[PATCH] completions: lockdep annotate on stack completions
[deliverable/linux.git] / arch / i386 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 *
7 * Much of the core SMP work is based on previous work by Thomas Radke, to
8 * whom a great many thanks are extended.
9 *
10 * Thanks to Intel for making available several different Pentium,
11 * Pentium Pro and Pentium-II/Xeon MP machines.
12 * Original development of Linux SMP code supported by Caldera.
13 *
14 * This code is released under the GNU General Public License version 2 or
15 * later.
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process. */
35
36 #include <linux/module.h>
37 #include <linux/init.h>
38 #include <linux/kernel.h>
39
40 #include <linux/mm.h>
41 #include <linux/sched.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/smp_lock.h>
44 #include <linux/bootmem.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/percpu.h>
48
49 #include <linux/delay.h>
50 #include <linux/mc146818rtc.h>
51 #include <asm/tlbflush.h>
52 #include <asm/desc.h>
53 #include <asm/arch_hooks.h>
54 #include <asm/nmi.h>
55
56 #include <mach_apic.h>
57 #include <mach_wakecpu.h>
58 #include <smpboot_hooks.h>
59
60 /* Set if we find a B stepping CPU */
61 static int __devinitdata smp_b_stepping;
62
63 /* Number of siblings per CPU package */
64 int smp_num_siblings = 1;
65 #ifdef CONFIG_X86_HT
66 EXPORT_SYMBOL(smp_num_siblings);
67 #endif
68
69 /* Last level cache ID of each logical CPU */
70 int cpu_llc_id[NR_CPUS] __cpuinitdata = {[0 ... NR_CPUS-1] = BAD_APICID};
71
72 /* representing HT siblings of each logical CPU */
73 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
74 EXPORT_SYMBOL(cpu_sibling_map);
75
76 /* representing HT and core siblings of each logical CPU */
77 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
78 EXPORT_SYMBOL(cpu_core_map);
79
80 /* bitmap of online cpus */
81 cpumask_t cpu_online_map __read_mostly;
82 EXPORT_SYMBOL(cpu_online_map);
83
84 cpumask_t cpu_callin_map;
85 cpumask_t cpu_callout_map;
86 EXPORT_SYMBOL(cpu_callout_map);
87 cpumask_t cpu_possible_map;
88 EXPORT_SYMBOL(cpu_possible_map);
89 static cpumask_t smp_commenced_mask;
90
91 /* TSC's upper 32 bits can't be written in eariler CPU (before prescott), there
92 * is no way to resync one AP against BP. TBD: for prescott and above, we
93 * should use IA64's algorithm
94 */
95 static int __devinitdata tsc_sync_disabled;
96
97 /* Per CPU bogomips and other parameters */
98 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
99 EXPORT_SYMBOL(cpu_data);
100
101 u8 x86_cpu_to_apicid[NR_CPUS] __read_mostly =
102 { [0 ... NR_CPUS-1] = 0xff };
103 EXPORT_SYMBOL(x86_cpu_to_apicid);
104
105 u8 apicid_2_node[MAX_APICID];
106
107 /*
108 * Trampoline 80x86 program as an array.
109 */
110
111 extern unsigned char trampoline_data [];
112 extern unsigned char trampoline_end [];
113 static unsigned char *trampoline_base;
114 static int trampoline_exec;
115
116 static void map_cpu_to_logical_apicid(void);
117
118 /* State of each CPU. */
119 DEFINE_PER_CPU(int, cpu_state) = { 0 };
120
121 /*
122 * Currently trivial. Write the real->protected mode
123 * bootstrap into the page concerned. The caller
124 * has made sure it's suitably aligned.
125 */
126
127 static unsigned long __devinit setup_trampoline(void)
128 {
129 memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data);
130 return virt_to_phys(trampoline_base);
131 }
132
133 /*
134 * We are called very early to get the low memory for the
135 * SMP bootup trampoline page.
136 */
137 void __init smp_alloc_memory(void)
138 {
139 trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE);
140 /*
141 * Has to be in very low memory so we can execute
142 * real-mode AP code.
143 */
144 if (__pa(trampoline_base) >= 0x9F000)
145 BUG();
146 /*
147 * Make the SMP trampoline executable:
148 */
149 trampoline_exec = set_kernel_exec((unsigned long)trampoline_base, 1);
150 }
151
152 /*
153 * The bootstrap kernel entry code has set these up. Save them for
154 * a given CPU
155 */
156
157 static void __devinit smp_store_cpu_info(int id)
158 {
159 struct cpuinfo_x86 *c = cpu_data + id;
160
161 *c = boot_cpu_data;
162 if (id!=0)
163 identify_cpu(c);
164 /*
165 * Mask B, Pentium, but not Pentium MMX
166 */
167 if (c->x86_vendor == X86_VENDOR_INTEL &&
168 c->x86 == 5 &&
169 c->x86_mask >= 1 && c->x86_mask <= 4 &&
170 c->x86_model <= 3)
171 /*
172 * Remember we have B step Pentia with bugs
173 */
174 smp_b_stepping = 1;
175
176 /*
177 * Certain Athlons might work (for various values of 'work') in SMP
178 * but they are not certified as MP capable.
179 */
180 if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) {
181
182 if (num_possible_cpus() == 1)
183 goto valid_k7;
184
185 /* Athlon 660/661 is valid. */
186 if ((c->x86_model==6) && ((c->x86_mask==0) || (c->x86_mask==1)))
187 goto valid_k7;
188
189 /* Duron 670 is valid */
190 if ((c->x86_model==7) && (c->x86_mask==0))
191 goto valid_k7;
192
193 /*
194 * Athlon 662, Duron 671, and Athlon >model 7 have capability bit.
195 * It's worth noting that the A5 stepping (662) of some Athlon XP's
196 * have the MP bit set.
197 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for more.
