Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/agpgart
[deliverable/linux.git] / arch / i386 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 *
7 * Much of the core SMP work is based on previous work by Thomas Radke, to
8 * whom a great many thanks are extended.
9 *
10 * Thanks to Intel for making available several different Pentium,
11 * Pentium Pro and Pentium-II/Xeon MP machines.
12 * Original development of Linux SMP code supported by Caldera.
13 *
14 * This code is released under the GNU General Public License version 2 or
15 * later.
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process. */
35
36 #include <linux/module.h>
37 #include <linux/config.h>
38 #include <linux/init.h>
39 #include <linux/kernel.h>
40
41 #include <linux/mm.h>
42 #include <linux/sched.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/smp_lock.h>
45 #include <linux/bootmem.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/percpu.h>
49
50 #include <linux/delay.h>
51 #include <linux/mc146818rtc.h>
52 #include <asm/tlbflush.h>
53 #include <asm/desc.h>
54 #include <asm/arch_hooks.h>
55
56 #include <mach_apic.h>
57 #include <mach_wakecpu.h>
58 #include <smpboot_hooks.h>
59
60 /* Set if we find a B stepping CPU */
61 static int __devinitdata smp_b_stepping;
62
63 /* Number of siblings per CPU package */
64 int smp_num_siblings = 1;
65 #ifdef CONFIG_X86_HT
66 EXPORT_SYMBOL(smp_num_siblings);
67 #endif
68
69 /* Package ID of each logical CPU */
70 int phys_proc_id[NR_CPUS] __read_mostly = {[0 ... NR_CPUS-1] = BAD_APICID};
71
72 /* Core ID of each logical CPU */
73 int cpu_core_id[NR_CPUS] __read_mostly = {[0 ... NR_CPUS-1] = BAD_APICID};
74
75 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
76 EXPORT_SYMBOL(cpu_sibling_map);
77
78 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
79 EXPORT_SYMBOL(cpu_core_map);
80
81 /* bitmap of online cpus */
82 cpumask_t cpu_online_map __read_mostly;
83 EXPORT_SYMBOL(cpu_online_map);
84
85 cpumask_t cpu_callin_map;
86 cpumask_t cpu_callout_map;
87 EXPORT_SYMBOL(cpu_callout_map);
88 #ifdef CONFIG_HOTPLUG_CPU
89 cpumask_t cpu_possible_map = CPU_MASK_ALL;
90 #else
91 cpumask_t cpu_possible_map;
92 #endif
93 EXPORT_SYMBOL(cpu_possible_map);
94 static cpumask_t smp_commenced_mask;
95
96 /* TSC's upper 32 bits can't be written in eariler CPU (before prescott), there
97 * is no way to resync one AP against BP. TBD: for prescott and above, we
98 * should use IA64's algorithm
99 */
100 static int __devinitdata tsc_sync_disabled;
101
102 /* Per CPU bogomips and other parameters */
103 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
104 EXPORT_SYMBOL(cpu_data);
105
106 u8 x86_cpu_to_apicid[NR_CPUS] __read_mostly =
107 { [0 ... NR_CPUS-1] = 0xff };
108 EXPORT_SYMBOL(x86_cpu_to_apicid);
109
110 /*
111 * Trampoline 80x86 program as an array.
112 */
113
114 extern unsigned char trampoline_data [];
115 extern unsigned char trampoline_end [];
116 static unsigned char *trampoline_base;
117 static int trampoline_exec;
118
119 static void map_cpu_to_logical_apicid(void);
120
121 /* State of each CPU. */
122 DEFINE_PER_CPU(int, cpu_state) = { 0 };
123
124 /*
125 * Currently trivial. Write the real->protected mode
126 * bootstrap into the page concerned. The caller
127 * has made sure it's suitably aligned.
128 */
129
130 static unsigned long __devinit setup_trampoline(void)
131 {
132 memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data);
133 return virt_to_phys(trampoline_base);
134 }
135
136 /*
137 * We are called very early to get the low memory for the
138 * SMP bootup trampoline page.
139 */
140 void __init smp_alloc_memory(void)
141 {
142 trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE);
143 /*
144 * Has to be in very low memory so we can execute
145 * real-mode AP code.
146 */
147 if (__pa(trampoline_base) >= 0x9F000)
148 BUG();
149 /*
150 * Make the SMP trampoline executable:
151 */
152 trampoline_exec = set_kernel_exec((unsigned long)trampoline_base, 1);
153 }
154
155 /*
156 * The bootstrap kernel entry code has set these up. Save them for
157 * a given CPU
158 */
159
160 static void __devinit smp_store_cpu_info(int id)
161 {
162 struct cpuinfo_x86 *c = cpu_data + id;
163
164 *c = boot_cpu_data;
165 if (id!=0)
166 identify_cpu(c);
167 /*
168 * Mask B, Pentium, but not Pentium MMX
169 */
170 if (c->x86_vendor == X86_VENDOR_INTEL &&
171 c->x86 == 5 &&
172 c->x86_mask >= 1 && c->x86_mask <= 4 &&
173 c->x86_model <= 3)
174 /*
175 * Remember we have B step Pentia with bugs
176 */
177 smp_b_stepping = 1;
178
179 /*
180 * Certain Athlons might work (for various values of 'work') in SMP
181 * but they are not certified as MP capable.
