Merge git://git.kernel.org/pub/scm/linux/kernel/git/bunk/trivial
[deliverable/linux.git] / arch / i386 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 *
7 * Much of the core SMP work is based on previous work by Thomas Radke, to
8 * whom a great many thanks are extended.
9 *
10 * Thanks to Intel for making available several different Pentium,
11 * Pentium Pro and Pentium-II/Xeon MP machines.
12 * Original development of Linux SMP code supported by Caldera.
13 *
14 * This code is released under the GNU General Public License version 2 or
15 * later.
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process. */
35
36 #include <linux/module.h>
37 #include <linux/init.h>
38 #include <linux/kernel.h>
39
40 #include <linux/mm.h>
41 #include <linux/sched.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/smp_lock.h>
44 #include <linux/bootmem.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/percpu.h>
48
49 #include <linux/delay.h>
50 #include <linux/mc146818rtc.h>
51 #include <asm/tlbflush.h>
52 #include <asm/desc.h>
53 #include <asm/arch_hooks.h>
54 #include <asm/nmi.h>
55
56 #include <mach_apic.h>
57 #include <mach_wakecpu.h>
58 #include <smpboot_hooks.h>
59
60 /* Set if we find a B stepping CPU */
61 static int __devinitdata smp_b_stepping;
62
63 /* Number of siblings per CPU package */
64 int smp_num_siblings = 1;
65 #ifdef CONFIG_X86_HT
66 EXPORT_SYMBOL(smp_num_siblings);
67 #endif
68
69 /* Last level cache ID of each logical CPU */
70 int cpu_llc_id[NR_CPUS] __cpuinitdata = {[0 ... NR_CPUS-1] = BAD_APICID};
71
72 /* representing HT siblings of each logical CPU */
73 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
74 EXPORT_SYMBOL(cpu_sibling_map);
75
76 /* representing HT and core siblings of each logical CPU */
77 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
78 EXPORT_SYMBOL(cpu_core_map);
79
80 /* bitmap of online cpus */
81 cpumask_t cpu_online_map __read_mostly;
82 EXPORT_SYMBOL(cpu_online_map);
83
84 cpumask_t cpu_callin_map;
85 cpumask_t cpu_callout_map;
86 EXPORT_SYMBOL(cpu_callout_map);
87 cpumask_t cpu_possible_map;
88 EXPORT_SYMBOL(cpu_possible_map);
89 static cpumask_t smp_commenced_mask;
90
91 /* TSC's upper 32 bits can't be written in eariler CPU (before prescott), there
92 * is no way to resync one AP against BP. TBD: for prescott and above, we
93 * should use IA64's algorithm
94 */
95 static int __devinitdata tsc_sync_disabled;
96
97 /* Per CPU bogomips and other parameters */
98 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
99 EXPORT_SYMBOL(cpu_data);
100
101 u8 x86_cpu_to_apicid[NR_CPUS] __read_mostly =
102 { [0 ... NR_CPUS-1] = 0xff };
103 EXPORT_SYMBOL(x86_cpu_to_apicid);
104
105 /*
106 * Trampoline 80x86 program as an array.
107 */
108
109 extern unsigned char trampoline_data [];
110 extern unsigned char trampoline_end [];
111 static unsigned char *trampoline_base;
112 static int trampoline_exec;
113
114 static void map_cpu_to_logical_apicid(void);
115
116 /* State of each CPU. */
117 DEFINE_PER_CPU(int, cpu_state) = { 0 };
118
119 /*
120 * Currently trivial. Write the real->protected mode
121 * bootstrap into the page concerned. The caller
122 * has made sure it's suitably aligned.
123 */
124
125 static unsigned long __devinit setup_trampoline(void)
126 {
127 memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data);
128 return virt_to_phys(trampoline_base);
129 }
130
131 /*
132 * We are called very early to get the low memory for the
133 * SMP bootup trampoline page.
134 */
135 void __init smp_alloc_memory(void)
136 {
137 trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE);
138 /*
139 * Has to be in very low memory so we can execute
140 * real-mode AP code.
141 */
142 if (__pa(trampoline_base) >= 0x9F000)
143 BUG();
144 /*
145 * Make the SMP trampoline executable:
146 */
147 trampoline_exec = set_kernel_exec((unsigned long)trampoline_base, 1);
148 }
149
150 /*
151 * The bootstrap kernel entry code has set these up. Save them for
152 * a given CPU
153 */
154
155 static void __devinit smp_store_cpu_info(int id)
156 {
157 struct cpuinfo_x86 *c = cpu_data + id;
158
159 *c = boot_cpu_data;
160 if (id!=0)
161 identify_cpu(c);
162 /*
163 * Mask B, Pentium, but not Pentium MMX
164 */
165 if (c->x86_vendor == X86_VENDOR_INTEL &&
166 c->x86 == 5 &&
167 c->x86_mask >= 1 && c->x86_mask <= 4 &&
168 c->x86_model <= 3)
169 /*
170 * Remember we have B step Pentia with bugs
171 */
172 smp_b_stepping = 1;
173
174 /*
175 * Certain Athlons might work (for various values of 'work') in SMP
176 * but they are not certified as MP capable.
177 */
178 if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) {
179
180 /* Athlon 660/661 is valid. */
181 if ((c->x86_model==6) && ((c->x86_mask==0) || (c->x86_mask==1)))
182 goto valid_k7;
183
184 /* Duron 670 is valid */
185 if ((c->x86_model==7) && (c->x86_mask==0))
186 goto valid_k7;
187
188 /*
189 * Athlon 662, Duron 671, and Athlon >model 7 have capability bit.
190 * It's worth noting that the A5 stepping (662) of some Athlon XP's
191 * have the MP bit set.
192 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for more.