198 */
199 if (((c->x86_model==6) && (c->x86_mask>=2)) ||
200 ((c->x86_model==7) && (c->x86_mask>=1)) ||
201 (c->x86_model> 7))
202 if (cpu_has_mp)
203 goto valid_k7;
204
205 /* If we get here, it's not a certified SMP capable AMD system. */
206 add_taint(TAINT_UNSAFE_SMP);
207 }
208
209 valid_k7:
210 ;
211 }
212
213 /*
214 * TSC synchronization.
215 *
216 * We first check whether all CPUs have their TSC's synchronized,
217 * then we print a warning if not, and always resync.
218 */
219
220 static struct {
221 atomic_t start_flag;
222 atomic_t count_start;
223 atomic_t count_stop;
224 unsigned long long values[NR_CPUS];
225 } tsc __initdata = {
226 .start_flag = ATOMIC_INIT(0),
227 .count_start = ATOMIC_INIT(0),
228 .count_stop = ATOMIC_INIT(0),
229 };
230
231 #define NR_LOOPS 5
232
233 static void __init synchronize_tsc_bp(void)
234 {
235 int i;
236 unsigned long long t0;
237 unsigned long long sum, avg;
238 long long delta;
239 unsigned int one_usec;
240 int buggy = 0;
241
242 printk(KERN_INFO "checking TSC synchronization across %u CPUs: ", num_booting_cpus());
243
244 /* convert from kcyc/sec to cyc/usec */
245 one_usec = cpu_khz / 1000;
246
247 atomic_set(&tsc.start_flag, 1);
248 wmb();
249
250 /*
251 * We loop a few times to get a primed instruction cache,
252 * then the last pass is more or less synchronized and
253 * the BP and APs set their cycle counters to zero all at
254 * once. This reduces the chance of having random offsets
255 * between the processors, and guarantees that the maximum
256 * delay between the cycle counters is never bigger than
257 * the latency of information-passing (cachelines) between
258 * two CPUs.
259 */
260 for (i = 0; i < NR_LOOPS; i++) {
261 /*
262 * all APs synchronize but they loop on '== num_cpus'
263 */
264 while (atomic_read(&tsc.count_start) != num_booting_cpus()-1)
265 cpu_relax();
266 atomic_set(&tsc.count_stop, 0);
267 wmb();
268 /*
269 * this lets the APs save their current TSC:
270 */
271 atomic_inc(&tsc.count_start);
272
273 rdtscll(tsc.values[smp_processor_id()]);
274 /*
275 * We clear the TSC in the last loop:
276 */
277 if (i == NR_LOOPS-1)
278 write_tsc(0, 0);
279
280 /*
281 * Wait for all APs to leave the synchronization point:
282 */
283 while (atomic_read(&tsc.count_stop) != num_booting_cpus()-1)
284 cpu_relax();
285 atomic_set(&tsc.count_start, 0);
286 wmb();
287 atomic_inc(&tsc.count_stop);
288 }
289
290 sum = 0;
291 for (i = 0; i < NR_CPUS; i++) {
292 if (cpu_isset(i, cpu_callout_map)) {
293 t0 = tsc.values[i];
294 sum += t0;
295 }
296 }
297 avg = sum;
298 do_div(avg, num_booting_cpus());
299
300 for (i = 0; i < NR_CPUS; i++) {
301 if (!cpu_isset(i, cpu_callout_map))
302 continue;
303 delta = tsc.values[i] - avg;
304 if (delta < 0)
305 delta = -delta;
306 /*
307 * We report bigger than 2 microseconds clock differences.
308 */
309 if (delta > 2*one_usec) {
310 long long realdelta;
311
312 if (!buggy) {
313 buggy = 1;
314 printk("\n");
315 }
316 realdelta = delta;
317 do_div(realdelta, one_usec);
318 if (tsc.values[i] < avg)
319 realdelta = -realdelta;
320
321 if (realdelta)
322 printk(KERN_INFO "CPU#%d had %Ld usecs TSC "
323 "skew, fixed it up.\n", i, realdelta);
324 }
325 }
326 if (!buggy)
327 printk("passed.\n");
328 }
329
330 static void __init synchronize_tsc_ap(void)
331 {
332 int i;
333
334 /*
335 * Not every cpu is online at the time
336 * this gets called, so we first wait for the BP to
337 * finish SMP initialization:
338 */
339 while (!atomic_read(&tsc.start_flag))
340 cpu_relax();
341
342 for (i = 0; i < NR_LOOPS; i++) {
343 atomic_inc(&tsc.count_start);
344 while (atomic_read(&tsc.count_start) != num_booting_cpus())
345 cpu_relax();
346
347 rdtscll(tsc.values[smp_processor_id()]);
348 if (i == NR_LOOPS-1)
349 write_tsc(0, 0);
350
351 atomic_inc(&tsc.count_stop);
352 while (atomic_read(&tsc.count_stop) != num_booting_cpus())
353 cpu_relax();
354 }
355 }
356 #undef NR_LOOPS
357
358 extern void calibrate_delay(void);
359
360 static atomic_t init_deasserted;
361
362 static void __devinit smp_callin(void)
363 {
364 int cpuid, phys_id;
365 unsigned long timeout;
366
367 /*
368 * If waken up by an INIT in an 82489DX configuration
369 * we may get here before an INIT-deassert IPI reaches
370 * our local APIC. We have to wait for the IPI or we'll
371 * lock up on an APIC access.
372 */
373 wait_for_init_deassert(&init_deasserted);
374
375 /*
376 * (This works even if the APIC is not enabled.)
377 */
378 phys_id = GET_APIC_ID(apic_read(APIC_ID));
379 cpuid = smp_processor_id();
380 if (cpu_isset(cpuid, cpu_callin_map)) {
381 printk("huh, phys CPU#%d, CPU#%d already present??\n",
382 phys_id, cpuid);
383 BUG();
384 }
385 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
386
387 /*
388 * STARTUP IPIs are fragile beasts as they might sometimes
389 * trigger some glue motherboard logic. Complete APIC bus
390 * silence for 1 second, this overestimates the time the
391 * boot CPU is spending to send the up to 2 STARTUP IPIs
392 * by a factor of two. This should be enough.