182 */
183 if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) {
184
185 /* Athlon 660/661 is valid. */
186 if ((c->x86_model==6) && ((c->x86_mask==0) || (c->x86_mask==1)))
187 goto valid_k7;
188
189 /* Duron 670 is valid */
190 if ((c->x86_model==7) && (c->x86_mask==0))
191 goto valid_k7;
192
193 /*
194 * Athlon 662, Duron 671, and Athlon >model 7 have capability bit.
195 * It's worth noting that the A5 stepping (662) of some Athlon XP's
196 * have the MP bit set.
197 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for more.
198 */
199 if (((c->x86_model==6) && (c->x86_mask>=2)) ||
200 ((c->x86_model==7) && (c->x86_mask>=1)) ||
201 (c->x86_model> 7))
202 if (cpu_has_mp)
203 goto valid_k7;
204
205 /* If we get here, it's not a certified SMP capable AMD system. */
206 add_taint(TAINT_UNSAFE_SMP);
207 }
208
209 valid_k7:
210 ;
211 }
212
213 /*
214 * TSC synchronization.
215 *
216 * We first check whether all CPUs have their TSC's synchronized,
217 * then we print a warning if not, and always resync.
218 */
219
220 static atomic_t tsc_start_flag = ATOMIC_INIT(0);
221 static atomic_t tsc_count_start = ATOMIC_INIT(0);
222 static atomic_t tsc_count_stop = ATOMIC_INIT(0);
223 static unsigned long long tsc_values[NR_CPUS];
224
225 #define NR_LOOPS 5
226
227 static void __init synchronize_tsc_bp (void)
228 {
229 int i;
230 unsigned long long t0;
231 unsigned long long sum, avg;
232 long long delta;
233 unsigned int one_usec;
234 int buggy = 0;
235
236 printk(KERN_INFO "checking TSC synchronization across %u CPUs: ", num_booting_cpus());
237
238 /* convert from kcyc/sec to cyc/usec */
239 one_usec = cpu_khz / 1000;
240
241 atomic_set(&tsc_start_flag, 1);
242 wmb();
243
244 /*
245 * We loop a few times to get a primed instruction cache,
246 * then the last pass is more or less synchronized and
247 * the BP and APs set their cycle counters to zero all at
248 * once. This reduces the chance of having random offsets
249 * between the processors, and guarantees that the maximum
250 * delay between the cycle counters is never bigger than
251 * the latency of information-passing (cachelines) between
252 * two CPUs.
253 */
254 for (i = 0; i < NR_LOOPS; i++) {
255 /*
256 * all APs synchronize but they loop on '== num_cpus'
257 */
258 while (atomic_read(&tsc_count_start) != num_booting_cpus()-1)
259 mb();
260 atomic_set(&tsc_count_stop, 0);
261 wmb();
262 /*
263 * this lets the APs save their current TSC:
264 */
265 atomic_inc(&tsc_count_start);
266
267 rdtscll(tsc_values[smp_processor_id()]);
268 /*
269 * We clear the TSC in the last loop:
270 */
271 if (i == NR_LOOPS-1)
272 write_tsc(0, 0);
273
274 /*
275 * Wait for all APs to leave the synchronization point:
276 */
277 while (atomic_read(&tsc_count_stop) != num_booting_cpus()-1)
278 mb();
279 atomic_set(&tsc_count_start, 0);
280 wmb();
281 atomic_inc(&tsc_count_stop);
282 }
283
284 sum = 0;
285 for (i = 0; i < NR_CPUS; i++) {
286 if (cpu_isset(i, cpu_callout_map)) {
287 t0 = tsc_values[i];
288 sum += t0;
289 }
290 }
291 avg = sum;
292 do_div(avg, num_booting_cpus());
293
294 sum = 0;
295 for (i = 0; i < NR_CPUS; i++) {
296 if (!cpu_isset(i, cpu_callout_map))
297 continue;
298 delta = tsc_values[i] - avg;
299 if (delta < 0)
300 delta = -delta;
301 /*
302 * We report bigger than 2 microseconds clock differences.
303 */
304 if (delta > 2*one_usec) {
305 long realdelta;
306 if (!buggy) {
307 buggy = 1;
308 printk("\n");
309 }
310 realdelta = delta;
311 do_div(realdelta, one_usec);
312 if (tsc_values[i] < avg)
313 realdelta = -realdelta;
314
315 printk(KERN_INFO "CPU#%d had %ld usecs TSC skew, fixed it up.\n", i, realdelta);
316 }
317
318 sum += delta;
319 }
320 if (!buggy)
321 printk("passed.\n");
322 }
323
324 static void __init synchronize_tsc_ap (void)
325 {
326 int i;
327
328 /*
329 * Not every cpu is online at the time
330 * this gets called, so we first wait for the BP to
331 * finish SMP initialization:
332 */
333 while (!atomic_read(&tsc_start_flag)) mb();
334
335 for (i = 0; i < NR_LOOPS; i++) {
336 atomic_inc(&tsc_count_start);
337 while (atomic_read(&tsc_count_start) != num_booting_cpus())
338 mb();
339
340 rdtscll(tsc_values[smp_processor_id()]);
341 if (i == NR_LOOPS-1)
342 write_tsc(0, 0);
343
344 atomic_inc(&tsc_count_stop);
345 while (atomic_read(&tsc_count_stop) != num_booting_cpus()) mb();
346 }
347 }
348 #undef NR_LOOPS
349
350 extern void calibrate_delay(void);
351
352 static atomic_t init_deasserted;
353
354 static void __devinit smp_callin(void)
355 {
356 int cpuid, phys_id;
357 unsigned long timeout;
358
359 /*
360 * If waken up by an INIT in an 82489DX configuration
361 * we may get here before an INIT-deassert IPI reaches
362 * our local APIC. We have to wait for the IPI or we'll
363 * lock up on an APIC access.
