b3c2e2c26743381e5f1a8b3dfd592c2c0cb5d2c9
[deliverable/linux.git] / arch / i386 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 *
7 * Much of the core SMP work is based on previous work by Thomas Radke, to
8 * whom a great many thanks are extended.
9 *
10 * Thanks to Intel for making available several different Pentium,
11 * Pentium Pro and Pentium-II/Xeon MP machines.
12 * Original development of Linux SMP code supported by Caldera.
13 *
14 * This code is released under the GNU General Public License version 2 or
15 * later.
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process. */
35
36 #include <linux/module.h>
37 #include <linux/config.h>
38 #include <linux/init.h>
39 #include <linux/kernel.h>
40
41 #include <linux/mm.h>
42 #include <linux/sched.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/smp_lock.h>
45 #include <linux/bootmem.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/percpu.h>
49
50 #include <linux/delay.h>
51 #include <linux/mc146818rtc.h>
52 #include <asm/tlbflush.h>
53 #include <asm/desc.h>
54 #include <asm/arch_hooks.h>
55
56 #include <mach_apic.h>
57 #include <mach_wakecpu.h>
58 #include <smpboot_hooks.h>
59
60 /* Set if we find a B stepping CPU */
61 static int __devinitdata smp_b_stepping;
62
63 /* Number of siblings per CPU package */
64 int smp_num_siblings = 1;
65 #ifdef CONFIG_X86_HT
66 EXPORT_SYMBOL(smp_num_siblings);
67 #endif
68
69 /* Package ID of each logical CPU */
70 int phys_proc_id[NR_CPUS] __read_mostly = {[0 ... NR_CPUS-1] = BAD_APICID};
71
72 /* Core ID of each logical CPU */
73 int cpu_core_id[NR_CPUS] __read_mostly = {[0 ... NR_CPUS-1] = BAD_APICID};
74
75 /* representing HT siblings of each logical CPU */
76 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
77 EXPORT_SYMBOL(cpu_sibling_map);
78
79 /* representing HT and core siblings of each logical CPU */
80 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
81 EXPORT_SYMBOL(cpu_core_map);
82
83 /* bitmap of online cpus */
84 cpumask_t cpu_online_map __read_mostly;
85 EXPORT_SYMBOL(cpu_online_map);
86
87 cpumask_t cpu_callin_map;
88 cpumask_t cpu_callout_map;
89 EXPORT_SYMBOL(cpu_callout_map);
90 #ifdef CONFIG_HOTPLUG_CPU
91 cpumask_t cpu_possible_map = CPU_MASK_ALL;
92 #else
93 cpumask_t cpu_possible_map;
94 #endif
95 EXPORT_SYMBOL(cpu_possible_map);
96 static cpumask_t smp_commenced_mask;
97
98 /* TSC's upper 32 bits can't be written in eariler CPU (before prescott), there
99 * is no way to resync one AP against BP. TBD: for prescott and above, we
100 * should use IA64's algorithm
101 */
102 static int __devinitdata tsc_sync_disabled;
103
104 /* Per CPU bogomips and other parameters */
105 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
106 EXPORT_SYMBOL(cpu_data);
107
108 u8 x86_cpu_to_apicid[NR_CPUS] __read_mostly =
109 { [0 ... NR_CPUS-1] = 0xff };
110 EXPORT_SYMBOL(x86_cpu_to_apicid);
111
112 /*
113 * Trampoline 80x86 program as an array.
114 */
115
116 extern unsigned char trampoline_data [];
117 extern unsigned char trampoline_end [];
118 static unsigned char *trampoline_base;
119 static int trampoline_exec;
120
121 static void map_cpu_to_logical_apicid(void);
122
123 /* State of each CPU. */
124 DEFINE_PER_CPU(int, cpu_state) = { 0 };
125
126 /*
127 * Currently trivial. Write the real->protected mode
128 * bootstrap into the page concerned. The caller
129 * has made sure it's suitably aligned.
130 */
131
132 static unsigned long __devinit setup_trampoline(void)
133 {
134 memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data);
135 return virt_to_phys(trampoline_base);
136 }
137
138 /*
139 * We are called very early to get the low memory for the
140 * SMP bootup trampoline page.
141 */
142 void __init smp_alloc_memory(void)
143 {
144 trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE);
145 /*
146 * Has to be in very low memory so we can execute
147 * real-mode AP code.
148 */
149 if (__pa(trampoline_base) >= 0x9F000)
150 BUG();
151 /*
152 * Make the SMP trampoline executable:
153 */
154 trampoline_exec = set_kernel_exec((unsigned long)trampoline_base, 1);
155 }
156
157 /*
158 * The bootstrap kernel entry code has set these up. Save them for
159 * a given CPU
160 */
161
162 static void __devinit smp_store_cpu_info(int id)
163 {
164 struct cpuinfo_x86 *c = cpu_data + id;
165
166 *c = boot_cpu_data;
167 if (id!=0)
168 identify_cpu(c);
169 /*
170 * Mask B, Pentium, but not Pentium MMX
171 */
172 if (c->x86_vendor == X86_VENDOR_INTEL &&
173 c->x86 == 5 &&
174 c->x86_mask >= 1 && c->x86_mask <= 4 &&
175 c->x86_model <= 3)
176 /*
177 * Remember we have B step Pentia with bugs
178 */
179 smp_b_stepping = 1;
180
181 /*
182 * Certain Athlons might work (for various values of 'work') in SMP
183 * but they are not certified as MP capable.
184 */
185 if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) {
186
187 /* Athlon 660/661 is valid. */
188 if ((c->x86_model==6) && ((c->x86_mask==0) || (c->x86_mask==1)))
189 goto valid_k7;
190
191 /* Duron 670 is valid */
192 if ((c->x86_model==7) && (c->x86_mask==0))
193 goto valid_k7;
194
195 /*
196 * Athlon 662, Duron 671, and Athlon >model 7 have capability bit.
