cr4);
325 show_trace(NULL, regs, &regs->esp);
326 }
327
328 /*
329 * This gets run with %ebx containing the
330 * function to call, and %edx containing
331 * the "args".
332 */
333 extern void kernel_thread_helper(void);
334
335 /*
336 * Create a kernel thread
337 */
338 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
339 {
340 struct pt_regs regs;
341
342 memset(&regs, 0, sizeof(regs));
343
344 regs.ebx = (unsigned long) fn;
345 regs.edx = (unsigned long) arg;
346
347 regs.xds = __USER_DS;
348 regs.xes = __USER_DS;
349 regs.orig_eax = -1;
350 regs.eip = (unsigned long) kernel_thread_helper;
351 regs.xcs = __KERNEL_CS | get_kernel_rpl();
352 regs.eflags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
353
354 /* Ok, create the new process.. */
355 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
356 }
357 EXPORT_SYMBOL(kernel_thread);
358
359 /*
360 * Free current thread data structures etc..
361 */
362 void exit_thread(void)
363 {
364 /* The process may have allocated an io port bitmap... nuke it. */
365 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
366 struct task_struct *tsk = current;
367 struct thread_struct *t = &tsk->thread;
368 int cpu = get_cpu();
369 struct tss_struct *tss = &per_cpu(init_tss, cpu);
370
371 kfree(t->io_bitmap_ptr);
372 t->io_bitmap_ptr = NULL;
373 clear_thread_flag(TIF_IO_BITMAP);
374 /*
375 * Careful, clear this in the TSS too:
376 */
377 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
378 t->io_bitmap_max = 0;
379 tss->io_bitmap_owner = NULL;
380 tss->io_bitmap_max = 0;
381 tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
382 put_cpu();
383 }
384 }
385
386 void flush_thread(void)
387 {
388 struct task_struct *tsk = current;
389
390 memset(tsk->thread.debugreg, 0, sizeof(unsigned long)*8);
391 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
392 clear_tsk_thread_flag(tsk, TIF_DEBUG);
393 /*
394 * Forget coprocessor state..
395 */
396 clear_fpu(tsk);
397 clear_used_math();
398 }
399
400 void release_thread(struct task_struct *dead_task)
401 {
402 BUG_ON(dead_task->mm);
403 release_vm86_irqs(dead_task);
404 }
405
406 /*
407 * This gets called before we allocate a new thread and copy
408 * the current task into it.
409 */
410 void prepare_to_copy(struct task_struct *tsk)
411 {
412 unlazy_fpu(tsk);
413 }
414
415 int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,
416 unsigned long unused,
417 struct task_struct * p, struct pt_regs * regs)
418 {
419 struct pt_regs * childregs;
420 struct task_struct *tsk;
421 int err;
422
423 childregs = task_pt_regs(p);
424 *childregs = *regs;
425 childregs->eax = 0;
426 childregs->esp = esp;
427
428 p->thread.esp = (unsigned long) childregs;
429 p->thread.esp0 = (unsigned long) (childregs+1);
430
431 p->thread.eip = (unsigned long) ret_from_fork;
432
433 savesegment(fs,p->thread.fs);
434 savesegment(gs,p->thread.gs);
435
436 tsk = current;
437 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
438 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
439 IO_BITMAP_BYTES, GFP_KERNEL);
440 if (!p->thread.io_bitmap_ptr) {
441 p->thread.io_bitmap_max = 0;
442 return -ENOMEM;
443 }
444 set_tsk_thread_flag(p, TIF_IO_BITMAP);
445 }
446
447 /*
448 * Set a new TLS for the child thread?
449 */
450 if (clone_flags & CLONE_SETTLS) {
451 struct desc_struct *desc;
452 struct user_desc info;
453 int idx;
454
455 err = -EFAULT;
456 if (copy_from_user(&info, (void __user *)childregs->esi, sizeof(info)))
457 goto out;
458 err = -EINVAL;
459 if (LDT_empty(&info))
460 goto out;
461
462 idx = info.entry_number;
463 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
464 goto out;
465
466 desc = p->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
467 desc->a = LDT_entry_a(&info);
468 desc->b = LDT_entry_b(&info);
469 }
470
471 err = 0;
472 out:
473 if (err && p->thread.io_bitmap_ptr) {
474 kfree(p->thread.io_bitmap_ptr);
475 p->thread.io_bitmap_max = 0;
476 }
477 return err;
478 }
479
480 /*
481 * fill in the user structure for a core dump..