193 */
194 if (((c->x86_model==6) && (c->x86_mask>=2)) ||
195 ((c->x86_model==7) && (c->x86_mask>=1)) ||
196 (c->x86_model> 7))
197 if (cpu_has_mp)
198 goto valid_k7;
199
200 /* If we get here, it's not a certified SMP capable AMD system. */
201 add_taint(TAINT_UNSAFE_SMP);
202 }
203
204 valid_k7:
205 ;
206 }
207
208 /*
209 * TSC synchronization.
210 *
211 * We first check whether all CPUs have their TSC's synchronized,
212 * then we print a warning if not, and always resync.
213 */
214
215 static atomic_t tsc_start_flag = ATOMIC_INIT(0);
216 static atomic_t tsc_count_start = ATOMIC_INIT(0);
217 static atomic_t tsc_count_stop = ATOMIC_INIT(0);
218 static unsigned long long tsc_values[NR_CPUS];
219
220 #define NR_LOOPS 5
221
222 static void __init synchronize_tsc_bp (void)
223 {
224 int i;
225 unsigned long long t0;
226 unsigned long long sum, avg;
227 long long delta;
228 unsigned int one_usec;
229 int buggy = 0;
230
231 printk(KERN_INFO "checking TSC synchronization across %u CPUs: ", num_booting_cpus());
232
233 /* convert from kcyc/sec to cyc/usec */
234 one_usec = cpu_khz / 1000;
235
236 atomic_set(&tsc_start_flag, 1);
237 wmb();
238
239 /*
240 * We loop a few times to get a primed instruction cache,
241 * then the last pass is more or less synchronized and
242 * the BP and APs set their cycle counters to zero all at
243 * once. This reduces the chance of having random offsets
244 * between the processors, and guarantees that the maximum
245 * delay between the cycle counters is never bigger than
246 * the latency of information-passing (cachelines) between
247 * two CPUs.
248 */
249 for (i = 0; i < NR_LOOPS; i++) {
250 /*
251 * all APs synchronize but they loop on '== num_cpus'
252 */
253 while (atomic_read(&tsc_count_start) != num_booting_cpus()-1)
254 cpu_relax();
255 atomic_set(&tsc_count_stop, 0);
256 wmb();
257 /*
258 * this lets the APs save their current TSC:
259 */
260 atomic_inc(&tsc_count_start);
261
262 rdtscll(tsc_values[smp_processor_id()]);
263 /*
264 * We clear the TSC in the last loop:
265 */
266 if (i == NR_LOOPS-1)
267 write_tsc(0, 0);
268
269 /*
270 * Wait for all APs to leave the synchronization point:
271 */
272 while (atomic_read(&tsc_count_stop) != num_booting_cpus()-1)
273 cpu_relax();
274 atomic_set(&tsc_count_start, 0);
275 wmb();
276 atomic_inc(&tsc_count_stop);
277 }
278
279 sum = 0;
280 for (i = 0; i < NR_CPUS; i++) {
281 if (cpu_isset(i, cpu_callout_map)) {
282 t0 = tsc_values[i];
283 sum += t0;
284 }
285 }
286 avg = sum;
287 do_div(avg, num_booting_cpus());
288
289 sum = 0;
290 for (i = 0; i < NR_CPUS; i++) {
291 if (!cpu_isset(i, cpu_callout_map))
292 continue;
293 delta = tsc_values[i] - avg;
294 if (delta < 0)
295 delta = -delta;
296 /*
297 * We report bigger than 2 microseconds clock differences.
298 */
299 if (delta > 2*one_usec) {
300 long realdelta;
301 if (!buggy) {
302 buggy = 1;
303 printk("\n");
304 }
305 realdelta = delta;
306 do_div(realdelta, one_usec);
307 if (tsc_values[i] < avg)
308 realdelta = -realdelta;
309
310 if (realdelta > 0)
311 printk(KERN_INFO "CPU#%d had %ld usecs TSC "
312 "skew, fixed it up.\n", i, realdelta);
313 }
314
315 sum += delta;
316 }
317 if (!buggy)
318 printk("passed.\n");
319 }
320
321 static void __init synchronize_tsc_ap (void)
322 {
323 int i;
324
325 /*
326 * Not every cpu is online at the time
327 * this gets called, so we first wait for the BP to
328 * finish SMP initialization:
329 */
330 while (!atomic_read(&tsc_start_flag))
331 cpu_relax();
332
333 for (i = 0; i < NR_LOOPS; i++) {
334 atomic_inc(&tsc_count_start);
335 while (atomic_read(&tsc_count_start) != num_booting_cpus())
336 cpu_relax();
337
338 rdtscll(tsc_values[smp_processor_id()]);
339 if (i == NR_LOOPS-1)
340 write_tsc(0, 0);
341
342 atomic_inc(&tsc_count_stop);
343 while (atomic_read(&tsc_count_stop) != num_booting_cpus())
344 cpu_relax();
345 }
346 }
347 #undef NR_LOOPS
348
349 extern void calibrate_delay(void);
350
351 static atomic_t init_deasserted;
352
353 static void __devinit smp_callin(void)
354 {
355 int cpuid, phys_id;
356 unsigned long timeout;
357
358 /*
359 * If waken up by an INIT in an 82489DX configuration
360 * we may get here before an INIT-deassert IPI reaches
361 * our local APIC. We have to wait for the IPI or we'll
362 * lock up on an APIC access.
363 */
364 wait_for_init_deassert(&init_deasserted);
365
366 /*
367 * (This works even if the APIC is not enabled.)
368 */
369 phys_id = GET_APIC_ID(apic_read(APIC_ID));
370 cpuid = smp_processor_id();
371 if (cpu_isset(cpuid, cpu_callin_map)) {
372 printk("huh, phys CPU#%d, CPU#%d already present??\n",
373 phys_id, cpuid);
374 BUG();
375 }
376 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
377
378 /*
379 * STARTUP IPIs are fragile beasts as they might sometimes
380 * trigger some glue motherboard logic. Complete APIC bus
381 * silence for 1 second, this overestimates the time the
382 * boot CPU is spending to send the up to 2 STARTUP IPIs
383 * by a factor of two. This should be enough.