197 * It's worth noting that the A5 stepping (662) of some Athlon XP's
198 * have the MP bit set.
199 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for more.
200 */
201 if (((c->x86_model==6) && (c->x86_mask>=2)) ||
202 ((c->x86_model==7) && (c->x86_mask>=1)) ||
203 (c->x86_model> 7))
204 if (cpu_has_mp)
205 goto valid_k7;
206
207 /* If we get here, it's not a certified SMP capable AMD system. */
208 add_taint(TAINT_UNSAFE_SMP);
209 }
210
211 valid_k7:
212 ;
213 }
214
215 /*
216 * TSC synchronization.
217 *
218 * We first check whether all CPUs have their TSC's synchronized,
219 * then we print a warning if not, and always resync.
220 */
221
222 static atomic_t tsc_start_flag = ATOMIC_INIT(0);
223 static atomic_t tsc_count_start = ATOMIC_INIT(0);
224 static atomic_t tsc_count_stop = ATOMIC_INIT(0);
225 static unsigned long long tsc_values[NR_CPUS];
226
227 #define NR_LOOPS 5
228
229 static void __init synchronize_tsc_bp (void)
230 {
231 int i;
232 unsigned long long t0;
233 unsigned long long sum, avg;
234 long long delta;
235 unsigned int one_usec;
236 int buggy = 0;
237
238 printk(KERN_INFO "checking TSC synchronization across %u CPUs: ", num_booting_cpus());
239
240 /* convert from kcyc/sec to cyc/usec */
241 one_usec = cpu_khz / 1000;
242
243 atomic_set(&tsc_start_flag, 1);
244 wmb();
245
246 /*
247 * We loop a few times to get a primed instruction cache,
248 * then the last pass is more or less synchronized and
249 * the BP and APs set their cycle counters to zero all at
250 * once. This reduces the chance of having random offsets
251 * between the processors, and guarantees that the maximum
252 * delay between the cycle counters is never bigger than
253 * the latency of information-passing (cachelines) between
254 * two CPUs.
255 */
256 for (i = 0; i < NR_LOOPS; i++) {
257 /*
258 * all APs synchronize but they loop on '== num_cpus'
259 */
260 while (atomic_read(&tsc_count_start) != num_booting_cpus()-1)
261 mb();
262 atomic_set(&tsc_count_stop, 0);
263 wmb();
264 /*
265 * this lets the APs save their current TSC:
266 */
267 atomic_inc(&tsc_count_start);
268
269 rdtscll(tsc_values[smp_processor_id()]);
270 /*
271 * We clear the TSC in the last loop:
272 */
273 if (i == NR_LOOPS-1)
274 write_tsc(0, 0);
275
276 /*
277 * Wait for all APs to leave the synchronization point:
278 */
279 while (atomic_read(&tsc_count_stop) != num_booting_cpus()-1)
280 mb();
281 atomic_set(&tsc_count_start, 0);
282 wmb();
283 atomic_inc(&tsc_count_stop);
284 }
285
286 sum = 0;
287 for (i = 0; i < NR_CPUS; i++) {
288 if (cpu_isset(i, cpu_callout_map)) {
289 t0 = tsc_values[i];
290 sum += t0;
291 }
292 }
293 avg = sum;
294 do_div(avg, num_booting_cpus());
295
296 sum = 0;
297 for (i = 0; i < NR_CPUS; i++) {
298 if (!cpu_isset(i, cpu_callout_map))
299 continue;
300 delta = tsc_values[i] - avg;
301 if (delta < 0)
302 delta = -delta;
303 /*
304 * We report bigger than 2 microseconds clock differences.
305 */
306 if (delta > 2*one_usec) {
307 long realdelta;
308 if (!buggy) {
309 buggy = 1;
310 printk("\n");
311 }
312 realdelta = delta;
313 do_div(realdelta, one_usec);
314 if (tsc_values[i] < avg)
315 realdelta = -realdelta;
316
317 printk(KERN_INFO "CPU#%d had %ld usecs TSC skew, fixed it up.\n", i, realdelta);
318 }
319
320 sum += delta;
321 }
322 if (!buggy)
323 printk("passed.\n");
324 }
325
326 static void __init synchronize_tsc_ap (void)
327 {
328 int i;
329
330 /*
331 * Not every cpu is online at the time
332 * this gets called, so we first wait for the BP to
333 * finish SMP initialization:
334 */
335 while (!atomic_read(&tsc_start_flag)) mb();
336
337 for (i = 0; i < NR_LOOPS; i++) {
338 atomic_inc(&tsc_count_start);
339 while (atomic_read(&tsc_count_start) != num_booting_cpus())
340 mb();
341
342 rdtscll(tsc_values[smp_processor_id()]);
343 if (i == NR_LOOPS-1)
344 write_tsc(0, 0);
345
346 atomic_inc(&tsc_count_stop);
347 while (atomic_read(&tsc_count_stop) != num_booting_cpus()) mb();
348 }
349 }
350 #undef NR_LOOPS
351
352 extern void calibrate_delay(void);
353
354 static atomic_t init_deasserted;
355
356 static void __devinit smp_callin(void)
357 {
358 int cpuid, phys_id;
359 unsigned long timeout;
360
361 /*
362 * If waken up by an INIT in an 82489DX configuration
363 * we may get here before an INIT-deassert IPI reaches
364 * our local APIC. We have to wait for the IPI or we'll
365 * lock up on an APIC access.