393 */
394
395 /*
396 * Waiting 2s total for startup (udelay is not yet working)
397 */
398 timeout = jiffies + 2*HZ;
399 while (time_before(jiffies, timeout)) {
400 /*
401 * Has the boot CPU finished it's STARTUP sequence?
402 */
403 if (cpu_isset(cpuid, cpu_callout_map))
404 break;
405 rep_nop();
406 }
407
408 if (!time_before(jiffies, timeout)) {
409 printk("BUG: CPU%d started up but did not get a callout!\n",
410 cpuid);
411 BUG();
412 }
413
414 /*
415 * the boot CPU has finished the init stage and is spinning
416 * on callin_map until we finish. We are free to set up this
417 * CPU, first the APIC. (this is probably redundant on most
418 * boards)
419 */
420
421 Dprintk("CALLIN, before setup_local_APIC().\n");
422 smp_callin_clear_local_apic();
423 setup_local_APIC();
424 map_cpu_to_logical_apicid();
425
426 /*
427 * Get our bogomips.
428 */
429 calibrate_delay();
430 Dprintk("Stack at about %p\n",&cpuid);
431
432 /*
433 * Save our processor parameters
434 */
435 smp_store_cpu_info(cpuid);
436
437 disable_APIC_timer();
438
439 /*
440 * Allow the master to continue.
441 */
442 cpu_set(cpuid, cpu_callin_map);
443
444 /*
445 * Synchronize the TSC with the BP
446 */
447 if (cpu_has_tsc && cpu_khz && !tsc_sync_disabled)
448 synchronize_tsc_ap();
449 }
450
451 static int cpucount;
452
453 /* maps the cpu to the sched domain representing multi-core */
454 cpumask_t cpu_coregroup_map(int cpu)
455 {
456 struct cpuinfo_x86 *c = cpu_data + cpu;
457 /*
458 * For perf, we return last level cache shared map.
459 * And for power savings, we return cpu_core_map
460 */
461 if (sched_mc_power_savings || sched_smt_power_savings)
462 return cpu_core_map[cpu];
463 else
464 return c->llc_shared_map;
465 }
466
467 /* representing cpus for which sibling maps can be computed */
468 static cpumask_t cpu_sibling_setup_map;
469
470 static inline void
471 set_cpu_sibling_map(int cpu)
472 {
473 int i;
474 struct cpuinfo_x86 *c = cpu_data;
475
476 cpu_set(cpu, cpu_sibling_setup_map);
477
478 if (smp_num_siblings > 1) {
479 for_each_cpu_mask(i, cpu_sibling_setup_map) {
480 if (c[cpu].phys_proc_id == c[i].phys_proc_id &&
481 c[cpu].cpu_core_id == c[i].cpu_core_id) {
482 cpu_set(i, cpu_sibling_map[cpu]);
483 cpu_set(cpu, cpu_sibling_map[i]);
484 cpu_set(i, cpu_core_map[cpu]);
485 cpu_set(cpu, cpu_core_map[i]);
486 cpu_set(i, c[cpu].llc_shared_map);
487 cpu_set(cpu, c[i].llc_shared_map);
488 }
489 }
490 } else {
491 cpu_set(cpu, cpu_sibling_map[cpu]);
492 }
493
494 cpu_set(cpu, c[cpu].llc_shared_map);
495
496 if (current_cpu_data.x86_max_cores == 1) {
497 cpu_core_map[cpu] = cpu_sibling_map[cpu];
498 c[cpu].booted_cores = 1;
499 return;
500 }
501
502 for_each_cpu_mask(i, cpu_sibling_setup_map) {
503 if (cpu_llc_id[cpu] != BAD_APICID &&
504 cpu_llc_id[cpu] == cpu_llc_id[i]) {
505 cpu_set(i, c[cpu].llc_shared_map);
506 cpu_set(cpu, c[i].llc_shared_map);
507 }
508 if (c[cpu].phys_proc_id == c[i].phys_proc_id) {
509 cpu_set(i, cpu_core_map[cpu]);
510 cpu_set(cpu, cpu_core_map[i]);
511 /*
512 * Does this new cpu bringup a new core?
513 */
514 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
515 /*
516 * for each core in package, increment
517 * the booted_cores for this new cpu
518 */
519 if (first_cpu(cpu_sibling_map[i]) == i)
520 c[cpu].booted_cores++;
521 /*
522 * increment the core count for all
523 * the other cpus in this package
524 */
525 if (i != cpu)
526 c[i].booted_cores++;
527 } else if (i != cpu && !c[cpu].booted_cores)
528 c[cpu].booted_cores = c[i].booted_cores;
529 }
530 }
531 }
532
533 /*
534 * Activate a secondary processor.
535 */
536 static void __devinit start_secondary(void *unused)
537 {
538 /*
539 * Dont put anything before smp_callin(), SMP
540 * booting is too fragile that we want to limit the
541 * things done here to the most necessary things.
542 */
543 cpu_init();
544 preempt_disable();
545 smp_callin();
546 while (!cpu_isset(smp_processor_id(), smp_commenced_mask))
547 rep_nop();
548 setup_secondary_APIC_clock();
549 if (nmi_watchdog == NMI_IO_APIC) {
550 disable_8259A_irq(0);
551 enable_NMI_through_LVT0(NULL);
552 enable_8259A_irq(0);
553 }
554 enable_APIC_timer();
555 /*
556 * low-memory mappings have been cleared, flush them from
557 * the local TLBs too.
558 */
559 local_flush_tlb();
560
561 /* This must be done before setting cpu_online_map */
562 set_cpu_sibling_map(raw_smp_processor_id());
563 wmb();
564
565 /*
566 * We need to hold call_lock, so there is no inconsistency
567 * between the time smp_call_function() determines number of
568 * IPI receipients, and the time when the determination is made
569 * for which cpus receive the IPI. Holding this
570 * lock helps us to not include this cpu in a currently in progress
571 * smp_call_function().