364 */
365 wait_for_init_deassert(&init_deasserted);
366
367 /*
368 * (This works even if the APIC is not enabled.)
369 */
370 phys_id = GET_APIC_ID(apic_read(APIC_ID));
371 cpuid = smp_processor_id();
372 if (cpu_isset(cpuid, cpu_callin_map)) {
373 printk("huh, phys CPU#%d, CPU#%d already present??\n",
374 phys_id, cpuid);
375 BUG();
376 }
377 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
378
379 /*
380 * STARTUP IPIs are fragile beasts as they might sometimes
381 * trigger some glue motherboard logic. Complete APIC bus
382 * silence for 1 second, this overestimates the time the
383 * boot CPU is spending to send the up to 2 STARTUP IPIs
384 * by a factor of two. This should be enough.
385 */
386
387 /*
388 * Waiting 2s total for startup (udelay is not yet working)
389 */
390 timeout = jiffies + 2*HZ;
391 while (time_before(jiffies, timeout)) {
392 /*
393 * Has the boot CPU finished it's STARTUP sequence?
394 */
395 if (cpu_isset(cpuid, cpu_callout_map))
396 break;
397 rep_nop();
398 }
399
400 if (!time_before(jiffies, timeout)) {
401 printk("BUG: CPU%d started up but did not get a callout!\n",
402 cpuid);
403 BUG();
404 }
405
406 /*
407 * the boot CPU has finished the init stage and is spinning
408 * on callin_map until we finish. We are free to set up this
409 * CPU, first the APIC. (this is probably redundant on most
410 * boards)
411 */
412
413 Dprintk("CALLIN, before setup_local_APIC().\n");
414 smp_callin_clear_local_apic();
415 setup_local_APIC();
416 map_cpu_to_logical_apicid();
417
418 /*
419 * Get our bogomips.
420 */
421 calibrate_delay();
422 Dprintk("Stack at about %p\n",&cpuid);
423
424 /*
425 * Save our processor parameters
426 */
427 smp_store_cpu_info(cpuid);
428
429 disable_APIC_timer();
430
431 /*
432 * Allow the master to continue.
433 */
434 cpu_set(cpuid, cpu_callin_map);
435
436 /*
437 * Synchronize the TSC with the BP
438 */
439 if (cpu_has_tsc && cpu_khz && !tsc_sync_disabled)
440 synchronize_tsc_ap();
441 }
442
443 static int cpucount;
444
445 static inline void
446 set_cpu_sibling_map(int cpu)
447 {
448 int i;
449
450 if (smp_num_siblings > 1) {
451 for (i = 0; i < NR_CPUS; i++) {
452 if (!cpu_isset(i, cpu_callout_map))
453 continue;
454 if (cpu_core_id[cpu] == cpu_core_id[i]) {
455 cpu_set(i, cpu_sibling_map[cpu]);
456 cpu_set(cpu, cpu_sibling_map[i]);
457 }
458 }
459 } else {
460 cpu_set(cpu, cpu_sibling_map[cpu]);
461 }
462
463 if (current_cpu_data.x86_num_cores > 1) {
464 for (i = 0; i < NR_CPUS; i++) {
465 if (!cpu_isset(i, cpu_callout_map))
466 continue;
467 if (phys_proc_id[cpu] == phys_proc_id[i]) {
468 cpu_set(i, cpu_core_map[cpu]);
469 cpu_set(cpu, cpu_core_map[i]);
470 }
471 }
472 } else {
473 cpu_core_map[cpu] = cpu_sibling_map[cpu];
474 }
475 }
476
477 /*
478 * Activate a secondary processor.
479 */
480 static void __devinit start_secondary(void *unused)
481 {
482 /*
483 * Dont put anything before smp_callin(), SMP
484 * booting is too fragile that we want to limit the
485 * things done here to the most necessary things.
486 */
487 cpu_init();
488 smp_callin();
489 while (!cpu_isset(smp_processor_id(), smp_commenced_mask))
490 rep_nop();
491 setup_secondary_APIC_clock();
492 if (nmi_watchdog == NMI_IO_APIC) {
493 disable_8259A_irq(0);
494 enable_NMI_through_LVT0(NULL);
495 enable_8259A_irq(0);
496 }
497 enable_APIC_timer();
498 /*
499 * low-memory mappings have been cleared, flush them from
500 * the local TLBs too.
501 */
502 local_flush_tlb();
503
504 /* This must be done before setting cpu_online_map */
505 set_cpu_sibling_map(raw_smp_processor_id());
506 wmb();
507
508 /*
509 * We need to hold call_lock, so there is no inconsistency
510 * between the time smp_call_function() determines number of
511 * IPI receipients, and the time when the determination is made
512 * for which cpus receive the IPI. Holding this
513 * lock helps us to not include this cpu in a currently in progress
514 * smp_call_function().
515 */
516 lock_ipi_call_lock();
517 cpu_set(smp_processor_id(), cpu_online_map);
518 unlock_ipi_call_lock();
519 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
520
521 /* We can take interrupts now: we're officially "up". */
522 local_irq_enable();
523
524 wmb();
525 cpu_idle();
526 }
527
528 /*
529 * Everything has been set up for the secondary
530 * CPUs - they just need to reload everything
531 * from the task structure
532 * This function must not return.
533 */
534 void __devinit initialize_secondary(void)
535 {
536 /*
537 * We don't actually need to load the full TSS,
538 * basically just the stack pointer and the eip.