366 */
367 wait_for_init_deassert(&init_deasserted);
368
369 /*
370 * (This works even if the APIC is not enabled.)
371 */
372 phys_id = GET_APIC_ID(apic_read(APIC_ID));
373 cpuid = smp_processor_id();
374 if (cpu_isset(cpuid, cpu_callin_map)) {
375 printk("huh, phys CPU#%d, CPU#%d already present??\n",
376 phys_id, cpuid);
377 BUG();
378 }
379 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
380
381 /*
382 * STARTUP IPIs are fragile beasts as they might sometimes
383 * trigger some glue motherboard logic. Complete APIC bus
384 * silence for 1 second, this overestimates the time the
385 * boot CPU is spending to send the up to 2 STARTUP IPIs
386 * by a factor of two. This should be enough.
387 */
388
389 /*
390 * Waiting 2s total for startup (udelay is not yet working)
391 */
392 timeout = jiffies + 2*HZ;
393 while (time_before(jiffies, timeout)) {
394 /*
395 * Has the boot CPU finished it's STARTUP sequence?
396 */
397 if (cpu_isset(cpuid, cpu_callout_map))
398 break;
399 rep_nop();
400 }
401
402 if (!time_before(jiffies, timeout)) {
403 printk("BUG: CPU%d started up but did not get a callout!\n",
404 cpuid);
405 BUG();
406 }
407
408 /*
409 * the boot CPU has finished the init stage and is spinning
410 * on callin_map until we finish. We are free to set up this
411 * CPU, first the APIC. (this is probably redundant on most
412 * boards)
413 */
414
415 Dprintk("CALLIN, before setup_local_APIC().\n");
416 smp_callin_clear_local_apic();
417 setup_local_APIC();
418 map_cpu_to_logical_apicid();
419
420 /*
421 * Get our bogomips.
422 */
423 calibrate_delay();
424 Dprintk("Stack at about %p\n",&cpuid);
425
426 /*
427 * Save our processor parameters
428 */
429 smp_store_cpu_info(cpuid);
430
431 disable_APIC_timer();
432
433 /*
434 * Allow the master to continue.
435 */
436 cpu_set(cpuid, cpu_callin_map);
437
438 /*
439 * Synchronize the TSC with the BP
440 */
441 if (cpu_has_tsc && cpu_khz && !tsc_sync_disabled)
442 synchronize_tsc_ap();
443 }
444
445 static int cpucount;
446
447 /* representing cpus for which sibling maps can be computed */
448 static cpumask_t cpu_sibling_setup_map;
449
450 static inline void
451 set_cpu_sibling_map(int cpu)
452 {
453 int i;
454 struct cpuinfo_x86 *c = cpu_data;
455
456 cpu_set(cpu, cpu_sibling_setup_map);
457
458 if (smp_num_siblings > 1) {
459 for_each_cpu_mask(i, cpu_sibling_setup_map) {
460 if (phys_proc_id[cpu] == phys_proc_id[i] &&
461 cpu_core_id[cpu] == cpu_core_id[i]) {
462 cpu_set(i, cpu_sibling_map[cpu]);
463 cpu_set(cpu, cpu_sibling_map[i]);
464 cpu_set(i, cpu_core_map[cpu]);
465 cpu_set(cpu, cpu_core_map[i]);
466 }
467 }
468 } else {
469 cpu_set(cpu, cpu_sibling_map[cpu]);
470 }
471
472 if (current_cpu_data.x86_max_cores == 1) {
473 cpu_core_map[cpu] = cpu_sibling_map[cpu];
474 c[cpu].booted_cores = 1;
475 return;
476 }
477
478 for_each_cpu_mask(i, cpu_sibling_setup_map) {
479 if (phys_proc_id[cpu] == phys_proc_id[i]) {
480 cpu_set(i, cpu_core_map[cpu]);
481 cpu_set(cpu, cpu_core_map[i]);
482 /*
483 * Does this new cpu bringup a new core?
484 */
485 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
486 /*
487 * for each core in package, increment
488 * the booted_cores for this new cpu
489 */
490 if (first_cpu(cpu_sibling_map[i]) == i)
491 c[cpu].booted_cores++;
492 /*
493 * increment the core count for all
494 * the other cpus in this package
495 */
496 if (i != cpu)
497 c[i].booted_cores++;
498 } else if (i != cpu && !c[cpu].booted_cores)
499 c[cpu].booted_cores = c[i].booted_cores;
500 }
501 }
502 }
503
504 /*
505 * Activate a secondary processor.
506 */
507 static void __devinit start_secondary(void *unused)
508 {
509 /*
510 * Dont put anything before smp_callin(), SMP
511 * booting is too fragile that we want to limit the
512 * things done here to the most necessary things.
513 */
514 cpu_init();
515 preempt_disable();
516 smp_callin();
517 while (!cpu_isset(smp_processor_id(), smp_commenced_mask))
518 rep_nop();
519 setup_secondary_APIC_clock();
520 if (nmi_watchdog == NMI_IO_APIC) {
521 disable_8259A_irq(0);
522 enable_NMI_through_LVT0(NULL);
523 enable_8259A_irq(0);
524 }
525 enable_APIC_timer();
526 /*
527 * low-memory mappings have been cleared, flush them from
528 * the local TLBs too.
529 */
530 local_flush_tlb();
531
532 /* This must be done before setting cpu_online_map */
533 set_cpu_sibling_map(raw_smp_processor_id());
534 wmb();
535
536 /*
537 * We need to hold call_lock, so there is no inconsistency
538 * between the time smp_call_function() determines number of
539 * IPI receipients, and the time when the determination is made
540 * for which cpus receive the IPI. Holding this
541 * lock helps us to not include this cpu in a currently in progress
542 * smp_call_function().