482 */
483 void dump_thread(struct pt_regs * regs, struct user * dump)
484 {
485 int i;
486
487 /* changed the size calculations - should hopefully work better. lbt */
488 dump->magic = CMAGIC;
489 dump->start_code = 0;
490 dump->start_stack = regs->esp & ~(PAGE_SIZE - 1);
491 dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT;
492 dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT;
493 dump->u_dsize -= dump->u_tsize;
494 dump->u_ssize = 0;
495 for (i = 0; i < 8; i++)
496 dump->u_debugreg[i] = current->thread.debugreg[i];
497
498 if (dump->start_stack < TASK_SIZE)
499 dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT;
500
501 dump->regs.ebx = regs->ebx;
502 dump->regs.ecx = regs->ecx;
503 dump->regs.edx = regs->edx;
504 dump->regs.esi = regs->esi;
505 dump->regs.edi = regs->edi;
506 dump->regs.ebp = regs->ebp;
507 dump->regs.eax = regs->eax;
508 dump->regs.ds = regs->xds;
509 dump->regs.es = regs->xes;
510 savesegment(fs,dump->regs.fs);
511 savesegment(gs,dump->regs.gs);
512 dump->regs.orig_eax = regs->orig_eax;
513 dump->regs.eip = regs->eip;
514 dump->regs.cs = regs->xcs;
515 dump->regs.eflags = regs->eflags;
516 dump->regs.esp = regs->esp;
517 dump->regs.ss = regs->xss;
518
519 dump->u_fpvalid = dump_fpu (regs, &dump->i387);
520 }
521 EXPORT_SYMBOL(dump_thread);
522
523 /*
524 * Capture the user space registers if the task is not running (in user space)
525 */
526 int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
527 {
528 struct pt_regs ptregs = *task_pt_regs(tsk);
529 ptregs.xcs &= 0xffff;
530 ptregs.xds &= 0xffff;
531 ptregs.xes &= 0xffff;
532 ptregs.xss &= 0xffff;
533
534 elf_core_copy_regs(regs, &ptregs);
535
536 return 1;
537 }
538
539 static noinline void __switch_to_xtra(struct task_struct *next_p,
540 struct tss_struct *tss)
541 {
542 struct thread_struct *next;
543
544 next = &next_p->thread;
545
546 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
547 set_debugreg(next->debugreg[0], 0);
548 set_debugreg(next->debugreg[1], 1);
549 set_debugreg(next->debugreg[2], 2);
550 set_debugreg(next->debugreg[3], 3);
551 /* no 4 and 5 */
552 set_debugreg(next->debugreg[6], 6);
553 set_debugreg(next->debugreg[7], 7);
554 }
555
556 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
557 /*
558 * Disable the bitmap via an invalid offset. We still cache
559 * the previous bitmap owner and the IO bitmap contents:
560 */
561 tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
562 return;
563 }
564
565 if (likely(next == tss->io_bitmap_owner)) {
566 /*
567 * Previous owner of the bitmap (hence the bitmap content)
568 * matches the next task, we dont have to do anything but
569 * to set a valid offset in the TSS:
570 */
571 tss->io_bitmap_base = IO_BITMAP_OFFSET;
572 return;
573 }
574 /*
575 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
576 * and we let the task to get a GPF in case an I/O instruction
577 * is performed. The handler of the GPF will verify that the
578 * faulting task has a valid I/O bitmap and, it true, does the
579 * real copy and restart the instruction. This will save us
580 * redundant copies when the currently switched task does not
581 * perform any I/O during its timeslice.
582 */
583 tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
584 }
585
586 /*
587 * This function selects if the context switch from prev to next
588 * has to tweak the TSC disable bit in the cr4.
589 */
590 static inline void disable_tsc(struct task_struct *prev_p,
591 struct task_struct *next_p)
592 {
593 struct thread_info *prev, *next;
594
595 /*
596 * gcc should eliminate the ->thread_info dereference if
597 * has_secure_computing returns 0 at compile time (SECCOMP=n).
598 */
599 prev = task_thread_info(prev_p);
600 next = task_thread_info(next_p);
601
602 if (has_secure_computing(prev) || has_secure_computing(next)) {
603 /* slow path here */
604 if (has_secure_computing(prev) &&
605 !has_secure_computing(next)) {
606 write_cr4(read_cr4() & ~X86_CR4_TSD);
607 } else if (!has_secure_computing(prev) &&
608 has_secure_computing(next))
609 write_cr4(read_cr4() | X86_CR4_TSD);
610 }
611 }
612
613 /*
614 * switch_to(x,yn) should switch tasks from x to y.
615 *
616 * We fsave/fwait so that an exception goes off at the right time
617 * (as a call from the fsave or fwait in effect) rather than to
618 * the wrong process. Lazy FP saving no longer makes any sense
619 * with modern CPU's, and this simplifies a lot of things (SMP
620 * and UP become the same).
