ieee1394: merge from Linus
[deliverable/linux.git] / arch / i386 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 *
7 * Much of the core SMP work is based on previous work by Thomas Radke, to
8 * whom a great many thanks are extended.
9 *
10 * Thanks to Intel for making available several different Pentium,
11 * Pentium Pro and Pentium-II/Xeon MP machines.
12 * Original development of Linux SMP code supported by Caldera.
13 *
14 * This code is released under the GNU General Public License version 2 or
15 * later.
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process. */
35
36 #include <linux/module.h>
37 #include <linux/init.h>
38 #include <linux/kernel.h>
39
40 #include <linux/mm.h>
41 #include <linux/sched.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/smp_lock.h>
44 #include <linux/bootmem.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/percpu.h>
48
49 #include <linux/delay.h>
50 #include <linux/mc146818rtc.h>
51 #include <asm/tlbflush.h>
52 #include <asm/desc.h>
53 #include <asm/arch_hooks.h>
54 #include <asm/nmi.h>
55
56 #include <mach_apic.h>
57 #include <mach_wakecpu.h>
58 #include <smpboot_hooks.h>
59
60 /* Set if we find a B stepping CPU */
61 static int __devinitdata smp_b_stepping;
62
63 /* Number of siblings per CPU package */
64 int smp_num_siblings = 1;
65 #ifdef CONFIG_X86_HT
66 EXPORT_SYMBOL(smp_num_siblings);
67 #endif
68
69 /* Last level cache ID of each logical CPU */
70 int cpu_llc_id[NR_CPUS] __cpuinitdata = {[0 ... NR_CPUS-1] = BAD_APICID};
71
72 /* representing HT siblings of each logical CPU */
73 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
74 EXPORT_SYMBOL(cpu_sibling_map);
75
76 /* representing HT and core siblings of each logical CPU */
77 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
78 EXPORT_SYMBOL(cpu_core_map);
79
80 /* bitmap of online cpus */
81 cpumask_t cpu_online_map __read_mostly;
82 EXPORT_SYMBOL(cpu_online_map);
83
84 cpumask_t cpu_callin_map;
85 cpumask_t cpu_callout_map;
86 EXPORT_SYMBOL(cpu_callout_map);
87 cpumask_t cpu_possible_map;
88 EXPORT_SYMBOL(cpu_possible_map);
89 static cpumask_t smp_commenced_mask;
90
91 /* TSC's upper 32 bits can't be written in eariler CPU (before prescott), there
92 * is no way to resync one AP against BP. TBD: for prescott and above, we
93 * should use IA64's algorithm
94 */
95 static int __devinitdata tsc_sync_disabled;
96
97 /* Per CPU bogomips and other parameters */
98 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
99 EXPORT_SYMBOL(cpu_data);
100
101 u8 x86_cpu_to_apicid[NR_CPUS] __read_mostly =
102 { [0 ... NR_CPUS-1] = 0xff };
103 EXPORT_SYMBOL(x86_cpu_to_apicid);
104
105 /*
106 * Trampoline 80x86 program as an array.
107 */
108
109 extern unsigned char trampoline_data [];
110 extern unsigned char trampoline_end [];
111 static unsigned char *trampoline_base;
112 static int trampoline_exec;
113
114 static void map_cpu_to_logical_apicid(void);
115
116 /* State of each CPU. */
117 DEFINE_PER_CPU(int, cpu_state) = { 0 };
118
119 /*
120 * Currently trivial. Write the real->protected mode
121 * bootstrap into the page concerned. The caller
122 * has made sure it's suitably aligned.
123 */
124
125 static unsigned long __devinit setup_trampoline(void)
126 {
127 memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data);
128 return virt_to_phys(trampoline_base);
129 }
130
131 /*
132 * We are called very early to get the low memory for the
133 * SMP bootup trampoline page.
134 */
135 void __init smp_alloc_memory(void)
136 {
137 trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE);
138 /*
139 * Has to be in very low memory so we can execute
140 * real-mode AP code.