543 */
544 lock_ipi_call_lock();
545 cpu_set(smp_processor_id(), cpu_online_map);
546 unlock_ipi_call_lock();
547 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
548
549 /* We can take interrupts now: we're officially "up". */
550 local_irq_enable();
551
552 wmb();
553 cpu_idle();
554 }
555
556 /*
557 * Everything has been set up for the secondary
558 * CPUs - they just need to reload everything
559 * from the task structure
560 * This function must not return.
561 */
562 void __devinit initialize_secondary(void)
563 {
564 /*
565 * We don't actually need to load the full TSS,
566 * basically just the stack pointer and the eip.
567 */
568
569 asm volatile(
570 "movl %0,%%esp\n\t"
571 "jmp *%1"
572 :
573 :"r" (current->thread.esp),"r" (current->thread.eip));
574 }
575
576 extern struct {
577 void * esp;
578 unsigned short ss;
579 } stack_start;
580
581 #ifdef CONFIG_NUMA
582
583 /* which logical CPUs are on which nodes */
584 cpumask_t node_2_cpu_mask[MAX_NUMNODES] __read_mostly =
585 { [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE };
586 /* which node each logical CPU is on */
587 int cpu_2_node[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 };
588 EXPORT_SYMBOL(cpu_2_node);
589
590 /* set up a mapping between cpu and node. */
591 static inline void map_cpu_to_node(int cpu, int node)
592 {
593 printk("Mapping cpu %d to node %d\n", cpu, node);
594 cpu_set(cpu, node_2_cpu_mask[node]);
595 cpu_2_node[cpu] = node;
596 }
597
598 /* undo a mapping between cpu and node. */
599 static inline void unmap_cpu_to_node(int cpu)
600 {
601 int node;
602
603 printk("Unmapping cpu %d from all nodes\n", cpu);
604 for (node = 0; node < MAX_NUMNODES; node ++)
605 cpu_clear(cpu, node_2_cpu_mask[node]);
606 cpu_2_node[cpu] = 0;
607 }
608 #else /* !CONFIG_NUMA */
609
610 #define map_cpu_to_node(cpu, node) ({})
611 #define unmap_cpu_to_node(cpu) ({})
612
613 #endif /* CONFIG_NUMA */
614
615 u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
616
617 static void map_cpu_to_logical_apicid(void)
618 {
619 int cpu = smp_processor_id();
620 int apicid = logical_smp_processor_id();
621
622 cpu_2_logical_apicid[cpu] = apicid;
623 map_cpu_to_node(cpu, apicid_to_node(apicid));
624 }
625
626 static void unmap_cpu_to_logical_apicid(int cpu)
627 {
628 cpu_2_logical_apicid[cpu] = BAD_APICID;
629 unmap_cpu_to_node(cpu);
630 }
631
632 #if APIC_DEBUG
633 static inline void __inquire_remote_apic(int apicid)
634 {
635 int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
636 char *names[] = { "ID", "VERSION", "SPIV" };
637 int timeout, status;
638
639 printk("Inquiring remote APIC #%d...\n", apicid);
640
641 for (i = 0; i < ARRAY_SIZE(regs); i++) {
642 printk("... APIC #%d %s: ", apicid, names[i]);
643
644 /*
645 * Wait for idle.
646 */
647 apic_wait_icr_idle();
648
649 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
650 apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
651
652 timeout = 0;
653 do {
654 udelay(100);
655 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
656 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
657
658 switch (status) {
659 case APIC_ICR_RR_VALID:
660 status = apic_read(APIC_RRR);
661 printk("%08x\n", status);
662 break;
663 default:
664 printk("failed\n");
665 }
666 }
667 }
668 #endif
669
670 #ifdef WAKE_SECONDARY_VIA_NMI
671 /*
672 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
673 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
674 * won't ... remember to clear down the APIC, etc later.
675 */
676 static int __devinit
677 wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip)
678 {
679 unsigned long send_status = 0, accept_status = 0;
680 int timeout, maxlvt;
681
682 /* Target chip */
683 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid));
684
685 /* Boot on the stack */
686 /* Kick the second */
687 apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL);
688
689 Dprintk("Waiting for send to finish...\n");
690 timeout = 0;
691 do {
692 Dprintk("+");
693 udelay(100);
694 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
695 } while (send_status && (timeout++ < 1000));
696
697 /*
698 * Give the other CPU some time to accept the IPI.
699 */
700 udelay(200);
701 /*
702 * Due to the Pentium erratum 3AP.
703 */
704 maxlvt = get_maxlvt();
705 if (maxlvt > 3) {
706 apic_read_around(APIC_SPIV);
707 apic_write(APIC_ESR, 0);
708 }
709 accept_status = (apic_read(APIC_ESR) & 0xEF);
710 Dprintk("NMI sent.\n");
711
712 if (send_status)
713 printk("APIC never delivered???\n");
714 if (accept_status)
715 printk("APIC delivery error (%lx).\n", accept_status);
716
717 return (send_status | accept_status);
718 }
719 #endif /* WAKE_SECONDARY_VIA_NMI */
720
721 #ifdef WAKE_SECONDARY_VIA_INIT
722 static int __devinit
723 wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip)
724 {
725 unsigned long send_status = 0, accept_status = 0;
726 int maxlvt, timeout, num_starts, j;
727
728 /*
729 * Be paranoid about clearing APIC errors.