621 *
622 * NOTE! We used to use the x86 hardware context switching. The
623 * reason for not using it any more becomes apparent when you
624 * try to recover gracefully from saved state that is no longer
625 * valid (stale segment register values in particular). With the
626 * hardware task-switch, there is no way to fix up bad state in
627 * a reasonable manner.
628 *
629 * The fact that Intel documents the hardware task-switching to
630 * be slow is a fairly red herring - this code is not noticeably
631 * faster. However, there _is_ some room for improvement here,
632 * so the performance issues may eventually be a valid point.
633 * More important, however, is the fact that this allows us much
634 * more flexibility.
635 *
636 * The return value (in %eax) will be the "prev" task after
637 * the task-switch, and shows up in ret_from_fork in entry.S,
638 * for example.
639 */
640 struct task_struct fastcall * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
641 {
642 struct thread_struct *prev = &prev_p->thread,
643 *next = &next_p->thread;
644 int cpu = smp_processor_id();
645 struct tss_struct *tss = &per_cpu(init_tss, cpu);
646
647 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
648
649 __unlazy_fpu(prev_p);
650
651 /*
652 * Reload esp0.
653 */
654 load_esp0(tss, next);
655
656 /*
657 * Save away %fs and %gs. No need to save %es and %ds, as
658 * those are always kernel segments while inside the kernel.
659 * Doing this before setting the new TLS descriptors avoids
660 * the situation where we temporarily have non-reloadable
661 * segments in %fs and %gs. This could be an issue if the
662 * NMI handler ever used %fs or %gs (it does not today), or
663 * if the kernel is running inside of a hypervisor layer.
664 */
665 savesegment(fs, prev->fs);
666 savesegment(gs, prev->gs);
667
668 /*
669 * Load the per-thread Thread-Local Storage descriptor.
670 */
671 load_TLS(next, cpu);
672
673 /*
674 * Restore %fs and %gs if needed.
675 *
676 * Glibc normally makes %fs be zero, and %gs is one of
677 * the TLS segments.
678 */
679 if (unlikely(prev->fs | next->fs))
680 loadsegment(fs, next->fs);
681
682 if (prev->gs | next->gs)
683 loadsegment(gs, next->gs);
684
685 /*
686 * Restore IOPL if needed.
687 */
688 if (unlikely(prev->iopl != next->iopl))
689 set_iopl_mask(next->iopl);
690
691 /*
692 * Now maybe handle debug registers and/or IO bitmaps
693 */
694 if (unlikely((task_thread_info(next_p)->flags & _TIF_WORK_CTXSW)
695 || test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)))
696 __switch_to_xtra(next_p, tss);
697
698 disable_tsc(prev_p, next_p);
699
700 return prev_p;
701 }
702
703 asmlinkage int sys_fork(struct pt_regs regs)
704 {
705 return do_fork(SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
706 }
707
708 asmlinkage int sys_clone(struct pt_regs regs)
709 {
710 unsigned long clone_flags;
711 unsigned long newsp;
712 int __user *parent_tidptr, *child_tidptr;
713
714 clone_flags = regs.ebx;
715 newsp = regs.ecx;
716 parent_tidptr = (int __user *)regs.edx;
717 child_tidptr = (int __user *)regs.edi;
718 if (!newsp)
719 newsp = regs.esp;
720 return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
721 }
722
723 /*
724 * This is trivial, and on the face of it looks like it
725 * could equally well be done in user mode.
726 *
727 * Not so, for quite unobvious reasons - register pressure.
728 * In user mode vfork() cannot have a stack frame, and if
729 * done by calling the "clone()" system call directly, you
730 * do not have enough call-clobbered registers to hold all
731 * the information you need.
732 */
733 asmlinkage int sys_vfork(struct pt_regs regs)
734 {
735 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
736 }
737
738 /*
739 * sys_execve() executes a new program.