384 */
385
386 /*
387 * Waiting 2s total for startup (udelay is not yet working)
388 */
389 timeout = jiffies + 2*HZ;
390 while (time_before(jiffies, timeout)) {
391 /*
392 * Has the boot CPU finished it's STARTUP sequence?
393 */
394 if (cpu_isset(cpuid, cpu_callout_map))
395 break;
396 rep_nop();
397 }
398
399 if (!time_before(jiffies, timeout)) {
400 printk("BUG: CPU%d started up but did not get a callout!\n",
401 cpuid);
402 BUG();
403 }
404
405 /*
406 * the boot CPU has finished the init stage and is spinning
407 * on callin_map until we finish. We are free to set up this
408 * CPU, first the APIC. (this is probably redundant on most
409 * boards)
410 */
411
412 Dprintk("CALLIN, before setup_local_APIC().\n");
413 smp_callin_clear_local_apic();
414 setup_local_APIC();
415 map_cpu_to_logical_apicid();
416
417 /*
418 * Get our bogomips.
419 */
420 calibrate_delay();
421 Dprintk("Stack at about %p\n",&cpuid);
422
423 /*
424 * Save our processor parameters
425 */
426 smp_store_cpu_info(cpuid);
427
428 disable_APIC_timer();
429
430 /*
431 * Allow the master to continue.
432 */
433 cpu_set(cpuid, cpu_callin_map);
434
435 /*
436 * Synchronize the TSC with the BP
437 */
438 if (cpu_has_tsc && cpu_khz && !tsc_sync_disabled)
439 synchronize_tsc_ap();
440 }
441
442 static int cpucount;
443
444 /* maps the cpu to the sched domain representing multi-core */
445 cpumask_t cpu_coregroup_map(int cpu)
446 {
447 struct cpuinfo_x86 *c = cpu_data + cpu;
448 /*
449 * For perf, we return last level cache shared map.
450 * And for power savings, we return cpu_core_map
451 */
452 if (sched_mc_power_savings || sched_smt_power_savings)
453 return cpu_core_map[cpu];
454 else
455 return c->llc_shared_map;
456 }
457
458 /* representing cpus for which sibling maps can be computed */
459 static cpumask_t cpu_sibling_setup_map;
460
461 static inline void
462 set_cpu_sibling_map(int cpu)
463 {
464 int i;
465 struct cpuinfo_x86 *c = cpu_data;
466
467 cpu_set(cpu, cpu_sibling_setup_map);
468
469 if (smp_num_siblings > 1) {
470 for_each_cpu_mask(i, cpu_sibling_setup_map) {
471 if (c[cpu].phys_proc_id == c[i].phys_proc_id &&
472 c[cpu].cpu_core_id == c[i].cpu_core_id) {
473 cpu_set(i, cpu_sibling_map[cpu]);
474 cpu_set(cpu, cpu_sibling_map[i]);
475 cpu_set(i, cpu_core_map[cpu]);
476 cpu_set(cpu, cpu_core_map[i]);
477 cpu_set(i, c[cpu].llc_shared_map);
478 cpu_set(cpu, c[i].llc_shared_map);
479 }
480 }
481 } else {
482 cpu_set(cpu, cpu_sibling_map[cpu]);
483 }
484
485 cpu_set(cpu, c[cpu].llc_shared_map);
486
487 if (current_cpu_data.x86_max_cores == 1) {
488 cpu_core_map[cpu] = cpu_sibling_map[cpu];
489 c[cpu].booted_cores = 1;
490 return;
491 }
492
493 for_each_cpu_mask(i, cpu_sibling_setup_map) {
494 if (cpu_llc_id[cpu] != BAD_APICID &&
495 cpu_llc_id[cpu] == cpu_llc_id[i]) {
496 cpu_set(i, c[cpu].llc_shared_map);
497 cpu_set(cpu, c[i].llc_shared_map);
498 }
499 if (c[cpu].phys_proc_id == c[i].phys_proc_id) {
500 cpu_set(i, cpu_core_map[cpu]);
501 cpu_set(cpu, cpu_core_map[i]);
502 /*
503 * Does this new cpu bringup a new core?
504 */
505 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
506 /*
507 * for each core in package, increment
508 * the booted_cores for this new cpu
509 */
510 if (first_cpu(cpu_sibling_map[i]) == i)
511 c[cpu].booted_cores++;
512 /*
513 * increment the core count for all
514 * the other cpus in this package
515 */
516 if (i != cpu)
517 c[i].booted_cores++;
518 } else if (i != cpu && !c[cpu].booted_cores)
519 c[cpu].booted_cores = c[i].booted_cores;
520 }
521 }
522 }
523
524 /*
525 * Activate a secondary processor.
526 */
527 static void __devinit start_secondary(void *unused)
528 {
529 /*
530 * Dont put anything before smp_callin(), SMP
531 * booting is too fragile that we want to limit the
532 * things done here to the most necessary things.
533 */
534 cpu_init();
535 preempt_disable();
536 smp_callin();
537 while (!cpu_isset(smp_processor_id(), smp_commenced_mask))
538 rep_nop();
539 setup_secondary_APIC_clock();
540 if (nmi_watchdog == NMI_IO_APIC) {
541 disable_8259A_irq(0);
542 enable_NMI_through_LVT0(NULL);
543 enable_8259A_irq(0);
544 }
545 enable_APIC_timer();
546 /*
547 * low-memory mappings have been cleared, flush them from
548 * the local TLBs too.
549 */
550 local_flush_tlb();
551
552 /* This must be done before setting cpu_online_map */
553 set_cpu_sibling_map(raw_smp_processor_id());
554 wmb();
555
556 /*
557 * We need to hold call_lock, so there is no inconsistency
558 * between the time smp_call_function() determines number of
559 * IPI receipients, and the time when the determination is made
560 * for which cpus receive the IPI. Holding this
561 * lock helps us to not include this cpu in a currently in progress
562 * smp_call_function().