572 */
573 lock_ipi_call_lock();
574 cpu_set(smp_processor_id(), cpu_online_map);
575 unlock_ipi_call_lock();
576 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
577
578 /* We can take interrupts now: we're officially "up". */
579 local_irq_enable();
580
581 wmb();
582 cpu_idle();
583 }
584
585 /*
586 * Everything has been set up for the secondary
587 * CPUs - they just need to reload everything
588 * from the task structure
589 * This function must not return.
590 */
591 void __devinit initialize_secondary(void)
592 {
593 /*
594 * We don't actually need to load the full TSS,
595 * basically just the stack pointer and the eip.
596 */
597
598 asm volatile(
599 "movl %0,%%esp\n\t"
600 "jmp *%1"
601 :
602 :"r" (current->thread.esp),"r" (current->thread.eip));
603 }
604
605 extern struct {
606 void * esp;
607 unsigned short ss;
608 } stack_start;
609
610 #ifdef CONFIG_NUMA
611
612 /* which logical CPUs are on which nodes */
613 cpumask_t node_2_cpu_mask[MAX_NUMNODES] __read_mostly =
614 { [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE };
615 /* which node each logical CPU is on */
616 int cpu_2_node[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 };
617 EXPORT_SYMBOL(cpu_2_node);
618
619 /* set up a mapping between cpu and node. */
620 static inline void map_cpu_to_node(int cpu, int node)
621 {
622 printk("Mapping cpu %d to node %d\n", cpu, node);
623 cpu_set(cpu, node_2_cpu_mask[node]);
624 cpu_2_node[cpu] = node;
625 }
626
627 /* undo a mapping between cpu and node. */
628 static inline void unmap_cpu_to_node(int cpu)
629 {
630 int node;
631
632 printk("Unmapping cpu %d from all nodes\n", cpu);
633 for (node = 0; node < MAX_NUMNODES; node ++)
634 cpu_clear(cpu, node_2_cpu_mask[node]);
635 cpu_2_node[cpu] = 0;
636 }
637 #else /* !CONFIG_NUMA */
638
639 #define map_cpu_to_node(cpu, node) ({})
640 #define unmap_cpu_to_node(cpu) ({})
641
642 #endif /* CONFIG_NUMA */
643
644 u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
645
646 static void map_cpu_to_logical_apicid(void)
647 {
648 int cpu = smp_processor_id();
649 int apicid = logical_smp_processor_id();
650 int node = apicid_to_node(hard_smp_processor_id());
651
652 if (!node_online(node))
653 node = first_online_node;
654
655 cpu_2_logical_apicid[cpu] = apicid;
656 map_cpu_to_node(cpu, node);
657 }
658
659 static void unmap_cpu_to_logical_apicid(int cpu)
660 {
661 cpu_2_logical_apicid[cpu] = BAD_APICID;
662 unmap_cpu_to_node(cpu);
663 }
664
665 #if APIC_DEBUG
666 static inline void __inquire_remote_apic(int apicid)
667 {
668 int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
669 char *names[] = { "ID", "VERSION", "SPIV" };
670 int timeout, status;
671
672 printk("Inquiring remote APIC #%d...\n", apicid);
673
674 for (i = 0; i < ARRAY_SIZE(regs); i++) {
675 printk("... APIC #%d %s: ", apicid, names[i]);
676
677 /*
678 * Wait for idle.
679 */
680 apic_wait_icr_idle();
681
682 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
683 apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
684
685 timeout = 0;
686 do {
687 udelay(100);
688 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
689 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
690
691 switch (status) {
692 case APIC_ICR_RR_VALID:
693 status = apic_read(APIC_RRR);
694 printk("%08x\n", status);
695 break;
696 default:
697 printk("failed\n");
698 }
699 }
700 }
701 #endif
702
703 #ifdef WAKE_SECONDARY_VIA_NMI
704 /*
705 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
706 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
707 * won't ... remember to clear down the APIC, etc later.
708 */
709 static int __devinit
710 wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip)
711 {
712 unsigned long send_status = 0, accept_status = 0;
713 int timeout, maxlvt;
714
715 /* Target chip */
716 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid));
717
718 /* Boot on the stack */
719 /* Kick the second */
720 apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL);
721
722 Dprintk("Waiting for send to finish...\n");
723 timeout = 0;
724 do {
725 Dprintk("+");
726 udelay(100);
727 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
728 } while (send_status && (timeout++ < 1000));
729
730 /*
731 * Give the other CPU some time to accept the IPI.
732 */
733 udelay(200);
734 /*
735 * Due to the Pentium erratum 3AP.
736 */
737 maxlvt = get_maxlvt();
738 if (maxlvt > 3) {
739 apic_read_around(APIC_SPIV);
740 apic_write(APIC_ESR, 0);
741 }
742 accept_status = (apic_read(APIC_ESR) & 0xEF);
743 Dprintk("NMI sent.\n");
744
745 if (send_status)
746 printk("APIC never delivered???\n");
747 if (accept_status)
748 printk("APIC delivery error (%lx).\n", accept_status);
749
750 return (send_status | accept_status);
751 }
752 #endif /* WAKE_SECONDARY_VIA_NMI */
753
754 #ifdef WAKE_SECONDARY_VIA_INIT
755 static int __devinit
756 wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip)
757 {
758 unsigned long send_status = 0, accept_status = 0;
759 int maxlvt, timeout, num_starts, j;
760
761 /*
762 * Be paranoid about clearing APIC errors.
763 */
764 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
765 apic_read_around(APIC_SPIV);
766 apic_write(APIC_ESR, 0);
767 apic_read(APIC_ESR);
768 }
769
770 Dprintk("Asserting INIT.\n");
771
772 /*
773 * Turn INIT on target chip
774 */
775 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
776
777 /*
778 * Send IPI
779 */
780 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
781 | APIC_DM_INIT);
782
783 Dprintk("Waiting for send to finish...\n");
784 timeout = 0;
785 do {
786 Dprintk("+");
787 udelay(100);
788 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
789 } while (send_status && (timeout++ < 1000));
790
791 mdelay(10);
792
793 Dprintk("Deasserting INIT.\n");
794
795 /* Target chip */
796 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
797
798 /* Send IPI */
799 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
800
801 Dprintk("Waiting for send to finish...\n");
802 timeout = 0;
803 do {
804 Dprintk("+");
805 udelay(100);
806 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
807 } while (send_status && (timeout++ < 1000));
808
809 atomic_set(&init_deasserted, 1);
810
811 /*
812 * Should we send STARTUP IPIs ?