730 */
731 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
732 apic_read_around(APIC_SPIV);
733 apic_write(APIC_ESR, 0);
734 apic_read(APIC_ESR);
735 }
736
737 Dprintk("Asserting INIT.\n");
738
739 /*
740 * Turn INIT on target chip
741 */
742 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
743
744 /*
745 * Send IPI
746 */
747 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
748 | APIC_DM_INIT);
749
750 Dprintk("Waiting for send to finish...\n");
751 timeout = 0;
752 do {
753 Dprintk("+");
754 udelay(100);
755 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
756 } while (send_status && (timeout++ < 1000));
757
758 mdelay(10);
759
760 Dprintk("Deasserting INIT.\n");
761
762 /* Target chip */
763 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
764
765 /* Send IPI */
766 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
767
768 Dprintk("Waiting for send to finish...\n");
769 timeout = 0;
770 do {
771 Dprintk("+");
772 udelay(100);
773 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
774 } while (send_status && (timeout++ < 1000));
775
776 atomic_set(&init_deasserted, 1);
777
778 /*
779 * Should we send STARTUP IPIs ?
780 *
781 * Determine this based on the APIC version.
782 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
783 */
784 if (APIC_INTEGRATED(apic_version[phys_apicid]))
785 num_starts = 2;
786 else
787 num_starts = 0;
788
789 /*
790 * Run STARTUP IPI loop.
791 */
792 Dprintk("#startup loops: %d.\n", num_starts);
793
794 maxlvt = get_maxlvt();
795
796 for (j = 1; j <= num_starts; j++) {
797 Dprintk("Sending STARTUP #%d.\n",j);
798 apic_read_around(APIC_SPIV);
799 apic_write(APIC_ESR, 0);
800 apic_read(APIC_ESR);
801 Dprintk("After apic_write.\n");
802
803 /*
804 * STARTUP IPI
805 */
806
807 /* Target chip */
808 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
809
810 /* Boot on the stack */
811 /* Kick the second */
812 apic_write_around(APIC_ICR, APIC_DM_STARTUP
813 | (start_eip >> 12));
814
815 /*
816 * Give the other CPU some time to accept the IPI.
817 */
818 udelay(300);
819
820 Dprintk("Startup point 1.\n");
821
822 Dprintk("Waiting for send to finish...\n");
823 timeout = 0;
824 do {
825 Dprintk("+");
826 udelay(100);
827 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
828 } while (send_status && (timeout++ < 1000));
829
830 /*
831 * Give the other CPU some time to accept the IPI.
832 */
833 udelay(200);
834 /*
835 * Due to the Pentium erratum 3AP.
836 */
837 if (maxlvt > 3) {
838 apic_read_around(APIC_SPIV);
839 apic_write(APIC_ESR, 0);
840 }
841 accept_status = (apic_read(APIC_ESR) & 0xEF);
842 if (send_status || accept_status)
843 break;
844 }
845 Dprintk("After Startup.\n");
846
847 if (send_status)
848 printk("APIC never delivered???\n");
849 if (accept_status)
850 printk("APIC delivery error (%lx).\n", accept_status);
851
852 return (send_status | accept_status);
853 }
854 #endif /* WAKE_SECONDARY_VIA_INIT */
855
856 extern cpumask_t cpu_initialized;
857 static inline int alloc_cpu_id(void)
858 {
859 cpumask_t tmp_map;
860 int cpu;
861 cpus_complement(tmp_map, cpu_present_map);
862 cpu = first_cpu(tmp_map);
863 if (cpu >= NR_CPUS)
864 return -ENODEV;
865 return cpu;
866 }
867
868 #ifdef CONFIG_HOTPLUG_CPU
869 static struct task_struct * __devinitdata cpu_idle_tasks[NR_CPUS];
870 static inline struct task_struct * alloc_idle_task(int cpu)
871 {
872 struct task_struct *idle;
873
874 if ((idle = cpu_idle_tasks[cpu]) != NULL) {
875 /* initialize thread_struct. we really want to avoid destroy
876 * idle tread
877 */
878 idle->thread.esp = (unsigned long)(((struct pt_regs *)
879 (THREAD_SIZE + (unsigned long) idle->thread_info)) - 1);
880 init_idle(idle, cpu);
881 return idle;
882 }
883 idle = fork_idle(cpu);
884
885 if (!IS_ERR(idle))
886 cpu_idle_tasks[cpu] = idle;
887 return idle;
888 }
889 #else
890 #define alloc_idle_task(cpu) fork_idle(cpu)
891 #endif
892
893 static int __devinit do_boot_cpu(int apicid, int cpu)
894 /*
895 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
896 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
897 * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu.
898 */
899 {
900 struct task_struct *idle;
901 unsigned long boot_error;
902 int timeout;
903 unsigned long start_eip;
904 unsigned short nmi_high = 0, nmi_low = 0;
905
906 if (!cpu_gdt_descr[cpu].address &&
907 !(cpu_gdt_descr[cpu].address = get_zeroed_page(GFP_KERNEL))) {
908 printk("Failed to allocate GDT for CPU %d\n", cpu);
909 return 1;
910 }
911
912 ++cpucount;
913
914 /*
915 * We can't use kernel_thread since we must avoid to
916 * reschedule the child.
917 */
918 idle = alloc_idle_task(cpu);
919 if (IS_ERR(idle))
920 panic("failed fork for CPU %d", cpu);
921 idle->thread.eip = (unsigned long) start_secondary;
922 /* start_eip had better be page-aligned! */
923 start_eip = setup_trampoline();
924
925 /* So we see what's up */
926 printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip);
927 /* Stack for startup_32 can be just as for start_secondary onwards */
928 stack_start.esp = (void *) idle->thread.esp;
929
930 irq_ctx_init(cpu);
931
932 /*
933 * This grunge runs the startup process for
934 * the targeted processor.
935 */
936
937 atomic_set(&init_deasserted, 0);
938
939 Dprintk("Setting warm reset code and vector.\n");
940
941 store_NMI_vector(&nmi_high, &nmi_low);
942
943 smpboot_setup_warm_reset_vector(start_eip);
944
945 /*
946 * Starting actual IPI sequence...