141 */
142 if (__pa(trampoline_base) >= 0x9F000)
143 BUG();
144 /*
145 * Make the SMP trampoline executable:
146 */
147 trampoline_exec = set_kernel_exec((unsigned long)trampoline_base, 1);
148 }
149
150 /*
151 * The bootstrap kernel entry code has set these up. Save them for
152 * a given CPU
153 */
154
155 static void __devinit smp_store_cpu_info(int id)
156 {
157 struct cpuinfo_x86 *c = cpu_data + id;
158
159 *c = boot_cpu_data;
160 if (id!=0)
161 identify_cpu(c);
162 /*
163 * Mask B, Pentium, but not Pentium MMX
164 */
165 if (c->x86_vendor == X86_VENDOR_INTEL &&
166 c->x86 == 5 &&
167 c->x86_mask >= 1 && c->x86_mask <= 4 &&
168 c->x86_model <= 3)
169 /*
170 * Remember we have B step Pentia with bugs
171 */
172 smp_b_stepping = 1;
173
174 /*
175 * Certain Athlons might work (for various values of 'work') in SMP
176 * but they are not certified as MP capable.
177 */
178 if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) {
179
180 /* Athlon 660/661 is valid. */
181 if ((c->x86_model==6) && ((c->x86_mask==0) || (c->x86_mask==1)))
182 goto valid_k7;
183
184 /* Duron 670 is valid */
185 if ((c->x86_model==7) && (c->x86_mask==0))
186 goto valid_k7;
187
188 /*
189 * Athlon 662, Duron 671, and Athlon >model 7 have capability bit.
190 * It's worth noting that the A5 stepping (662) of some Athlon XP's
191 * have the MP bit set.
192 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for more.
193 */
194 if (((c->x86_model==6) && (c->x86_mask>=2)) ||
195 ((c->x86_model==7) && (c->x86_mask>=1)) ||
196 (c->x86_model> 7))
197 if (cpu_has_mp)
198 goto valid_k7;
199
200 /* If we get here, it's not a certified SMP capable AMD system. */
201 add_taint(TAINT_UNSAFE_SMP);
202 }
203
204 valid_k7:
205 ;
206 }
207
208 /*
209 * TSC synchronization.
210 *
211 * We first check whether all CPUs have their TSC's synchronized,
212 * then we print a warning if not, and always resync.
213 */
214
215 static struct {
216 atomic_t start_flag;
217 atomic_t count_start;
218 atomic_t count_stop;
219 unsigned long long values[NR_CPUS];
220 } tsc __initdata = {
221 .start_flag = ATOMIC_INIT(0),
222 .count_start = ATOMIC_INIT(0),
223 .count_stop = ATOMIC_INIT(0),
224 };
225
226 #define NR_LOOPS 5
227
228 static void __init synchronize_tsc_bp(void)
229 {
230 int i;
231 unsigned long long t0;
232 unsigned long long sum, avg;
233 long long delta;
234 unsigned int one_usec;
235 int buggy = 0;
236
237 printk(KERN_INFO "checking TSC synchronization across %u CPUs: ", num_booting_cpus());
238
239 /* convert from kcyc/sec to cyc/usec */
240 one_usec = cpu_khz / 1000;
241
242 atomic_set(&tsc.start_flag, 1);
243 wmb();
244
245 /*
246 * We loop a few times to get a primed instruction cache,
247 * then the last pass is more or less synchronized and
248 * the BP and APs set their cycle counters to zero all at
249 * once. This reduces the chance of having random offsets
250 * between the processors, and guarantees that the maximum
251 * delay between the cycle counters is never bigger than
252 * the latency of information-passing (cachelines) between
253 * two CPUs.
254 */
255 for (i = 0; i < NR_LOOPS; i++) {
256 /*
257 * all APs synchronize but they loop on '== num_cpus'
258 */
259 while (atomic_read(&tsc.count_start) != num_booting_cpus()-1)
260 cpu_relax();
261 atomic_set(&tsc.count_stop, 0);
262 wmb();
263 /*
264 * this lets the APs save their current TSC:
265 */
266 atomic_inc(&tsc.count_start);
267
268 rdtscll(tsc.values[smp_processor_id()]);
269 /*
270 * We clear the TSC in the last loop:
271 */
272 if (i == NR_LOOPS-1)
273 write_tsc(0, 0);
274
275 /*
276 * Wait for all APs to leave the synchronization point:
277 */
278 while (atomic_read(&tsc.count_stop) != num_booting_cpus()-1)
279 cpu_relax();
280 atomic_set(&tsc.count_start, 0);
281 wmb();
282 atomic_inc(&tsc.count_stop);
283 }
284
285 sum = 0;
286 for (i = 0; i < NR_CPUS; i++) {
287 if (cpu_isset(i, cpu_callout_map)) {
288 t0 = tsc.values[i];
289 sum += t0;
290 }
291 }
292 avg = sum;
293 do_div(avg, num_booting_cpus());
294
295 for (i = 0; i < NR_CPUS; i++) {
296 if (!cpu_isset(i, cpu_callout_map))
297 continue;
298 delta = tsc.values[i] - avg;
299 if (delta < 0)
300 delta = -delta;
301 /*
302 * We report bigger than 2 microseconds clock differences.