813 *
814 * Determine this based on the APIC version.
815 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
816 */
817 if (APIC_INTEGRATED(apic_version[phys_apicid]))
818 num_starts = 2;
819 else
820 num_starts = 0;
821
822 /*
823 * Run STARTUP IPI loop.
824 */
825 Dprintk("#startup loops: %d.\n", num_starts);
826
827 maxlvt = get_maxlvt();
828
829 for (j = 1; j <= num_starts; j++) {
830 Dprintk("Sending STARTUP #%d.\n",j);
831 apic_read_around(APIC_SPIV);
832 apic_write(APIC_ESR, 0);
833 apic_read(APIC_ESR);
834 Dprintk("After apic_write.\n");
835
836 /*
837 * STARTUP IPI
838 */
839
840 /* Target chip */
841 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
842
843 /* Boot on the stack */
844 /* Kick the second */
845 apic_write_around(APIC_ICR, APIC_DM_STARTUP
846 | (start_eip >> 12));
847
848 /*
849 * Give the other CPU some time to accept the IPI.
850 */
851 udelay(300);
852
853 Dprintk("Startup point 1.\n");
854
855 Dprintk("Waiting for send to finish...\n");
856 timeout = 0;
857 do {
858 Dprintk("+");
859 udelay(100);
860 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
861 } while (send_status && (timeout++ < 1000));
862
863 /*
864 * Give the other CPU some time to accept the IPI.
865 */
866 udelay(200);
867 /*
868 * Due to the Pentium erratum 3AP.
869 */
870 if (maxlvt > 3) {
871 apic_read_around(APIC_SPIV);
872 apic_write(APIC_ESR, 0);
873 }
874 accept_status = (apic_read(APIC_ESR) & 0xEF);
875 if (send_status || accept_status)
876 break;
877 }
878 Dprintk("After Startup.\n");
879
880 if (send_status)
881 printk("APIC never delivered???\n");
882 if (accept_status)
883 printk("APIC delivery error (%lx).\n", accept_status);
884
885 return (send_status | accept_status);
886 }
887 #endif /* WAKE_SECONDARY_VIA_INIT */
888
889 extern cpumask_t cpu_initialized;
890 static inline int alloc_cpu_id(void)
891 {
892 cpumask_t tmp_map;
893 int cpu;
894 cpus_complement(tmp_map, cpu_present_map);
895 cpu = first_cpu(tmp_map);
896 if (cpu >= NR_CPUS)
897 return -ENODEV;
898 return cpu;
899 }
900
901 #ifdef CONFIG_HOTPLUG_CPU
902 static struct task_struct * __devinitdata cpu_idle_tasks[NR_CPUS];
903 static inline struct task_struct * alloc_idle_task(int cpu)
904 {
905 struct task_struct *idle;
906
907 if ((idle = cpu_idle_tasks[cpu]) != NULL) {
908 /* initialize thread_struct. we really want to avoid destroy
909 * idle tread
910 */
911 idle->thread.esp = (unsigned long)task_pt_regs(idle);
912 init_idle(idle, cpu);
913 return idle;
914 }
915 idle = fork_idle(cpu);
916
917 if (!IS_ERR(idle))
918 cpu_idle_tasks[cpu] = idle;
919 return idle;
920 }
921 #else
922 #define alloc_idle_task(cpu) fork_idle(cpu)
923 #endif
924
925 static int __devinit do_boot_cpu(int apicid, int cpu)
926 /*
927 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
928 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
929 * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu.
930 */
931 {
932 struct task_struct *idle;
933 unsigned long boot_error;
934 int timeout;
935 unsigned long start_eip;
936 unsigned short nmi_high = 0, nmi_low = 0;
937
938 ++cpucount;
939 alternatives_smp_switch(1);
940
941 /*
942 * We can't use kernel_thread since we must avoid to
943 * reschedule the child.
944 */
945 idle = alloc_idle_task(cpu);
946 if (IS_ERR(idle))
947 panic("failed fork for CPU %d", cpu);
948 idle->thread.eip = (unsigned long) start_secondary;
949 /* start_eip had better be page-aligned! */
950 start_eip = setup_trampoline();
951
952 /* So we see what's up */
953 printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip);
954 /* Stack for startup_32 can be just as for start_secondary onwards */
955 stack_start.esp = (void *) idle->thread.esp;
956
957 irq_ctx_init(cpu);
958
959 x86_cpu_to_apicid[cpu] = apicid;
960 /*
961 * This grunge runs the startup process for
962 * the targeted processor.
963 */
964
965 atomic_set(&init_deasserted, 0);
966
967 Dprintk("Setting warm reset code and vector.\n");
968
969 store_NMI_vector(&nmi_high, &nmi_low);
970
971 smpboot_setup_warm_reset_vector(start_eip);
972
973 /*
974 * Starting actual IPI sequence...
975 */
976 boot_error = wakeup_secondary_cpu(apicid, start_eip);
977
978 if (!boot_error) {
979 /*
980 * allow APs to start initializing.