947 */
948 boot_error = wakeup_secondary_cpu(apicid, start_eip);
949
950 if (!boot_error) {
951 /*
952 * allow APs to start initializing.
953 */
954 Dprintk("Before Callout %d.\n", cpu);
955 cpu_set(cpu, cpu_callout_map);
956 Dprintk("After Callout %d.\n", cpu);
957
958 /*
959 * Wait 5s total for a response
960 */
961 for (timeout = 0; timeout < 50000; timeout++) {
962 if (cpu_isset(cpu, cpu_callin_map))
963 break; /* It has booted */
964 udelay(100);
965 }
966
967 if (cpu_isset(cpu, cpu_callin_map)) {
968 /* number CPUs logically, starting from 1 (BSP is 0) */
969 Dprintk("OK.\n");
970 printk("CPU%d: ", cpu);
971 print_cpu_info(&cpu_data[cpu]);
972 Dprintk("CPU has booted.\n");
973 } else {
974 boot_error= 1;
975 if (*((volatile unsigned char *)trampoline_base)
976 == 0xA5)
977 /* trampoline started but...? */
978 printk("Stuck ??\n");
979 else
980 /* trampoline code not run */
981 printk("Not responding.\n");
982 inquire_remote_apic(apicid);
983 }
984 }
985
986 if (boot_error) {
987 /* Try to put things back the way they were before ... */
988 unmap_cpu_to_logical_apicid(cpu);
989 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
990 cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */
991 cpucount--;
992 } else {
993 x86_cpu_to_apicid[cpu] = apicid;
994 cpu_set(cpu, cpu_present_map);
995 }
996
997 /* mark "stuck" area as not stuck */
998 *((volatile unsigned long *)trampoline_base) = 0;
999
1000 return boot_error;
1001 }
1002
1003 #ifdef CONFIG_HOTPLUG_CPU
1004 void cpu_exit_clear(void)
1005 {
1006 int cpu = raw_smp_processor_id();
1007
1008 idle_task_exit();
1009
1010 cpucount --;
1011 cpu_uninit();
1012 irq_ctx_exit(cpu);
1013
1014 cpu_clear(cpu, cpu_callout_map);
1015 cpu_clear(cpu, cpu_callin_map);
1016 cpu_clear(cpu, cpu_present_map);
1017
1018 cpu_clear(cpu, smp_commenced_mask);
1019 unmap_cpu_to_logical_apicid(cpu);
1020 }
1021
1022 struct warm_boot_cpu_info {
1023 struct completion *complete;
1024 int apicid;
1025 int cpu;
1026 };
1027
1028 static void __devinit do_warm_boot_cpu(void *p)
1029 {
1030 struct warm_boot_cpu_info *info = p;
1031 do_boot_cpu(info->apicid, info->cpu);
1032 complete(info->complete);
1033 }
1034
1035 int __devinit smp_prepare_cpu(int cpu)
1036 {
1037 DECLARE_COMPLETION(done);
1038 struct warm_boot_cpu_info info;
1039 struct work_struct task;
1040 int apicid, ret;
1041
1042 lock_cpu_hotplug();
1043 apicid = x86_cpu_to_apicid[cpu];
1044 if (apicid == BAD_APICID) {
1045 ret = -ENODEV;
1046 goto exit;
1047 }
1048
1049 info.complete = &done;
1050 info.apicid = apicid;
1051 info.cpu = cpu;
1052 INIT_WORK(&task, do_warm_boot_cpu, &info);
1053
1054 tsc_sync_disabled = 1;
1055
1056 /* init low mem mapping */
1057 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
1058 KERNEL_PGD_PTRS);
1059 flush_tlb_all();
1060 schedule_work(&task);
1061 wait_for_completion(&done);
1062
1063 tsc_sync_disabled = 0;
1064 zap_low_mappings();
1065 ret = 0;
1066 exit:
1067 unlock_cpu_hotplug();
1068 return ret;
1069 }
1070 #endif
1071
1072 static void smp_tune_scheduling (void)
1073 {
1074 unsigned long cachesize; /* kB */
1075 unsigned long bandwidth = 350; /* MB/s */
1076 /*
1077 * Rough estimation for SMP scheduling, this is the number of
1078 * cycles it takes for a fully memory-limited process to flush
1079 * the SMP-local cache.
1080 *
1081 * (For a P5 this pretty much means we will choose another idle
1082 * CPU almost always at wakeup time (this is due to the small
1083 * L1 cache), on PIIs it's around 50-100 usecs, depending on
1084 * the cache size)
1085 */
1086
1087 if (!cpu_khz) {
1088 /*
1089 * this basically disables processor-affinity
1090 * scheduling on SMP without a TSC.
1091 */
1092 return;
1093 } else {
1094 cachesize = boot_cpu_data.x86_cache_size;
1095 if (cachesize == -1) {
1096 cachesize = 16; /* Pentiums, 2x8kB cache */
1097 bandwidth = 100;
1098 }
1099 }
1100 }
1101
1102 /*
1103 * Cycle through the processors sending APIC IPIs to boot each.