539 */
540
541 asm volatile(
542 "movl %0,%%esp\n\t"
543 "jmp *%1"
544 :
545 :"r" (current->thread.esp),"r" (current->thread.eip));
546 }
547
548 extern struct {
549 void * esp;
550 unsigned short ss;
551 } stack_start;
552
553 #ifdef CONFIG_NUMA
554
555 /* which logical CPUs are on which nodes */
556 cpumask_t node_2_cpu_mask[MAX_NUMNODES] __read_mostly =
557 { [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE };
558 /* which node each logical CPU is on */
559 int cpu_2_node[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 };
560 EXPORT_SYMBOL(cpu_2_node);
561
562 /* set up a mapping between cpu and node. */
563 static inline void map_cpu_to_node(int cpu, int node)
564 {
565 printk("Mapping cpu %d to node %d\n", cpu, node);
566 cpu_set(cpu, node_2_cpu_mask[node]);
567 cpu_2_node[cpu] = node;
568 }
569
570 /* undo a mapping between cpu and node. */
571 static inline void unmap_cpu_to_node(int cpu)
572 {
573 int node;
574
575 printk("Unmapping cpu %d from all nodes\n", cpu);
576 for (node = 0; node < MAX_NUMNODES; node ++)
577 cpu_clear(cpu, node_2_cpu_mask[node]);
578 cpu_2_node[cpu] = 0;
579 }
580 #else /* !CONFIG_NUMA */
581
582 #define map_cpu_to_node(cpu, node) ({})
583 #define unmap_cpu_to_node(cpu) ({})
584
585 #endif /* CONFIG_NUMA */
586
587 u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
588
589 static void map_cpu_to_logical_apicid(void)
590 {
591 int cpu = smp_processor_id();
592 int apicid = logical_smp_processor_id();
593
594 cpu_2_logical_apicid[cpu] = apicid;
595 map_cpu_to_node(cpu, apicid_to_node(apicid));
596 }
597
598 static void unmap_cpu_to_logical_apicid(int cpu)
599 {
600 cpu_2_logical_apicid[cpu] = BAD_APICID;
601 unmap_cpu_to_node(cpu);
602 }
603
604 #if APIC_DEBUG
605 static inline void __inquire_remote_apic(int apicid)
606 {
607 int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
608 char *names[] = { "ID", "VERSION", "SPIV" };
609 int timeout, status;
610
611 printk("Inquiring remote APIC #%d...\n", apicid);
612
613 for (i = 0; i < ARRAY_SIZE(regs); i++) {
614 printk("... APIC #%d %s: ", apicid, names[i]);
615
616 /*
617 * Wait for idle.
618 */
619 apic_wait_icr_idle();
620
621 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
622 apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
623
624 timeout = 0;
625 do {
626 udelay(100);
627 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
628 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
629
630 switch (status) {
631 case APIC_ICR_RR_VALID:
632 status = apic_read(APIC_RRR);
633 printk("%08x\n", status);
634 break;
635 default:
636 printk("failed\n");
637 }
638 }
639 }
640 #endif
641
642 #ifdef WAKE_SECONDARY_VIA_NMI
643 /*
644 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
645 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
646 * won't ... remember to clear down the APIC, etc later.
647 */
648 static int __devinit
649 wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip)
650 {
651 unsigned long send_status = 0, accept_status = 0;
652 int timeout, maxlvt;
653
654 /* Target chip */
655 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid));
656
657 /* Boot on the stack */
658 /* Kick the second */
659 apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL);
660
661 Dprintk("Waiting for send to finish...\n");
662 timeout = 0;
663 do {
664 Dprintk("+");
665 udelay(100);
666 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
667 } while (send_status && (timeout++ < 1000));
668
669 /*
670 * Give the other CPU some time to accept the IPI.
671 */
672 udelay(200);
673 /*
674 * Due to the Pentium erratum 3AP.
675 */
676 maxlvt = get_maxlvt();
677 if (maxlvt > 3) {
678 apic_read_around(APIC_SPIV);
679 apic_write(APIC_ESR, 0);
680 }
681 accept_status = (apic_read(APIC_ESR) & 0xEF);
682 Dprintk("NMI sent.\n");
683
684 if (send_status)
685 printk("APIC never delivered???\n");
686 if (accept_status)
687 printk("APIC delivery error (%lx).\n", accept_status);
688
689 return (send_status | accept_status);
690 }
691 #endif /* WAKE_SECONDARY_VIA_NMI */
692
693 #ifdef WAKE_SECONDARY_VIA_INIT
694 static int __devinit
695 wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip)
696 {
697 unsigned long send_status = 0, accept_status = 0;
698 int maxlvt, timeout, num_starts, j;
699
700 /*
701 * Be paranoid about clearing APIC errors.
702 */
703 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
704 apic_read_around(APIC_SPIV);
705 apic_write(APIC_ESR, 0);
706 apic_read(APIC_ESR);
707 }
708
709 Dprintk("Asserting INIT.\n");
710
711 /*
712 * Turn INIT on target chip
713 */
714 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
715
716 /*
717 * Send IPI
718 */
719 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
720 | APIC_DM_INIT);
721
722 Dprintk("Waiting for send to finish...\n");
723 timeout = 0;
724 do {
725 Dprintk("+");
726 udelay(100);
727 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
728 } while (send_status && (timeout++ < 1000));
729
730 mdelay(10);
731
732 Dprintk("Deasserting INIT.\n");
733
734 /* Target chip */
735 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
736
737 /* Send IPI */
738 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
739
740 Dprintk("Waiting for send to finish...\n");
741 timeout = 0;
742 do {
743 Dprintk("+");
744 udelay(100);
745 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
746 } while (send_status && (timeout++ < 1000));
747
748 atomic_set(&init_deasserted, 1);
749
750 /*
751 * Should we send STARTUP IPIs ?