981 */
982 Dprintk("Before Callout %d.\n", cpu);
983 cpu_set(cpu, cpu_callout_map);
984 Dprintk("After Callout %d.\n", cpu);
985
986 /*
987 * Wait 5s total for a response
988 */
989 for (timeout = 0; timeout < 50000; timeout++) {
990 if (cpu_isset(cpu, cpu_callin_map))
991 break; /* It has booted */
992 udelay(100);
993 }
994
995 if (cpu_isset(cpu, cpu_callin_map)) {
996 /* number CPUs logically, starting from 1 (BSP is 0) */
997 Dprintk("OK.\n");
998 printk("CPU%d: ", cpu);
999 print_cpu_info(&cpu_data[cpu]);
1000 Dprintk("CPU has booted.\n");
1001 } else {
1002 boot_error= 1;
1003 if (*((volatile unsigned char *)trampoline_base)
1004 == 0xA5)
1005 /* trampoline started but...? */
1006 printk("Stuck ??\n");
1007 else
1008 /* trampoline code not run */
1009 printk("Not responding.\n");
1010 inquire_remote_apic(apicid);
1011 }
1012 }
1013
1014 if (boot_error) {
1015 /* Try to put things back the way they were before ... */
1016 unmap_cpu_to_logical_apicid(cpu);
1017 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
1018 cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */
1019 cpucount--;
1020 } else {
1021 x86_cpu_to_apicid[cpu] = apicid;
1022 cpu_set(cpu, cpu_present_map);
1023 }
1024
1025 /* mark "stuck" area as not stuck */
1026 *((volatile unsigned long *)trampoline_base) = 0;
1027
1028 return boot_error;
1029 }
1030
1031 #ifdef CONFIG_HOTPLUG_CPU
1032 void cpu_exit_clear(void)
1033 {
1034 int cpu = raw_smp_processor_id();
1035
1036 idle_task_exit();
1037
1038 cpucount --;
1039 cpu_uninit();
1040 irq_ctx_exit(cpu);
1041
1042 cpu_clear(cpu, cpu_callout_map);
1043 cpu_clear(cpu, cpu_callin_map);
1044
1045 cpu_clear(cpu, smp_commenced_mask);
1046 unmap_cpu_to_logical_apicid(cpu);
1047 }
1048
1049 struct warm_boot_cpu_info {
1050 struct completion *complete;
1051 int apicid;
1052 int cpu;
1053 };
1054
1055 static void __cpuinit do_warm_boot_cpu(void *p)
1056 {
1057 struct warm_boot_cpu_info *info = p;
1058 do_boot_cpu(info->apicid, info->cpu);
1059 complete(info->complete);
1060 }
1061
1062 static int __cpuinit __smp_prepare_cpu(int cpu)
1063 {
1064 DECLARE_COMPLETION_ONSTACK(done);
1065 struct warm_boot_cpu_info info;
1066 struct work_struct task;
1067 int apicid, ret;
1068 struct Xgt_desc_struct *cpu_gdt_descr = &per_cpu(cpu_gdt_descr, cpu);
1069
1070 apicid = x86_cpu_to_apicid[cpu];
1071 if (apicid == BAD_APICID) {
1072 ret = -ENODEV;
1073 goto exit;
1074 }
1075
1076 /*
1077 * the CPU isn't initialized at boot time, allocate gdt table here.
1078 * cpu_init will initialize it
1079 */
1080 if (!cpu_gdt_descr->address) {
1081 cpu_gdt_descr->address = get_zeroed_page(GFP_KERNEL);
1082 if (!cpu_gdt_descr->address)
1083 printk(KERN_CRIT "CPU%d failed to allocate GDT\n", cpu);
1084 ret = -ENOMEM;
1085 goto exit;
1086 }
1087
1088 info.complete = &done;
1089 info.apicid = apicid;
1090 info.cpu = cpu;
1091 INIT_WORK(&task, do_warm_boot_cpu, &info);
1092
1093 tsc_sync_disabled = 1;
1094
1095 /* init low mem mapping */
1096 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
1097 KERNEL_PGD_PTRS);
1098 flush_tlb_all();
1099 schedule_work(&task);
1100 wait_for_completion(&done);
1101
1102 tsc_sync_disabled = 0;
1103 zap_low_mappings();
1104 ret = 0;
1105 exit:
1106 return ret;
1107 }
1108 #endif
1109
1110 static void smp_tune_scheduling (void)
1111 {
1112 unsigned long cachesize; /* kB */
1113 unsigned long bandwidth = 350; /* MB/s */
1114 /*
1115 * Rough estimation for SMP scheduling, this is the number of
1116 * cycles it takes for a fully memory-limited process to flush
1117 * the SMP-local cache.
1118 *
1119 * (For a P5 this pretty much means we will choose another idle
1120 * CPU almost always at wakeup time (this is due to the small
1121 * L1 cache), on PIIs it's around 50-100 usecs, depending on
1122 * the cache size)
1123 */
1124
1125 if (!cpu_khz) {
1126 /*
1127 * this basically disables processor-affinity
1128 * scheduling on SMP without a TSC.
1129 */
1130 return;
1131 } else {
1132 cachesize = boot_cpu_data.x86_cache_size;
1133 if (cachesize == -1) {
1134 cachesize = 16; /* Pentiums, 2x8kB cache */
1135 bandwidth = 100;
1136 }
1137 max_cache_size = cachesize * 1024;
1138 }
1139 }
1140
1141 /*
1142 * Cycle through the processors sending APIC IPIs to boot each.
1143 */
1144
1145 static int boot_cpu_logical_apicid;
1146 /* Where the IO area was mapped on multiquad, always 0 otherwise */
1147 void *xquad_portio;
1148 #ifdef CONFIG_X86_NUMAQ
1149 EXPORT_SYMBOL(xquad_portio);
1150 #endif
1151
1152 static void __init smp_boot_cpus(unsigned int max_cpus)
1153 {
1154 int apicid, cpu, bit, kicked;
1155 unsigned long bogosum = 0;
1156
1157 /*
1158 * Setup boot CPU information
1159 */
1160 smp_store_cpu_info(0); /* Final full version of the data */
1161 printk("CPU%d: ", 0);
1162 print_cpu_info(&cpu_data[0]);
1163
1164 boot_cpu_physical_apicid = GET_APIC_ID(apic_read(APIC_ID));
1165 boot_cpu_logical_apicid = logical_smp_processor_id();
1166 x86_cpu_to_apicid[0] = boot_cpu_physical_apicid;
1167
1168 current_thread_info()->cpu = 0;
1169 smp_tune_scheduling();
1170
1171 set_cpu_sibling_map(0);
1172
1173 /*
1174 * If we couldn't find an SMP configuration at boot time,
1175 * get out of here now!