563 */
564 lock_ipi_call_lock();
565 cpu_set(smp_processor_id(), cpu_online_map);
566 unlock_ipi_call_lock();
567 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
568
569 /* We can take interrupts now: we're officially "up". */
570 local_irq_enable();
571
572 wmb();
573 cpu_idle();
574 }
575
576 /*
577 * Everything has been set up for the secondary
578 * CPUs - they just need to reload everything
579 * from the task structure
580 * This function must not return.
581 */
582 void __devinit initialize_secondary(void)
583 {
584 /*
585 * We don't actually need to load the full TSS,
586 * basically just the stack pointer and the eip.
587 */
588
589 asm volatile(
590 "movl %0,%%esp\n\t"
591 "jmp *%1"
592 :
593 :"r" (current->thread.esp),"r" (current->thread.eip));
594 }
595
596 extern struct {
597 void * esp;
598 unsigned short ss;
599 } stack_start;
600
601 #ifdef CONFIG_NUMA
602
603 /* which logical CPUs are on which nodes */
604 cpumask_t node_2_cpu_mask[MAX_NUMNODES] __read_mostly =
605 { [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE };
606 /* which node each logical CPU is on */
607 int cpu_2_node[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 };
608 EXPORT_SYMBOL(cpu_2_node);
609
610 /* set up a mapping between cpu and node. */
611 static inline void map_cpu_to_node(int cpu, int node)
612 {
613 printk("Mapping cpu %d to node %d\n", cpu, node);
614 cpu_set(cpu, node_2_cpu_mask[node]);
615 cpu_2_node[cpu] = node;
616 }
617
618 /* undo a mapping between cpu and node. */
619 static inline void unmap_cpu_to_node(int cpu)
620 {
621 int node;
622
623 printk("Unmapping cpu %d from all nodes\n", cpu);
624 for (node = 0; node < MAX_NUMNODES; node ++)
625 cpu_clear(cpu, node_2_cpu_mask[node]);
626 cpu_2_node[cpu] = 0;
627 }
628 #else /* !CONFIG_NUMA */
629
630 #define map_cpu_to_node(cpu, node) ({})
631 #define unmap_cpu_to_node(cpu) ({})
632
633 #endif /* CONFIG_NUMA */
634
635 u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
636
637 static void map_cpu_to_logical_apicid(void)
638 {
639 int cpu = smp_processor_id();
640 int apicid = logical_smp_processor_id();
641
642 cpu_2_logical_apicid[cpu] = apicid;
643 map_cpu_to_node(cpu, apicid_to_node(apicid));
644 }
645
646 static void unmap_cpu_to_logical_apicid(int cpu)
647 {
648 cpu_2_logical_apicid[cpu] = BAD_APICID;
649 unmap_cpu_to_node(cpu);
650 }
651
652 #if APIC_DEBUG
653 static inline void __inquire_remote_apic(int apicid)
654 {
655 int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
656 char *names[] = { "ID", "VERSION", "SPIV" };
657 int timeout, status;
658
659 printk("Inquiring remote APIC #%d...\n", apicid);
660
661 for (i = 0; i < ARRAY_SIZE(regs); i++) {
662 printk("... APIC #%d %s: ", apicid, names[i]);
663
664 /*
665 * Wait for idle.
666 */
667 apic_wait_icr_idle();
668
669 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
670 apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
671
672 timeout = 0;
673 do {
674 udelay(100);
675 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
676 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
677
678 switch (status) {
679 case APIC_ICR_RR_VALID:
680 status = apic_read(APIC_RRR);
681 printk("%08x\n", status);
682 break;
683 default:
684 printk("failed\n");
685 }
686 }
687 }
688 #endif
689
690 #ifdef WAKE_SECONDARY_VIA_NMI
691 /*
692 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
693 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
694 * won't ... remember to clear down the APIC, etc later.
695 */
696 static int __devinit
697 wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip)
698 {
699 unsigned long send_status = 0, accept_status = 0;
700 int timeout, maxlvt;
701
702 /* Target chip */
703 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid));
704
705 /* Boot on the stack */
706 /* Kick the second */
707 apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL);
708
709 Dprintk("Waiting for send to finish...\n");
710 timeout = 0;
711 do {
712 Dprintk("+");
713 udelay(100);
714 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
715 } while (send_status && (timeout++ < 1000));
716
717 /*
718 * Give the other CPU some time to accept the IPI.
719 */
720 udelay(200);
721 /*
722 * Due to the Pentium erratum 3AP.
723 */
724 maxlvt = get_maxlvt();
725 if (maxlvt > 3) {
726 apic_read_around(APIC_SPIV);
727 apic_write(APIC_ESR, 0);
728 }
729 accept_status = (apic_read(APIC_ESR) & 0xEF);
730 Dprintk("NMI sent.\n");
731
732 if (send_status)
733 printk("APIC never delivered???\n");
734 if (accept_status)
735 printk("APIC delivery error (%lx).\n", accept_status);
736
737 return (send_status | accept_status);
738 }
739 #endif /* WAKE_SECONDARY_VIA_NMI */
740
741 #ifdef WAKE_SECONDARY_VIA_INIT
742 static int __devinit
743 wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip)
744 {
745 unsigned long send_status = 0, accept_status = 0;
746 int maxlvt, timeout, num_starts, j;
747
748 /*
749 * Be paranoid about clearing APIC errors.