740 */
741 asmlinkage int sys_execve(struct pt_regs regs)
742 {
743 int error;
744 char * filename;
745
746 filename = getname((char __user *) regs.ebx);
747 error = PTR_ERR(filename);
748 if (IS_ERR(filename))
749 goto out;
750 error = do_execve(filename,
751 (char __user * __user *) regs.ecx,
752 (char __user * __user *) regs.edx,
753 &regs);
754 if (error == 0) {
755 task_lock(current);
756 current->ptrace &= ~PT_DTRACE;
757 task_unlock(current);
758 /* Make sure we don't return using sysenter.. */
759 set_thread_flag(TIF_IRET);
760 }
761 putname(filename);
762 out:
763 return error;
764 }
765
766 #define top_esp (THREAD_SIZE - sizeof(unsigned long))
767 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
768
769 unsigned long get_wchan(struct task_struct *p)
770 {
771 unsigned long ebp, esp, eip;
772 unsigned long stack_page;
773 int count = 0;
774 if (!p || p == current || p->state == TASK_RUNNING)
775 return 0;
776 stack_page = (unsigned long)task_stack_page(p);
777 esp = p->thread.esp;
778 if (!stack_page || esp < stack_page || esp > top_esp+stack_page)
779 return 0;
780 /* include/asm-i386/system.h:switch_to() pushes ebp last. */
781 ebp = *(unsigned long *) esp;
782 do {
783 if (ebp < stack_page || ebp > top_ebp+stack_page)
784 return 0;
785 eip = *(unsigned long *) (ebp+4);
786 if (!in_sched_functions(eip))
787 return eip;
788 ebp = *(unsigned long *) ebp;
789 } while (count++ < 16);
790 return 0;
791 }
792
793 /*
794 * sys_alloc_thread_area: get a yet unused TLS descriptor index.
795 */
796 static int get_free_idx(void)
797 {
798 struct thread_struct *t = &current->thread;
799 int idx;
800
801 for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
802 if (desc_empty(t->tls_array + idx))
803 return idx + GDT_ENTRY_TLS_MIN;
804 return -ESRCH;
805 }
806
807 /*
808 * Set a given TLS descriptor:
809 */
810 asmlinkage int sys_set_thread_area(struct user_desc __user *u_info)
811 {
812 struct thread_struct *t = &current->thread;
813 struct user_desc info;
814 struct desc_struct *desc;
815 int cpu, idx;
816
817 if (copy_from_user(&info, u_info, sizeof(info)))
818 return -EFAULT;
819 idx = info.entry_number;
820
821 /*
822 * index -1 means the kernel should try to find and
823 * allocate an empty descriptor:
824 */
825 if (idx == -1) {
826 idx = get_free_idx();
827 if (idx < 0)
828 return idx;
829 if (put_user(idx, &u_info->entry_number))
830 return -EFAULT;
831 }
832
833 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
834 return -EINVAL;
835
836 desc = t->tls_array + idx - GDT_ENTRY_TLS_MIN;
837
838 /*
839 * We must not get preempted while modifying the TLS.
840 */
841 cpu = get_cpu();
842
843 if (LDT_empty(&info)) {
844 desc->a = 0;
845 desc->b = 0;
846 } else {
847 desc->a = LDT_entry_a(&info);
848 desc->b = LDT_entry_b(&info);
849 }
850 load_TLS(t, cpu);
851
852 put_cpu();
853
854 return 0;
855 }
856
857 /*
858 * Get the current Thread-Local Storage area:
859 */
860
861 #define GET_BASE(desc) ( \
862 (((desc)->a >> 16) & 0x0000ffff) | \
863 (((desc)->b << 16) & 0x00ff0000) | \
864 ( (desc)->b & 0xff000000) )
865
866 #define GET_LIMIT(desc) ( \
867 ((desc)->a & 0x0ffff) | \
868 ((desc)->b & 0xf0000) )
869
870 #define GET_32BIT(desc) (((desc)->b >> 22) & 1)
871 #define GET_CONTENTS(desc) (((desc)->b >> 10) & 3)
872 #define GET_WRITABLE(desc) (((desc)->b >> 9) & 1)
873 #define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1)
874 #define GET_PRESENT(desc) (((desc)->b >> 15) & 1)
875 #define GET_USEABLE(desc) (((desc)->b >> 20) & 1)
876
877 asmlinkage int sys_get_thread_area(struct user_desc __user *u_info)
878 {
879 struct user_desc info;
880 struct desc_struct *desc;
881 int idx;
882
883 if (get_user(idx, &u_info->entry_number))
884 return -EFAULT;
885 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
886 return -EINVAL;
887
888 memset(&info, 0, sizeof(info));
889
890 desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
891
892 info.entry_number = idx;
893 info.base_addr = GET_BASE(desc);
894 info.limit = GET_LIMIT(desc);
895 info.seg_32bit = GET_32BIT(desc);
896 info.contents = GET_CONTENTS(desc);
897 info.read_exec_only = !GET_WRITABLE(desc);
898 info.limit_in_pages = GET_LIMIT_PAGES(desc);
899 info.seg_not_present = !GET_PRESENT(desc);
900 info.useable = GET_USEABLE(desc);
901
902 if (copy_to_user(u_info, &info, sizeof(info)))
903 return -EFAULT;
904 return 0;
905 }
906
907 unsigned long arch_align_stack(unsigned long sp)
908 {
909 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
910 sp -= get_random_int() % 8192;
911 return sp & ~0xf;
912 }
This page took 0.061891 seconds and 6 git commands to generate.