1176 */
1177 if (!smp_found_config && !acpi_lapic) {
1178 printk(KERN_NOTICE "SMP motherboard not detected.\n");
1179 smpboot_clear_io_apic_irqs();
1180 phys_cpu_present_map = physid_mask_of_physid(0);
1181 if (APIC_init_uniprocessor())
1182 printk(KERN_NOTICE "Local APIC not detected."
1183 " Using dummy APIC emulation.\n");
1184 map_cpu_to_logical_apicid();
1185 cpu_set(0, cpu_sibling_map[0]);
1186 cpu_set(0, cpu_core_map[0]);
1187 return;
1188 }
1189
1190 /*
1191 * Should not be necessary because the MP table should list the boot
1192 * CPU too, but we do it for the sake of robustness anyway.
1193 * Makes no sense to do this check in clustered apic mode, so skip it
1194 */
1195 if (!check_phys_apicid_present(boot_cpu_physical_apicid)) {
1196 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
1197 boot_cpu_physical_apicid);
1198 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1199 }
1200
1201 /*
1202 * If we couldn't find a local APIC, then get out of here now!
1203 */
1204 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && !cpu_has_apic) {
1205 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1206 boot_cpu_physical_apicid);
1207 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1208 smpboot_clear_io_apic_irqs();
1209 phys_cpu_present_map = physid_mask_of_physid(0);
1210 cpu_set(0, cpu_sibling_map[0]);
1211 cpu_set(0, cpu_core_map[0]);
1212 return;
1213 }
1214
1215 verify_local_APIC();
1216
1217 /*
1218 * If SMP should be disabled, then really disable it!
1219 */
1220 if (!max_cpus) {
1221 smp_found_config = 0;
1222 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1223 smpboot_clear_io_apic_irqs();
1224 phys_cpu_present_map = physid_mask_of_physid(0);
1225 cpu_set(0, cpu_sibling_map[0]);
1226 cpu_set(0, cpu_core_map[0]);
1227 return;
1228 }
1229
1230 connect_bsp_APIC();
1231 setup_local_APIC();
1232 map_cpu_to_logical_apicid();
1233
1234
1235 setup_portio_remap();
1236
1237 /*
1238 * Scan the CPU present map and fire up the other CPUs via do_boot_cpu
1239 *
1240 * In clustered apic mode, phys_cpu_present_map is a constructed thus:
1241 * bits 0-3 are quad0, 4-7 are quad1, etc. A perverse twist on the
1242 * clustered apic ID.
1243 */
1244 Dprintk("CPU present map: %lx\n", physids_coerce(phys_cpu_present_map));
1245
1246 kicked = 1;
1247 for (bit = 0; kicked < NR_CPUS && bit < MAX_APICS; bit++) {
1248 apicid = cpu_present_to_apicid(bit);
1249 /*
1250 * Don't even attempt to start the boot CPU!
1251 */
1252 if ((apicid == boot_cpu_apicid) || (apicid == BAD_APICID))
1253 continue;
1254
1255 if (!check_apicid_present(bit))
1256 continue;
1257 if (max_cpus <= cpucount+1)
1258 continue;
1259
1260 if (((cpu = alloc_cpu_id()) <= 0) || do_boot_cpu(apicid, cpu))
1261 printk("CPU #%d not responding - cannot use it.\n",
1262 apicid);
1263 else
1264 ++kicked;
1265 }
1266
1267 /*
1268 * Cleanup possible dangling ends...
1269 */
1270 smpboot_restore_warm_reset_vector();
1271
1272 /*
1273 * Allow the user to impress friends.
1274 */
1275 Dprintk("Before bogomips.\n");
1276 for (cpu = 0; cpu < NR_CPUS; cpu++)
1277 if (cpu_isset(cpu, cpu_callout_map))
1278 bogosum += cpu_data[cpu].loops_per_jiffy;
1279 printk(KERN_INFO
1280 "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
1281 cpucount+1,
1282 bogosum/(500000/HZ),
1283 (bogosum/(5000/HZ))%100);
1284
1285 Dprintk("Before bogocount - setting activated=1.\n");
1286
1287 if (smp_b_stepping)
1288 printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n");
1289
1290 /*
1291 * Don't taint if we are running SMP kernel on a single non-MP
1292 * approved Athlon
1293 */
1294 if (tainted & TAINT_UNSAFE_SMP) {
1295 if (cpucount)
1296 printk (KERN_INFO "WARNING: This combination of AMD processors is not suitable for SMP.\n");
1297 else
1298 tainted &= ~TAINT_UNSAFE_SMP;
1299 }
1300
1301 Dprintk("Boot done.\n");
1302
1303 /*
1304 * construct cpu_sibling_map[], so that we can tell sibling CPUs
1305 * efficiently.