752 *
753 * Determine this based on the APIC version.
754 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
755 */
756 if (APIC_INTEGRATED(apic_version[phys_apicid]))
757 num_starts = 2;
758 else
759 num_starts = 0;
760
761 /*
762 * Run STARTUP IPI loop.
763 */
764 Dprintk("#startup loops: %d.\n", num_starts);
765
766 maxlvt = get_maxlvt();
767
768 for (j = 1; j <= num_starts; j++) {
769 Dprintk("Sending STARTUP #%d.\n",j);
770 apic_read_around(APIC_SPIV);
771 apic_write(APIC_ESR, 0);
772 apic_read(APIC_ESR);
773 Dprintk("After apic_write.\n");
774
775 /*
776 * STARTUP IPI
777 */
778
779 /* Target chip */
780 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
781
782 /* Boot on the stack */
783 /* Kick the second */
784 apic_write_around(APIC_ICR, APIC_DM_STARTUP
785 | (start_eip >> 12));
786
787 /*
788 * Give the other CPU some time to accept the IPI.
789 */
790 udelay(300);
791
792 Dprintk("Startup point 1.\n");
793
794 Dprintk("Waiting for send to finish...\n");
795 timeout = 0;
796 do {
797 Dprintk("+");
798 udelay(100);
799 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
800 } while (send_status && (timeout++ < 1000));
801
802 /*
803 * Give the other CPU some time to accept the IPI.
804 */
805 udelay(200);
806 /*
807 * Due to the Pentium erratum 3AP.
808 */
809 if (maxlvt > 3) {
810 apic_read_around(APIC_SPIV);
811 apic_write(APIC_ESR, 0);
812 }
813 accept_status = (apic_read(APIC_ESR) & 0xEF);
814 if (send_status || accept_status)
815 break;
816 }
817 Dprintk("After Startup.\n");
818
819 if (send_status)
820 printk("APIC never delivered???\n");
821 if (accept_status)
822 printk("APIC delivery error (%lx).\n", accept_status);
823
824 return (send_status | accept_status);
825 }
826 #endif /* WAKE_SECONDARY_VIA_INIT */
827
828 extern cpumask_t cpu_initialized;
829 static inline int alloc_cpu_id(void)
830 {
831 cpumask_t tmp_map;
832 int cpu;
833 cpus_complement(tmp_map, cpu_present_map);
834 cpu = first_cpu(tmp_map);
835 if (cpu >= NR_CPUS)
836 return -ENODEV;
837 return cpu;
838 }
839
840 #ifdef CONFIG_HOTPLUG_CPU
841 static struct task_struct * __devinitdata cpu_idle_tasks[NR_CPUS];
842 static inline struct task_struct * alloc_idle_task(int cpu)
843 {
844 struct task_struct *idle;
845
846 if ((idle = cpu_idle_tasks[cpu]) != NULL) {
847 /* initialize thread_struct. we really want to avoid destroy
848 * idle tread
849 */
850 idle->thread.esp = (unsigned long)(((struct pt_regs *)
851 (THREAD_SIZE + (unsigned long) idle->thread_info)) - 1);
852 init_idle(idle, cpu);
853 return idle;
854 }
855 idle = fork_idle(cpu);
856
857 if (!IS_ERR(idle))
858 cpu_idle_tasks[cpu] = idle;
859 return idle;
860 }
861 #else
862 #define alloc_idle_task(cpu) fork_idle(cpu)
863 #endif
864
865 static int __devinit do_boot_cpu(int apicid, int cpu)
866 /*
867 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
868 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
869 * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu.
870 */
871 {
872 struct task_struct *idle;
873 unsigned long boot_error;
874 int timeout;
875 unsigned long start_eip;
876 unsigned short nmi_high = 0, nmi_low = 0;
877
878 ++cpucount;
879
880 /*
881 * We can't use kernel_thread since we must avoid to
882 * reschedule the child.
883 */
884 idle = alloc_idle_task(cpu);
885 if (IS_ERR(idle))
886 panic("failed fork for CPU %d", cpu);
887 idle->thread.eip = (unsigned long) start_secondary;
888 /* start_eip had better be page-aligned! */
889 start_eip = setup_trampoline();
890
891 /* So we see what's up */
892 printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip);
893 /* Stack for startup_32 can be just as for start_secondary onwards */
894 stack_start.esp = (void *) idle->thread.esp;
895
896 irq_ctx_init(cpu);
897
898 /*
899 * This grunge runs the startup process for
900 * the targeted processor.
901 */
902
903 atomic_set(&init_deasserted, 0);
904
905 Dprintk("Setting warm reset code and vector.\n");
906
907 store_NMI_vector(&nmi_high, &nmi_low);
908
909 smpboot_setup_warm_reset_vector(start_eip);
910
911 /*
912 * Starting actual IPI sequence...
913 */
914 boot_error = wakeup_secondary_cpu(apicid, start_eip);
915
916 if (!boot_error) {
917 /*
918 * allow APs to start initializing.