1104 */
1105
1106 static int boot_cpu_logical_apicid;
1107 /* Where the IO area was mapped on multiquad, always 0 otherwise */
1108 void *xquad_portio;
1109 #ifdef CONFIG_X86_NUMAQ
1110 EXPORT_SYMBOL(xquad_portio);
1111 #endif
1112
1113 static void __init smp_boot_cpus(unsigned int max_cpus)
1114 {
1115 int apicid, cpu, bit, kicked;
1116 unsigned long bogosum = 0;
1117
1118 /*
1119 * Setup boot CPU information
1120 */
1121 smp_store_cpu_info(0); /* Final full version of the data */
1122 printk("CPU%d: ", 0);
1123 print_cpu_info(&cpu_data[0]);
1124
1125 boot_cpu_physical_apicid = GET_APIC_ID(apic_read(APIC_ID));
1126 boot_cpu_logical_apicid = logical_smp_processor_id();
1127 x86_cpu_to_apicid[0] = boot_cpu_physical_apicid;
1128
1129 current_thread_info()->cpu = 0;
1130 smp_tune_scheduling();
1131
1132 set_cpu_sibling_map(0);
1133
1134 /*
1135 * If we couldn't find an SMP configuration at boot time,
1136 * get out of here now!
1137 */
1138 if (!smp_found_config && !acpi_lapic) {
1139 printk(KERN_NOTICE "SMP motherboard not detected.\n");
1140 smpboot_clear_io_apic_irqs();
1141 phys_cpu_present_map = physid_mask_of_physid(0);
1142 if (APIC_init_uniprocessor())
1143 printk(KERN_NOTICE "Local APIC not detected."
1144 " Using dummy APIC emulation.\n");
1145 map_cpu_to_logical_apicid();
1146 cpu_set(0, cpu_sibling_map[0]);
1147 cpu_set(0, cpu_core_map[0]);
1148 return;
1149 }
1150
1151 /*
1152 * Should not be necessary because the MP table should list the boot
1153 * CPU too, but we do it for the sake of robustness anyway.
1154 * Makes no sense to do this check in clustered apic mode, so skip it
1155 */
1156 if (!check_phys_apicid_present(boot_cpu_physical_apicid)) {
1157 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
1158 boot_cpu_physical_apicid);
1159 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1160 }
1161
1162 /*
1163 * If we couldn't find a local APIC, then get out of here now!
1164 */
1165 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && !cpu_has_apic) {
1166 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1167 boot_cpu_physical_apicid);
1168 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1169 smpboot_clear_io_apic_irqs();
1170 phys_cpu_present_map = physid_mask_of_physid(0);
1171 cpu_set(0, cpu_sibling_map[0]);
1172 cpu_set(0, cpu_core_map[0]);
1173 return;
1174 }
1175
1176 verify_local_APIC();
1177
1178 /*
1179 * If SMP should be disabled, then really disable it!
1180 */
1181 if (!max_cpus) {
1182 smp_found_config = 0;
1183 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1184 smpboot_clear_io_apic_irqs();
1185 phys_cpu_present_map = physid_mask_of_physid(0);
1186 cpu_set(0, cpu_sibling_map[0]);
1187 cpu_set(0, cpu_core_map[0]);
1188 return;
1189 }
1190
1191 connect_bsp_APIC();
1192 setup_local_APIC();
1193 map_cpu_to_logical_apicid();
1194
1195
1196 setup_portio_remap();
1197
1198 /*
1199 * Scan the CPU present map and fire up the other CPUs via do_boot_cpu
1200 *
1201 * In clustered apic mode, phys_cpu_present_map is a constructed thus:
1202 * bits 0-3 are quad0, 4-7 are quad1, etc. A perverse twist on the
1203 * clustered apic ID.
1204 */
1205 Dprintk("CPU present map: %lx\n", physids_coerce(phys_cpu_present_map));
1206
1207 kicked = 1;
1208 for (bit = 0; kicked < NR_CPUS && bit < MAX_APICS; bit++) {
1209 apicid = cpu_present_to_apicid(bit);
1210 /*
1211 * Don't even attempt to start the boot CPU!
1212 */
1213 if ((apicid == boot_cpu_apicid) || (apicid == BAD_APICID))
1214 continue;
1215
1216 if (!check_apicid_present(bit))
1217 continue;
1218 if (max_cpus <= cpucount+1)
1219 continue;
1220
1221 if (((cpu = alloc_cpu_id()) <= 0) || do_boot_cpu(apicid, cpu))
1222 printk("CPU #%d not responding - cannot use it.\n",
1223 apicid);
1224 else
1225 ++kicked;
1226 }
1227
1228 /*
1229 * Cleanup possible dangling ends...
1230 */
1231 smpboot_restore_warm_reset_vector();
1232
1233 /*
1234 * Allow the user to impress friends.
1235 */
1236 Dprintk("Before bogomips.\n");
1237 for (cpu = 0; cpu < NR_CPUS; cpu++)
1238 if (cpu_isset(cpu, cpu_callout_map))
1239 bogosum += cpu_data[cpu].loops_per_jiffy;
1240 printk(KERN_INFO
1241 "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
1242 cpucount+1,
1243 bogosum/(500000/HZ),
1244 (bogosum/(5000/HZ))%100);
1245
1246 Dprintk("Before bogocount - setting activated=1.\n");
1247
1248 if (smp_b_stepping)
1249 printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n");
1250
1251 /*
1252 * Don't taint if we are running SMP kernel on a single non-MP
1253 * approved Athlon
1254 */
1255 if (tainted & TAINT_UNSAFE_SMP) {
1256 if (cpucount)
1257 printk (KERN_INFO "WARNING: This combination of AMD processors is not suitable for SMP.\n");
1258 else
1259 tainted &= ~TAINT_UNSAFE_SMP;
1260 }
1261
1262 Dprintk("Boot done.\n");
1263
1264 /*
1265 * construct cpu_sibling_map[], so that we can tell sibling CPUs
1266 * efficiently.