750 */
751 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
752 apic_read_around(APIC_SPIV);
753 apic_write(APIC_ESR, 0);
754 apic_read(APIC_ESR);
755 }
756
757 Dprintk("Asserting INIT.\n");
758
759 /*
760 * Turn INIT on target chip
761 */
762 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
763
764 /*
765 * Send IPI
766 */
767 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
768 | APIC_DM_INIT);
769
770 Dprintk("Waiting for send to finish...\n");
771 timeout = 0;
772 do {
773 Dprintk("+");
774 udelay(100);
775 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
776 } while (send_status && (timeout++ < 1000));
777
778 mdelay(10);
779
780 Dprintk("Deasserting INIT.\n");
781
782 /* Target chip */
783 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
784
785 /* Send IPI */
786 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
787
788 Dprintk("Waiting for send to finish...\n");
789 timeout = 0;
790 do {
791 Dprintk("+");
792 udelay(100);
793 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
794 } while (send_status && (timeout++ < 1000));
795
796 atomic_set(&init_deasserted, 1);
797
798 /*
799 * Should we send STARTUP IPIs ?
800 *
801 * Determine this based on the APIC version.
802 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
803 */
804 if (APIC_INTEGRATED(apic_version[phys_apicid]))
805 num_starts = 2;
806 else
807 num_starts = 0;
808
809 /*
810 * Run STARTUP IPI loop.
811 */
812 Dprintk("#startup loops: %d.\n", num_starts);
813
814 maxlvt = get_maxlvt();
815
816 for (j = 1; j <= num_starts; j++) {
817 Dprintk("Sending STARTUP #%d.\n",j);
818 apic_read_around(APIC_SPIV);
819 apic_write(APIC_ESR, 0);
820 apic_read(APIC_ESR);
821 Dprintk("After apic_write.\n");
822
823 /*
824 * STARTUP IPI
825 */
826
827 /* Target chip */
828 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
829
830 /* Boot on the stack */
831 /* Kick the second */
832 apic_write_around(APIC_ICR, APIC_DM_STARTUP
833 | (start_eip >> 12));
834
835 /*
836 * Give the other CPU some time to accept the IPI.
837 */
838 udelay(300);
839
840 Dprintk("Startup point 1.\n");
841
842 Dprintk("Waiting for send to finish...\n");
843 timeout = 0;
844 do {
845 Dprintk("+");
846 udelay(100);
847 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
848 } while (send_status && (timeout++ < 1000));
849
850 /*
851 * Give the other CPU some time to accept the IPI.
852 */
853 udelay(200);
854 /*
855 * Due to the Pentium erratum 3AP.
856 */
857 if (maxlvt > 3) {
858 apic_read_around(APIC_SPIV);
859 apic_write(APIC_ESR, 0);
860 }
861 accept_status = (apic_read(APIC_ESR) & 0xEF);
862 if (send_status || accept_status)
863 break;
864 }
865 Dprintk("After Startup.\n");
866
867 if (send_status)
868 printk("APIC never delivered???\n");
869 if (accept_status)
870 printk("APIC delivery error (%lx).\n", accept_status);
871
872 return (send_status | accept_status);
873 }
874 #endif /* WAKE_SECONDARY_VIA_INIT */
875
876 extern cpumask_t cpu_initialized;
877 static inline int alloc_cpu_id(void)
878 {
879 cpumask_t tmp_map;
880 int cpu;
881 cpus_complement(tmp_map, cpu_present_map);
882 cpu = first_cpu(tmp_map);
883 if (cpu >= NR_CPUS)
884 return -ENODEV;
885 return cpu;
886 }
887
888 #ifdef CONFIG_HOTPLUG_CPU
889 static struct task_struct * __devinitdata cpu_idle_tasks[NR_CPUS];
890 static inline struct task_struct * alloc_idle_task(int cpu)
891 {
892 struct task_struct *idle;
893
894 if ((idle = cpu_idle_tasks[cpu]) != NULL) {
895 /* initialize thread_struct. we really want to avoid destroy
896 * idle tread
897 */
898 idle->thread.esp = (unsigned long)task_pt_regs(idle);
899 init_idle(idle, cpu);
900 return idle;
901 }
902 idle = fork_idle(cpu);
903
904 if (!IS_ERR(idle))
905 cpu_idle_tasks[cpu] = idle;
906 return idle;
907 }
908 #else
909 #define alloc_idle_task(cpu) fork_idle(cpu)
910 #endif
911
912 static int __devinit do_boot_cpu(int apicid, int cpu)
913 /*
914 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
915 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
916 * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu.
917 */
918 {
919 struct task_struct *idle;
920 unsigned long boot_error;
921 int timeout;
922 unsigned long start_eip;
923 unsigned short nmi_high = 0, nmi_low = 0;
924
925 ++cpucount;
926 alternatives_smp_switch(1);
927
928 /*
929 * We can't use kernel_thread since we must avoid to
930 * reschedule the child.
931 */
932 idle = alloc_idle_task(cpu);
933 if (IS_ERR(idle))
934 panic("failed fork for CPU %d", cpu);
935 idle->thread.eip = (unsigned long) start_secondary;
936 /* start_eip had better be page-aligned! */
937 start_eip = setup_trampoline();
938
939 /* So we see what's up */
940 printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip);
941 /* Stack for startup_32 can be just as for start_secondary onwards */
942 stack_start.esp = (void *) idle->thread.esp;
943
944 irq_ctx_init(cpu);
945
946 /*
947 * This grunge runs the startup process for
948 * the targeted processor.
949 */
950
951 atomic_set(&init_deasserted, 0);
952
953 Dprintk("Setting warm reset code and vector.\n");
954
955 store_NMI_vector(&nmi_high, &nmi_low);
956
957 smpboot_setup_warm_reset_vector(start_eip);
958
959 /*
960 * Starting actual IPI sequence...
961 */
962 boot_error = wakeup_secondary_cpu(apicid, start_eip);
963
964 if (!boot_error) {
965 /*
966 * allow APs to start initializing.