919 */
920 Dprintk("Before Callout %d.\n", cpu);
921 cpu_set(cpu, cpu_callout_map);
922 Dprintk("After Callout %d.\n", cpu);
923
924 /*
925 * Wait 5s total for a response
926 */
927 for (timeout = 0; timeout < 50000; timeout++) {
928 if (cpu_isset(cpu, cpu_callin_map))
929 break; /* It has booted */
930 udelay(100);
931 }
932
933 if (cpu_isset(cpu, cpu_callin_map)) {
934 /* number CPUs logically, starting from 1 (BSP is 0) */
935 Dprintk("OK.\n");
936 printk("CPU%d: ", cpu);
937 print_cpu_info(&cpu_data[cpu]);
938 Dprintk("CPU has booted.\n");
939 } else {
940 boot_error= 1;
941 if (*((volatile unsigned char *)trampoline_base)
942 == 0xA5)
943 /* trampoline started but...? */
944 printk("Stuck ??\n");
945 else
946 /* trampoline code not run */
947 printk("Not responding.\n");
948 inquire_remote_apic(apicid);
949 }
950 }
951
952 if (boot_error) {
953 /* Try to put things back the way they were before ... */
954 unmap_cpu_to_logical_apicid(cpu);
955 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
956 cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */
957 cpucount--;
958 } else {
959 x86_cpu_to_apicid[cpu] = apicid;
960 cpu_set(cpu, cpu_present_map);
961 }
962
963 /* mark "stuck" area as not stuck */
964 *((volatile unsigned long *)trampoline_base) = 0;
965
966 return boot_error;
967 }
968
969 #ifdef CONFIG_HOTPLUG_CPU
970 void cpu_exit_clear(void)
971 {
972 int cpu = raw_smp_processor_id();
973
974 idle_task_exit();
975
976 cpucount --;
977 cpu_uninit();
978 irq_ctx_exit(cpu);
979
980 cpu_clear(cpu, cpu_callout_map);
981 cpu_clear(cpu, cpu_callin_map);
982 cpu_clear(cpu, cpu_present_map);
983
984 cpu_clear(cpu, smp_commenced_mask);
985 unmap_cpu_to_logical_apicid(cpu);
986 }
987
988 struct warm_boot_cpu_info {
989 struct completion *complete;
990 int apicid;
991 int cpu;
992 };
993
994 static void __devinit do_warm_boot_cpu(void *p)
995 {
996 struct warm_boot_cpu_info *info = p;
997 do_boot_cpu(info->apicid, info->cpu);
998 complete(info->complete);
999 }
1000
1001 int __devinit smp_prepare_cpu(int cpu)
1002 {
1003 DECLARE_COMPLETION(done);
1004 struct warm_boot_cpu_info info;
1005 struct work_struct task;
1006 int apicid, ret;
1007
1008 lock_cpu_hotplug();
1009 apicid = x86_cpu_to_apicid[cpu];
1010 if (apicid == BAD_APICID) {
1011 ret = -ENODEV;
1012 goto exit;
1013 }
1014
1015 info.complete = &done;
1016 info.apicid = apicid;
1017 info.cpu = cpu;
1018 INIT_WORK(&task, do_warm_boot_cpu, &info);
1019
1020 tsc_sync_disabled = 1;
1021
1022 /* init low mem mapping */
1023 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
1024 KERNEL_PGD_PTRS);
1025 flush_tlb_all();
1026 schedule_work(&task);
1027 wait_for_completion(&done);
1028
1029 tsc_sync_disabled = 0;
1030 zap_low_mappings();
1031 ret = 0;
1032 exit:
1033 unlock_cpu_hotplug();
1034 return ret;
1035 }
1036 #endif
1037
1038 static void smp_tune_scheduling (void)
1039 {
1040 unsigned long cachesize; /* kB */
1041 unsigned long bandwidth = 350; /* MB/s */
1042 /*
1043 * Rough estimation for SMP scheduling, this is the number of
1044 * cycles it takes for a fully memory-limited process to flush
1045 * the SMP-local cache.
1046 *
1047 * (For a P5 this pretty much means we will choose another idle
1048 * CPU almost always at wakeup time (this is due to the small
1049 * L1 cache), on PIIs it's around 50-100 usecs, depending on
1050 * the cache size)
1051 */
1052
1053 if (!cpu_khz) {
1054 /*
1055 * this basically disables processor-affinity
1056 * scheduling on SMP without a TSC.
1057 */
1058 return;
1059 } else {
1060 cachesize = boot_cpu_data.x86_cache_size;
1061 if (cachesize == -1) {
1062 cachesize = 16; /* Pentiums, 2x8kB cache */
1063 bandwidth = 100;
1064 }
1065 }
1066 }
1067
1068 /*
1069 * Cycle through the processors sending APIC IPIs to boot each.
1070 */
1071
1072 static int boot_cpu_logical_apicid;
1073 /* Where the IO area was mapped on multiquad, always 0 otherwise */
1074 void *xquad_portio;
1075 #ifdef CONFIG_X86_NUMAQ
1076 EXPORT_SYMBOL(xquad_portio);
1077 #endif
1078
1079 static void __init smp_boot_cpus(unsigned int max_cpus)
1080 {
1081 int apicid, cpu, bit, kicked;
1082 unsigned long bogosum = 0;
1083
1084 /*
1085 * Setup boot CPU information
1086 */
1087 smp_store_cpu_info(0); /* Final full version of the data */
1088 printk("CPU%d: ", 0);
1089 print_cpu_info(&cpu_data[0]);
1090
1091 boot_cpu_physical_apicid = GET_APIC_ID(apic_read(APIC_ID));
1092 boot_cpu_logical_apicid = logical_smp_processor_id();
1093 x86_cpu_to_apicid[0] = boot_cpu_physical_apicid;
1094
1095 current_thread_info()->cpu = 0;
1096 smp_tune_scheduling();
1097 cpus_clear(cpu_sibling_map[0]);
1098 cpu_set(0, cpu_sibling_map[0]);
1099
1100 cpus_clear(cpu_core_map[0]);
1101 cpu_set(0, cpu_core_map[0]);
1102
1103 /*
1104 * If we couldn't find an SMP configuration at boot time,
1105 * get out of here now!