1267 */
1268 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1269 cpus_clear(cpu_sibling_map[cpu]);
1270 cpus_clear(cpu_core_map[cpu]);
1271 }
1272
1273 cpu_set(0, cpu_sibling_map[0]);
1274 cpu_set(0, cpu_core_map[0]);
1275
1276 smpboot_setup_io_apic();
1277
1278 setup_boot_APIC_clock();
1279
1280 /*
1281 * Synchronize the TSC with the AP
1282 */
1283 if (cpu_has_tsc && cpucount && cpu_khz)
1284 synchronize_tsc_bp();
1285 }
1286
1287 /* These are wrappers to interface to the new boot process. Someone
1288 who understands all this stuff should rewrite it properly. --RR 15/Jul/02 */
1289 void __init smp_prepare_cpus(unsigned int max_cpus)
1290 {
1291 smp_commenced_mask = cpumask_of_cpu(0);
1292 cpu_callin_map = cpumask_of_cpu(0);
1293 mb();
1294 smp_boot_cpus(max_cpus);
1295 }
1296
1297 void __devinit smp_prepare_boot_cpu(void)
1298 {
1299 cpu_set(smp_processor_id(), cpu_online_map);
1300 cpu_set(smp_processor_id(), cpu_callout_map);
1301 cpu_set(smp_processor_id(), cpu_present_map);
1302 cpu_set(smp_processor_id(), cpu_possible_map);
1303 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
1304 }
1305
1306 #ifdef CONFIG_HOTPLUG_CPU
1307 static void
1308 remove_siblinginfo(int cpu)
1309 {
1310 int sibling;
1311 struct cpuinfo_x86 *c = cpu_data;
1312
1313 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1314 cpu_clear(cpu, cpu_core_map[sibling]);
1315 /*
1316 * last thread sibling in this cpu core going down
1317 */
1318 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1319 c[sibling].booted_cores--;
1320 }
1321
1322 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1323 cpu_clear(cpu, cpu_sibling_map[sibling]);
1324 cpus_clear(cpu_sibling_map[cpu]);
1325 cpus_clear(cpu_core_map[cpu]);
1326 phys_proc_id[cpu] = BAD_APICID;
1327 cpu_core_id[cpu] = BAD_APICID;
1328 cpu_clear(cpu, cpu_sibling_setup_map);
1329 }
1330
1331 int __cpu_disable(void)
1332 {
1333 cpumask_t map = cpu_online_map;
1334 int cpu = smp_processor_id();
1335
1336 /*
1337 * Perhaps use cpufreq to drop frequency, but that could go
1338 * into generic code.
1339 *
1340 * We won't take down the boot processor on i386 due to some
1341 * interrupts only being able to be serviced by the BSP.
1342 * Especially so if we're not using an IOAPIC -zwane
1343 */
1344 if (cpu == 0)
1345 return -EBUSY;
1346
1347 clear_local_APIC();
1348 /* Allow any queued timer interrupts to get serviced */
1349 local_irq_enable();
1350 mdelay(1);
1351 local_irq_disable();
1352
1353 remove_siblinginfo(cpu);
1354
1355 cpu_clear(cpu, map);
1356 fixup_irqs(map);
1357 /* It's now safe to remove this processor from the online map */
1358 cpu_clear(cpu, cpu_online_map);
1359 return 0;
1360 }
1361
1362 void __cpu_die(unsigned int cpu)
1363 {
1364 /* We don't do anything here: idle task is faking death itself. */
1365 unsigned int i;
1366
1367 for (i = 0; i < 10; i++) {
1368 /* They ack this in play_dead by setting CPU_DEAD */
1369 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1370 printk ("CPU %d is now offline\n", cpu);
1371 return;
1372 }
1373 msleep(100);
1374 }
1375 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1376 }
1377 #else /* ... !CONFIG_HOTPLUG_CPU */
1378 int __cpu_disable(void)
1379 {
1380 return -ENOSYS;
1381 }
1382
1383 void __cpu_die(unsigned int cpu)
1384 {
1385 /* We said "no" in __cpu_disable */
1386 BUG();
1387 }
1388 #endif /* CONFIG_HOTPLUG_CPU */
1389
1390 int __devinit __cpu_up(unsigned int cpu)
1391 {
1392 /* In case one didn't come up */
1393 if (!cpu_isset(cpu, cpu_callin_map)) {
1394 printk(KERN_DEBUG "skipping cpu%d, didn't come online\n", cpu);
1395 local_irq_enable();
1396 return -EIO;
1397 }
1398
1399 local_irq_enable();
1400 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1401 /* Unleash the CPU! */
1402 cpu_set(cpu, smp_commenced_mask);
1403 while (!cpu_isset(cpu, cpu_online_map))
1404 mb();
1405 return 0;
1406 }
1407
1408 void __init smp_cpus_done(unsigned int max_cpus)
1409 {
1410 #ifdef CONFIG_X86_IO_APIC
1411 setup_ioapic_dest();
1412 #endif
1413 zap_low_mappings();
1414 #ifndef CONFIG_HOTPLUG_CPU
1415 /*
1416 * Disable executability of the SMP trampoline:
1417 */
1418 set_kernel_exec((unsigned long)trampoline_base, trampoline_exec);
1419 #endif
1420 }
1421
1422 void __init smp_intr_init(void)
1423 {
1424 /*
1425 * IRQ0 must be given a fixed assignment and initialized,
1426 * because it's used before the IO-APIC is set up.
1427 */
1428 set_intr_gate(FIRST_DEVICE_VECTOR, interrupt[0]);
1429
1430 /*
1431 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
1432 * IPI, driven by wakeup.
1433 */
1434 set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
1435
1436 /* IPI for invalidation */
1437 set_intr_gate(INVALIDATE_TLB_VECTOR, invalidate_interrupt);
1438
1439 /* IPI for generic function call */
1440 set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
1441 }
This page took 0.114686 seconds and 4 git commands to generate.