967 */
968 Dprintk("Before Callout %d.\n", cpu);
969 cpu_set(cpu, cpu_callout_map);
970 Dprintk("After Callout %d.\n", cpu);
971
972 /*
973 * Wait 5s total for a response
974 */
975 for (timeout = 0; timeout < 50000; timeout++) {
976 if (cpu_isset(cpu, cpu_callin_map))
977 break; /* It has booted */
978 udelay(100);
979 }
980
981 if (cpu_isset(cpu, cpu_callin_map)) {
982 /* number CPUs logically, starting from 1 (BSP is 0) */
983 Dprintk("OK.\n");
984 printk("CPU%d: ", cpu);
985 print_cpu_info(&cpu_data[cpu]);
986 Dprintk("CPU has booted.\n");
987 } else {
988 boot_error= 1;
989 if (*((volatile unsigned char *)trampoline_base)
990 == 0xA5)
991 /* trampoline started but...? */
992 printk("Stuck ??\n");
993 else
994 /* trampoline code not run */
995 printk("Not responding.\n");
996 inquire_remote_apic(apicid);
997 }
998 }
999
1000 if (boot_error) {
1001 /* Try to put things back the way they were before ... */
1002 unmap_cpu_to_logical_apicid(cpu);
1003 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
1004 cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */
1005 cpucount--;
1006 } else {
1007 x86_cpu_to_apicid[cpu] = apicid;
1008 cpu_set(cpu, cpu_present_map);
1009 }
1010
1011 /* mark "stuck" area as not stuck */
1012 *((volatile unsigned long *)trampoline_base) = 0;
1013
1014 return boot_error;
1015 }
1016
1017 #ifdef CONFIG_HOTPLUG_CPU
1018 void cpu_exit_clear(void)
1019 {
1020 int cpu = raw_smp_processor_id();
1021
1022 idle_task_exit();
1023
1024 cpucount --;
1025 cpu_uninit();
1026 irq_ctx_exit(cpu);
1027
1028 cpu_clear(cpu, cpu_callout_map);
1029 cpu_clear(cpu, cpu_callin_map);
1030
1031 cpu_clear(cpu, smp_commenced_mask);
1032 unmap_cpu_to_logical_apicid(cpu);
1033 }
1034
1035 struct warm_boot_cpu_info {
1036 struct completion *complete;
1037 int apicid;
1038 int cpu;
1039 };
1040
1041 static void __cpuinit do_warm_boot_cpu(void *p)
1042 {
1043 struct warm_boot_cpu_info *info = p;
1044 do_boot_cpu(info->apicid, info->cpu);
1045 complete(info->complete);
1046 }
1047
1048 static int __cpuinit __smp_prepare_cpu(int cpu)
1049 {
1050 DECLARE_COMPLETION(done);
1051 struct warm_boot_cpu_info info;
1052 struct work_struct task;
1053 int apicid, ret;
1054 struct Xgt_desc_struct *cpu_gdt_descr = &per_cpu(cpu_gdt_descr, cpu);
1055
1056 apicid = x86_cpu_to_apicid[cpu];
1057 if (apicid == BAD_APICID) {
1058 ret = -ENODEV;
1059 goto exit;
1060 }
1061
1062 /*
1063 * the CPU isn't initialized at boot time, allocate gdt table here.
1064 * cpu_init will initialize it
1065 */
1066 if (!cpu_gdt_descr->address) {
1067 cpu_gdt_descr->address = get_zeroed_page(GFP_KERNEL);
1068 if (!cpu_gdt_descr->address)
1069 printk(KERN_CRIT "CPU%d failed to allocate GDT\n", cpu);
1070 ret = -ENOMEM;
1071 goto exit;
1072 }
1073
1074 info.complete = &done;
1075 info.apicid = apicid;
1076 info.cpu = cpu;
1077 INIT_WORK(&task, do_warm_boot_cpu, &info);
1078
1079 tsc_sync_disabled = 1;
1080
1081 /* init low mem mapping */
1082 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
1083 KERNEL_PGD_PTRS);
1084 flush_tlb_all();
1085 schedule_work(&task);
1086 wait_for_completion(&done);
1087
1088 tsc_sync_disabled = 0;
1089 zap_low_mappings();
1090 ret = 0;
1091 exit:
1092 return ret;
1093 }
1094 #endif
1095
1096 static void smp_tune_scheduling (void)
1097 {
1098 unsigned long cachesize; /* kB */
1099 unsigned long bandwidth = 350; /* MB/s */
1100 /*
1101 * Rough estimation for SMP scheduling, this is the number of
1102 * cycles it takes for a fully memory-limited process to flush
1103 * the SMP-local cache.
1104 *
1105 * (For a P5 this pretty much means we will choose another idle
1106 * CPU almost always at wakeup time (this is due to the small
1107 * L1 cache), on PIIs it's around 50-100 usecs, depending on
1108 * the cache size)
1109 */
1110
1111 if (!cpu_khz) {
1112 /*
1113 * this basically disables processor-affinity
1114 * scheduling on SMP without a TSC.
1115 */
1116 return;
1117 } else {
1118 cachesize = boot_cpu_data.x86_cache_size;
1119 if (cachesize == -1) {
1120 cachesize = 16; /* Pentiums, 2x8kB cache */
1121 bandwidth = 100;
1122 }
1123 max_cache_size = cachesize * 1024;
1124 }
1125 }
1126
1127 /*
1128 * Cycle through the processors sending APIC IPIs to boot each.
1129 */
1130
1131 static int boot_cpu_logical_apicid;
1132 /* Where the IO area was mapped on multiquad, always 0 otherwise */
1133 void *xquad_portio;
1134 #ifdef CONFIG_X86_NUMAQ
1135 EXPORT_SYMBOL(xquad_portio);
1136 #endif
1137
1138 static void __init smp_boot_cpus(unsigned int max_cpus)
1139 {
1140 int apicid, cpu, bit, kicked;
1141 unsigned long bogosum = 0;
1142
1143 /*
1144 * Setup boot CPU information
1145 */
1146 smp_store_cpu_info(0); /* Final full version of the data */
1147 printk("CPU%d: ", 0);
1148 print_cpu_info(&cpu_data[0]);
1149
1150 boot_cpu_physical_apicid = GET_APIC_ID(apic_read(APIC_ID));
1151 boot_cpu_logical_apicid = logical_smp_processor_id();
1152 x86_cpu_to_apicid[0] = boot_cpu_physical_apicid;
1153
1154 current_thread_info()->cpu = 0;
1155 smp_tune_scheduling();
1156
1157 set_cpu_sibling_map(0);
1158
1159 /*
1160 * If we couldn't find an SMP configuration at boot time,
1161 * get out of here now!