1106 */
1107 if (!smp_found_config && !acpi_lapic) {
1108 printk(KERN_NOTICE "SMP motherboard not detected.\n");
1109 smpboot_clear_io_apic_irqs();
1110 phys_cpu_present_map = physid_mask_of_physid(0);
1111 if (APIC_init_uniprocessor())
1112 printk(KERN_NOTICE "Local APIC not detected."
1113 " Using dummy APIC emulation.\n");
1114 map_cpu_to_logical_apicid();
1115 cpu_set(0, cpu_sibling_map[0]);
1116 cpu_set(0, cpu_core_map[0]);
1117 return;
1118 }
1119
1120 /*
1121 * Should not be necessary because the MP table should list the boot
1122 * CPU too, but we do it for the sake of robustness anyway.
1123 * Makes no sense to do this check in clustered apic mode, so skip it
1124 */
1125 if (!check_phys_apicid_present(boot_cpu_physical_apicid)) {
1126 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
1127 boot_cpu_physical_apicid);
1128 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1129 }
1130
1131 /*
1132 * If we couldn't find a local APIC, then get out of here now!
1133 */
1134 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && !cpu_has_apic) {
1135 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1136 boot_cpu_physical_apicid);
1137 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1138 smpboot_clear_io_apic_irqs();
1139 phys_cpu_present_map = physid_mask_of_physid(0);
1140 cpu_set(0, cpu_sibling_map[0]);
1141 cpu_set(0, cpu_core_map[0]);
1142 return;
1143 }
1144
1145 verify_local_APIC();
1146
1147 /*
1148 * If SMP should be disabled, then really disable it!
1149 */
1150 if (!max_cpus) {
1151 smp_found_config = 0;
1152 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1153 smpboot_clear_io_apic_irqs();
1154 phys_cpu_present_map = physid_mask_of_physid(0);
1155 cpu_set(0, cpu_sibling_map[0]);
1156 cpu_set(0, cpu_core_map[0]);
1157 return;
1158 }
1159
1160 connect_bsp_APIC();
1161 setup_local_APIC();
1162 map_cpu_to_logical_apicid();
1163
1164
1165 setup_portio_remap();
1166
1167 /*
1168 * Scan the CPU present map and fire up the other CPUs via do_boot_cpu
1169 *
1170 * In clustered apic mode, phys_cpu_present_map is a constructed thus:
1171 * bits 0-3 are quad0, 4-7 are quad1, etc. A perverse twist on the
1172 * clustered apic ID.
1173 */
1174 Dprintk("CPU present map: %lx\n", physids_coerce(phys_cpu_present_map));
1175
1176 kicked = 1;
1177 for (bit = 0; kicked < NR_CPUS && bit < MAX_APICS; bit++) {
1178 apicid = cpu_present_to_apicid(bit);
1179 /*
1180 * Don't even attempt to start the boot CPU!
1181 */
1182 if ((apicid == boot_cpu_apicid) || (apicid == BAD_APICID))
1183 continue;
1184
1185 if (!check_apicid_present(bit))
1186 continue;
1187 if (max_cpus <= cpucount+1)
1188 continue;
1189
1190 if (((cpu = alloc_cpu_id()) <= 0) || do_boot_cpu(apicid, cpu))
1191 printk("CPU #%d not responding - cannot use it.\n",
1192 apicid);
1193 else
1194 ++kicked;
1195 }
1196
1197 /*
1198 * Cleanup possible dangling ends...
1199 */
1200 smpboot_restore_warm_reset_vector();
1201
1202 /*
1203 * Allow the user to impress friends.
1204 */
1205 Dprintk("Before bogomips.\n");
1206 for (cpu = 0; cpu < NR_CPUS; cpu++)
1207 if (cpu_isset(cpu, cpu_callout_map))
1208 bogosum += cpu_data[cpu].loops_per_jiffy;
1209 printk(KERN_INFO
1210 "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
1211 cpucount+1,
1212 bogosum/(500000/HZ),
1213 (bogosum/(5000/HZ))%100);
1214
1215 Dprintk("Before bogocount - setting activated=1.\n");
1216
1217 if (smp_b_stepping)
1218 printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n");
1219
1220 /*
1221 * Don't taint if we are running SMP kernel on a single non-MP
1222 * approved Athlon
1223 */
1224 if (tainted & TAINT_UNSAFE_SMP) {
1225 if (cpucount)
1226 printk (KERN_INFO "WARNING: This combination of AMD processors is not suitable for SMP.\n");
1227 else
1228 tainted &= ~TAINT_UNSAFE_SMP;
1229 }
1230
1231 Dprintk("Boot done.\n");
1232
1233 /*
1234 * construct cpu_sibling_map[], so that we can tell sibling CPUs
1235 * efficiently.