1306 */
1307 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1308 cpus_clear(cpu_sibling_map[cpu]);
1309 cpus_clear(cpu_core_map[cpu]);
1310 }
1311
1312 cpu_set(0, cpu_sibling_map[0]);
1313 cpu_set(0, cpu_core_map[0]);
1314
1315 smpboot_setup_io_apic();
1316
1317 setup_boot_APIC_clock();
1318
1319 /*
1320 * Synchronize the TSC with the AP
1321 */
1322 if (cpu_has_tsc && cpucount && cpu_khz)
1323 synchronize_tsc_bp();
1324 }
1325
1326 /* These are wrappers to interface to the new boot process. Someone
1327 who understands all this stuff should rewrite it properly. --RR 15/Jul/02 */
1328 void __init smp_prepare_cpus(unsigned int max_cpus)
1329 {
1330 smp_commenced_mask = cpumask_of_cpu(0);
1331 cpu_callin_map = cpumask_of_cpu(0);
1332 mb();
1333 smp_boot_cpus(max_cpus);
1334 }
1335
1336 void __devinit smp_prepare_boot_cpu(void)
1337 {
1338 cpu_set(smp_processor_id(), cpu_online_map);
1339 cpu_set(smp_processor_id(), cpu_callout_map);
1340 cpu_set(smp_processor_id(), cpu_present_map);
1341 cpu_set(smp_processor_id(), cpu_possible_map);
1342 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
1343 }
1344
1345 #ifdef CONFIG_HOTPLUG_CPU
1346 static void
1347 remove_siblinginfo(int cpu)
1348 {
1349 int sibling;
1350 struct cpuinfo_x86 *c = cpu_data;
1351
1352 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1353 cpu_clear(cpu, cpu_core_map[sibling]);
1354 /*
1355 * last thread sibling in this cpu core going down
1356 */
1357 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1358 c[sibling].booted_cores--;
1359 }
1360
1361 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1362 cpu_clear(cpu, cpu_sibling_map[sibling]);
1363 cpus_clear(cpu_sibling_map[cpu]);
1364 cpus_clear(cpu_core_map[cpu]);
1365 c[cpu].phys_proc_id = 0;
1366 c[cpu].cpu_core_id = 0;
1367 cpu_clear(cpu, cpu_sibling_setup_map);
1368 }
1369
1370 int __cpu_disable(void)
1371 {
1372 cpumask_t map = cpu_online_map;
1373 int cpu = smp_processor_id();
1374
1375 /*
1376 * Perhaps use cpufreq to drop frequency, but that could go
1377 * into generic code.
1378 *
1379 * We won't take down the boot processor on i386 due to some
1380 * interrupts only being able to be serviced by the BSP.
1381 * Especially so if we're not using an IOAPIC -zwane
1382 */
1383 if (cpu == 0)
1384 return -EBUSY;
1385 if (nmi_watchdog == NMI_LOCAL_APIC)
1386 stop_apic_nmi_watchdog(NULL);
1387 clear_local_APIC();
1388 /* Allow any queued timer interrupts to get serviced */
1389 local_irq_enable();
1390 mdelay(1);
1391 local_irq_disable();
1392
1393 remove_siblinginfo(cpu);
1394
1395 cpu_clear(cpu, map);
1396 fixup_irqs(map);
1397 /* It's now safe to remove this processor from the online map */
1398 cpu_clear(cpu, cpu_online_map);
1399 return 0;
1400 }
1401
1402 void __cpu_die(unsigned int cpu)
1403 {
1404 /* We don't do anything here: idle task is faking death itself. */
1405 unsigned int i;
1406
1407 for (i = 0; i < 10; i++) {
1408 /* They ack this in play_dead by setting CPU_DEAD */
1409 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1410 printk ("CPU %d is now offline\n", cpu);
1411 if (1 == num_online_cpus())
1412 alternatives_smp_switch(0);
1413 return;
1414 }
1415 msleep(100);
1416 }
1417 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1418 }
1419 #else /* ... !CONFIG_HOTPLUG_CPU */
1420 int __cpu_disable(void)
1421 {
1422 return -ENOSYS;
1423 }
1424
1425 void __cpu_die(unsigned int cpu)
1426 {
1427 /* We said "no" in __cpu_disable */
1428 BUG();
1429 }
1430 #endif /* CONFIG_HOTPLUG_CPU */
1431
1432 int __devinit __cpu_up(unsigned int cpu)
1433 {
1434 #ifdef CONFIG_HOTPLUG_CPU
1435 int ret=0;
1436
1437 /*
1438 * We do warm boot only on cpus that had booted earlier
1439 * Otherwise cold boot is all handled from smp_boot_cpus().
1440 * cpu_callin_map is set during AP kickstart process. Its reset
1441 * when a cpu is taken offline from cpu_exit_clear().
1442 */
1443 if (!cpu_isset(cpu, cpu_callin_map))
1444 ret = __smp_prepare_cpu(cpu);
1445
1446 if (ret)
1447 return -EIO;
1448 #endif
1449
1450 /* In case one didn't come up */
1451 if (!cpu_isset(cpu, cpu_callin_map)) {
1452 printk(KERN_DEBUG "skipping cpu%d, didn't come online\n", cpu);
1453 local_irq_enable();
1454 return -EIO;
1455 }
1456
1457 local_irq_enable();
1458 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1459 /* Unleash the CPU! */
1460 cpu_set(cpu, smp_commenced_mask);
1461 while (!cpu_isset(cpu, cpu_online_map))
1462 cpu_relax();
1463 return 0;
1464 }
1465
1466 void __init smp_cpus_done(unsigned int max_cpus)
1467 {
1468 #ifdef CONFIG_X86_IO_APIC
1469 setup_ioapic_dest();
1470 #endif
1471 zap_low_mappings();
1472 #ifndef CONFIG_HOTPLUG_CPU
1473 /*
1474 * Disable executability of the SMP trampoline:
1475 */
1476 set_kernel_exec((unsigned long)trampoline_base, trampoline_exec);
1477 #endif
1478 }
1479
1480 void __init smp_intr_init(void)
1481 {
1482 /*
1483 * IRQ0 must be given a fixed assignment and initialized,
1484 * because it's used before the IO-APIC is set up.
1485 */
1486 set_intr_gate(FIRST_DEVICE_VECTOR, interrupt[0]);
1487
1488 /*
1489 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
1490 * IPI, driven by wakeup.
1491 */
1492 set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
1493
1494 /* IPI for invalidation */
1495 set_intr_gate(INVALIDATE_TLB_VECTOR, invalidate_interrupt);
1496
1497 /* IPI for generic function call */
1498 set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
1499 }
1500
1501 /*
1502 * If the BIOS enumerates physical processors before logical,
1503 * maxcpus=N at enumeration-time can be used to disable HT.
1504 */
1505 static int __init parse_maxcpus(char *arg)
1506 {
1507 extern unsigned int maxcpus;
1508
1509 maxcpus = simple_strtoul(arg, NULL, 0);
1510 return 0;
1511 }
1512 early_param("maxcpus", parse_maxcpus);
This page took 0.062644 seconds and 6 git commands to generate.