1162 */
1163 if (!smp_found_config && !acpi_lapic) {
1164 printk(KERN_NOTICE "SMP motherboard not detected.\n");
1165 smpboot_clear_io_apic_irqs();
1166 phys_cpu_present_map = physid_mask_of_physid(0);
1167 if (APIC_init_uniprocessor())
1168 printk(KERN_NOTICE "Local APIC not detected."
1169 " Using dummy APIC emulation.\n");
1170 map_cpu_to_logical_apicid();
1171 cpu_set(0, cpu_sibling_map[0]);
1172 cpu_set(0, cpu_core_map[0]);
1173 return;
1174 }
1175
1176 /*
1177 * Should not be necessary because the MP table should list the boot
1178 * CPU too, but we do it for the sake of robustness anyway.
1179 * Makes no sense to do this check in clustered apic mode, so skip it
1180 */
1181 if (!check_phys_apicid_present(boot_cpu_physical_apicid)) {
1182 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
1183 boot_cpu_physical_apicid);
1184 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1185 }
1186
1187 /*
1188 * If we couldn't find a local APIC, then get out of here now!
1189 */
1190 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && !cpu_has_apic) {
1191 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1192 boot_cpu_physical_apicid);
1193 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1194 smpboot_clear_io_apic_irqs();
1195 phys_cpu_present_map = physid_mask_of_physid(0);
1196 cpu_set(0, cpu_sibling_map[0]);
1197 cpu_set(0, cpu_core_map[0]);
1198 return;
1199 }
1200
1201 verify_local_APIC();
1202
1203 /*
1204 * If SMP should be disabled, then really disable it!
1205 */
1206 if (!max_cpus) {
1207 smp_found_config = 0;
1208 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1209 smpboot_clear_io_apic_irqs();
1210 phys_cpu_present_map = physid_mask_of_physid(0);
1211 cpu_set(0, cpu_sibling_map[0]);
1212 cpu_set(0, cpu_core_map[0]);
1213 return;
1214 }
1215
1216 connect_bsp_APIC();
1217 setup_local_APIC();
1218 map_cpu_to_logical_apicid();
1219
1220
1221 setup_portio_remap();
1222
1223 /*
1224 * Scan the CPU present map and fire up the other CPUs via do_boot_cpu
1225 *
1226 * In clustered apic mode, phys_cpu_present_map is a constructed thus:
1227 * bits 0-3 are quad0, 4-7 are quad1, etc. A perverse twist on the
1228 * clustered apic ID.
1229 */
1230 Dprintk("CPU present map: %lx\n", physids_coerce(phys_cpu_present_map));
1231
1232 kicked = 1;
1233 for (bit = 0; kicked < NR_CPUS && bit < MAX_APICS; bit++) {
1234 apicid = cpu_present_to_apicid(bit);
1235 /*
1236 * Don't even attempt to start the boot CPU!
1237 */
1238 if ((apicid == boot_cpu_apicid) || (apicid == BAD_APICID))
1239 continue;
1240
1241 if (!check_apicid_present(bit))
1242 continue;
1243 if (max_cpus <= cpucount+1)
1244 continue;
1245
1246 if (((cpu = alloc_cpu_id()) <= 0) || do_boot_cpu(apicid, cpu))
1247 printk("CPU #%d not responding - cannot use it.\n",
1248 apicid);
1249 else
1250 ++kicked;
1251 }
1252
1253 /*
1254 * Cleanup possible dangling ends...
1255 */
1256 smpboot_restore_warm_reset_vector();
1257
1258 /*
1259 * Allow the user to impress friends.
1260 */
1261 Dprintk("Before bogomips.\n");
1262 for (cpu = 0; cpu < NR_CPUS; cpu++)
1263 if (cpu_isset(cpu, cpu_callout_map))
1264 bogosum += cpu_data[cpu].loops_per_jiffy;
1265 printk(KERN_INFO
1266 "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
1267 cpucount+1,
1268 bogosum/(500000/HZ),
1269 (bogosum/(5000/HZ))%100);
1270
1271 Dprintk("Before bogocount - setting activated=1.\n");
1272
1273 if (smp_b_stepping)
1274 printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n");
1275
1276 /*
1277 * Don't taint if we are running SMP kernel on a single non-MP
1278 * approved Athlon
1279 */
1280 if (tainted & TAINT_UNSAFE_SMP) {
1281 if (cpucount)
1282 printk (KERN_INFO "WARNING: This combination of AMD processors is not suitable for SMP.\n");
1283 else
1284 tainted &= ~TAINT_UNSAFE_SMP;
1285 }
1286
1287 Dprintk("Boot done.\n");
1288
1289 /*
1290 * construct cpu_sibling_map[], so that we can tell sibling CPUs
1291 * efficiently.