1236 */
1237 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1238 cpus_clear(cpu_sibling_map[cpu]);
1239 cpus_clear(cpu_core_map[cpu]);
1240 }
1241
1242 cpu_set(0, cpu_sibling_map[0]);
1243 cpu_set(0, cpu_core_map[0]);
1244
1245 smpboot_setup_io_apic();
1246
1247 setup_boot_APIC_clock();
1248
1249 /*
1250 * Synchronize the TSC with the AP
1251 */
1252 if (cpu_has_tsc && cpucount && cpu_khz)
1253 synchronize_tsc_bp();
1254 }
1255
1256 /* These are wrappers to interface to the new boot process. Someone
1257 who understands all this stuff should rewrite it properly. --RR 15/Jul/02 */
1258 void __init smp_prepare_cpus(unsigned int max_cpus)
1259 {
1260 smp_commenced_mask = cpumask_of_cpu(0);
1261 cpu_callin_map = cpumask_of_cpu(0);
1262 mb();
1263 smp_boot_cpus(max_cpus);
1264 }
1265
1266 void __devinit smp_prepare_boot_cpu(void)
1267 {
1268 cpu_set(smp_processor_id(), cpu_online_map);
1269 cpu_set(smp_processor_id(), cpu_callout_map);
1270 cpu_set(smp_processor_id(), cpu_present_map);
1271 cpu_set(smp_processor_id(), cpu_possible_map);
1272 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
1273 }
1274
1275 #ifdef CONFIG_HOTPLUG_CPU
1276 static void
1277 remove_siblinginfo(int cpu)
1278 {
1279 int sibling;
1280
1281 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1282 cpu_clear(cpu, cpu_sibling_map[sibling]);
1283 for_each_cpu_mask(sibling, cpu_core_map[cpu])
1284 cpu_clear(cpu, cpu_core_map[sibling]);
1285 cpus_clear(cpu_sibling_map[cpu]);
1286 cpus_clear(cpu_core_map[cpu]);
1287 phys_proc_id[cpu] = BAD_APICID;
1288 cpu_core_id[cpu] = BAD_APICID;
1289 }
1290
1291 int __cpu_disable(void)
1292 {
1293 cpumask_t map = cpu_online_map;
1294 int cpu = smp_processor_id();
1295
1296 /*
1297 * Perhaps use cpufreq to drop frequency, but that could go
1298 * into generic code.
1299 *
1300 * We won't take down the boot processor on i386 due to some
1301 * interrupts only being able to be serviced by the BSP.
1302 * Especially so if we're not using an IOAPIC -zwane
1303 */
1304 if (cpu == 0)
1305 return -EBUSY;
1306
1307 /* We enable the timer again on the exit path of the death loop */
1308 disable_APIC_timer();
1309 /* Allow any queued timer interrupts to get serviced */
1310 local_irq_enable();
1311 mdelay(1);
1312 local_irq_disable();
1313
1314 remove_siblinginfo(cpu);
1315
1316 cpu_clear(cpu, map);
1317 fixup_irqs(map);
1318 /* It's now safe to remove this processor from the online map */
1319 cpu_clear(cpu, cpu_online_map);
1320 return 0;
1321 }
1322
1323 void __cpu_die(unsigned int cpu)
1324 {
1325 /* We don't do anything here: idle task is faking death itself. */
1326 unsigned int i;
1327
1328 for (i = 0; i < 10; i++) {
1329 /* They ack this in play_dead by setting CPU_DEAD */
1330 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1331 printk ("CPU %d is now offline\n", cpu);
1332 return;
1333 }
1334 msleep(100);
1335 }
1336 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1337 }
1338 #else /* ... !CONFIG_HOTPLUG_CPU */
1339 int __cpu_disable(void)
1340 {
1341 return -ENOSYS;
1342 }
1343
1344 void __cpu_die(unsigned int cpu)
1345 {
1346 /* We said "no" in __cpu_disable */
1347 BUG();
1348 }
1349 #endif /* CONFIG_HOTPLUG_CPU */
1350
1351 int __devinit __cpu_up(unsigned int cpu)
1352 {
1353 /* In case one didn't come up */
1354 if (!cpu_isset(cpu, cpu_callin_map)) {
1355 printk(KERN_DEBUG "skipping cpu%d, didn't come online\n", cpu);
1356 local_irq_enable();
1357 return -EIO;
1358 }
1359
1360 local_irq_enable();
1361 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1362 /* Unleash the CPU! */
1363 cpu_set(cpu, smp_commenced_mask);
1364 while (!cpu_isset(cpu, cpu_online_map))
1365 mb();
1366 return 0;
1367 }
1368
1369 void __init smp_cpus_done(unsigned int max_cpus)
1370 {
1371 #ifdef CONFIG_X86_IO_APIC
1372 setup_ioapic_dest();
1373 #endif
1374 zap_low_mappings();
1375 #ifndef CONFIG_HOTPLUG_CPU
1376 /*
1377 * Disable executability of the SMP trampoline:
1378 */
1379 set_kernel_exec((unsigned long)trampoline_base, trampoline_exec);
1380 #endif
1381 }
1382
1383 void __init smp_intr_init(void)
1384 {
1385 /*
1386 * IRQ0 must be given a fixed assignment and initialized,
1387 * because it's used before the IO-APIC is set up.
1388 */
1389 set_intr_gate(FIRST_DEVICE_VECTOR, interrupt[0]);
1390
1391 /*
1392 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
1393 * IPI, driven by wakeup.
1394 */
1395 set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
1396
1397 /* IPI for invalidation */
1398 set_intr_gate(INVALIDATE_TLB_VECTOR, invalidate_interrupt);
1399
1400 /* IPI for generic function call */
1401 set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
1402 }
This page took 0.061191 seconds and 6 git commands to generate.