1292 */
1293 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1294 cpus_clear(cpu_sibling_map[cpu]);
1295 cpus_clear(cpu_core_map[cpu]);
1296 }
1297
1298 cpu_set(0, cpu_sibling_map[0]);
1299 cpu_set(0, cpu_core_map[0]);
1300
1301 smpboot_setup_io_apic();
1302
1303 setup_boot_APIC_clock();
1304
1305 /*
1306 * Synchronize the TSC with the AP
1307 */
1308 if (cpu_has_tsc && cpucount && cpu_khz)
1309 synchronize_tsc_bp();
1310 }
1311
1312 /* These are wrappers to interface to the new boot process. Someone
1313 who understands all this stuff should rewrite it properly. --RR 15/Jul/02 */
1314 void __init smp_prepare_cpus(unsigned int max_cpus)
1315 {
1316 smp_commenced_mask = cpumask_of_cpu(0);
1317 cpu_callin_map = cpumask_of_cpu(0);
1318 mb();
1319 smp_boot_cpus(max_cpus);
1320 }
1321
1322 void __devinit smp_prepare_boot_cpu(void)
1323 {
1324 cpu_set(smp_processor_id(), cpu_online_map);
1325 cpu_set(smp_processor_id(), cpu_callout_map);
1326 cpu_set(smp_processor_id(), cpu_present_map);
1327 cpu_set(smp_processor_id(), cpu_possible_map);
1328 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
1329 }
1330
1331 #ifdef CONFIG_HOTPLUG_CPU
1332 static void
1333 remove_siblinginfo(int cpu)
1334 {
1335 int sibling;
1336 struct cpuinfo_x86 *c = cpu_data;
1337
1338 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1339 cpu_clear(cpu, cpu_core_map[sibling]);
1340 /*
1341 * last thread sibling in this cpu core going down
1342 */
1343 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1344 c[sibling].booted_cores--;
1345 }
1346
1347 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1348 cpu_clear(cpu, cpu_sibling_map[sibling]);
1349 cpus_clear(cpu_sibling_map[cpu]);
1350 cpus_clear(cpu_core_map[cpu]);
1351 c[cpu].phys_proc_id = 0;
1352 c[cpu].cpu_core_id = 0;
1353 cpu_clear(cpu, cpu_sibling_setup_map);
1354 }
1355
1356 int __cpu_disable(void)
1357 {
1358 cpumask_t map = cpu_online_map;
1359 int cpu = smp_processor_id();
1360
1361 /*
1362 * Perhaps use cpufreq to drop frequency, but that could go
1363 * into generic code.
1364 *
1365 * We won't take down the boot processor on i386 due to some
1366 * interrupts only being able to be serviced by the BSP.
1367 * Especially so if we're not using an IOAPIC -zwane
1368 */
1369 if (cpu == 0)
1370 return -EBUSY;
1371
1372 clear_local_APIC();
1373 /* Allow any queued timer interrupts to get serviced */
1374 local_irq_enable();
1375 mdelay(1);
1376 local_irq_disable();
1377
1378 remove_siblinginfo(cpu);
1379
1380 cpu_clear(cpu, map);
1381 fixup_irqs(map);
1382 /* It's now safe to remove this processor from the online map */
1383 cpu_clear(cpu, cpu_online_map);
1384 return 0;
1385 }
1386
1387 void __cpu_die(unsigned int cpu)
1388 {
1389 /* We don't do anything here: idle task is faking death itself. */
1390 unsigned int i;
1391
1392 for (i = 0; i < 10; i++) {
1393 /* They ack this in play_dead by setting CPU_DEAD */
1394 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1395 printk ("CPU %d is now offline\n", cpu);
1396 if (1 == num_online_cpus())
1397 alternatives_smp_switch(0);
1398 return;
1399 }
1400 msleep(100);
1401 }
1402 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1403 }
1404 #else /* ... !CONFIG_HOTPLUG_CPU */
1405 int __cpu_disable(void)
1406 {
1407 return -ENOSYS;
1408 }
1409
1410 void __cpu_die(unsigned int cpu)
1411 {
1412 /* We said "no" in __cpu_disable */
1413 BUG();
1414 }
1415 #endif /* CONFIG_HOTPLUG_CPU */
1416
1417 int __devinit __cpu_up(unsigned int cpu)
1418 {
1419 #ifdef CONFIG_HOTPLUG_CPU
1420 int ret=0;
1421
1422 /*
1423 * We do warm boot only on cpus that had booted earlier
1424 * Otherwise cold boot is all handled from smp_boot_cpus().
1425 * cpu_callin_map is set during AP kickstart process. Its reset
1426 * when a cpu is taken offline from cpu_exit_clear().
1427 */
1428 if (!cpu_isset(cpu, cpu_callin_map))
1429 ret = __smp_prepare_cpu(cpu);
1430
1431 if (ret)
1432 return -EIO;
1433 #endif
1434
1435 /* In case one didn't come up */
1436 if (!cpu_isset(cpu, cpu_callin_map)) {
1437 printk(KERN_DEBUG "skipping cpu%d, didn't come online\n", cpu);
1438 local_irq_enable();
1439 return -EIO;
1440 }
1441
1442 local_irq_enable();
1443 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1444 /* Unleash the CPU! */
1445 cpu_set(cpu, smp_commenced_mask);
1446 while (!cpu_isset(cpu, cpu_online_map))
1447 cpu_relax();
1448 return 0;
1449 }
1450
1451 void __init smp_cpus_done(unsigned int max_cpus)
1452 {
1453 #ifdef CONFIG_X86_IO_APIC
1454 setup_ioapic_dest();
1455 #endif
1456 zap_low_mappings();
1457 #ifndef CONFIG_HOTPLUG_CPU
1458 /*
1459 * Disable executability of the SMP trampoline:
1460 */
1461 set_kernel_exec((unsigned long)trampoline_base, trampoline_exec);
1462 #endif
1463 }
1464
1465 void __init smp_intr_init(void)
1466 {
1467 /*
1468 * IRQ0 must be given a fixed assignment and initialized,
1469 * because it's used before the IO-APIC is set up.
1470 */
1471 set_intr_gate(FIRST_DEVICE_VECTOR, interrupt[0]);
1472
1473 /*
1474 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
1475 * IPI, driven by wakeup.
1476 */
1477 set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
1478
1479 /* IPI for invalidation */
1480 set_intr_gate(INVALIDATE_TLB_VECTOR, invalidate_interrupt);
1481
1482 /* IPI for generic function call */
1483 set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
1484 }
This page took 0.062082 seconds and 6 git commands to generate.