303 */
304 if (delta > 2*one_usec) {
305 long long realdelta;
306
307 if (!buggy) {
308 buggy = 1;
309 printk("\n");
310 }
311 realdelta = delta;
312 do_div(realdelta, one_usec);
313 if (tsc.values[i] < avg)
314 realdelta = -realdelta;
315
316 if (realdelta)
317 printk(KERN_INFO "CPU#%d had %Ld usecs TSC "
318 "skew, fixed it up.\n", i, realdelta);
319 }
320 }
321 if (!buggy)
322 printk("passed.\n");
323 }
324
325 static void __init synchronize_tsc_ap(void)
326 {
327 int i;
328
329 /*
330 * Not every cpu is online at the time
331 * this gets called, so we first wait for the BP to
332 * finish SMP initialization:
333 */
334 while (!atomic_read(&tsc.start_flag))
335 cpu_relax();
336
337 for (i = 0; i < NR_LOOPS; i++) {
338 atomic_inc(&tsc.count_start);
339 while (atomic_read(&tsc.count_start) != num_booting_cpus())
340 cpu_relax();
341
342 rdtscll(tsc.values[smp_processor_id()]);
343 if (i == NR_LOOPS-1)
344 write_tsc(0, 0);
345
346 atomic_inc(&tsc.count_stop);
347 while (atomic_read(&tsc.count_stop) != num_booting_cpus())
348 cpu_relax();
349 }
350 }
351 #undef NR_LOOPS
352
353 extern void calibrate_delay(void);
354
355 static atomic_t init_deasserted;
356
357 static void __devinit smp_callin(void)
358 {
359 int cpuid, phys_id;
360 unsigned long timeout;
361
362 /*
363 * If waken up by an INIT in an 82489DX configuration
364 * we may get here before an INIT-deassert IPI reaches
365 * our local APIC. We have to wait for the IPI or we'll
366 * lock up on an APIC access.
367 */
368 wait_for_init_deassert(&init_deasserted);
369
370 /*
371 * (This works even if the APIC is not enabled.)
372 */
373 phys_id = GET_APIC_ID(apic_read(APIC_ID));
374 cpuid = smp_processor_id();
375 if (cpu_isset(cpuid, cpu_callin_map)) {
376 printk("huh, phys CPU#%d, CPU#%d already present??\n",
377 phys_id, cpuid);
378 BUG();
379 }
380 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
381
382 /*
383 * STARTUP IPIs are fragile beasts as they might sometimes
384 * trigger some glue motherboard logic. Complete APIC bus
385 * silence for 1 second, this overestimates the time the
386 * boot CPU is spending to send the up to 2 STARTUP IPIs
387 * by a factor of two. This should be enough.
388 */
389
390 /*
391 * Waiting 2s total for startup (udelay is not yet working)
392 */
393 timeout = jiffies + 2*HZ;
394 while (time_before(jiffies, timeout)) {
395 /*
396 * Has the boot CPU finished it's STARTUP sequence?
397 */
398 if (cpu_isset(cpuid, cpu_callout_map))
399 break;
400 rep_nop();
401 }
402
403 if (!time_before(jiffies, timeout)) {
404 printk("BUG: CPU%d started up but did not get a callout!\n",
405 cpuid);
406 BUG();
407 }
408
409 /*
410 * the boot CPU has finished the init stage and is spinning
411 * on callin_map until we finish. We are free to set up this
412 * CPU, first the APIC. (this is probably redundant on most
413 * boards)
414 */
415
416 Dprintk("CALLIN, before setup_local_APIC().\n");
417 smp_callin_clear_local_apic();
418 setup_local_APIC();
419 map_cpu_to_logical_apicid();
420
421 /*
422 * Get our bogomips.
423 */
424 calibrate_delay();
425 Dprintk("Stack at about %p\n",&cpuid);
426
427 /*
428 * Save our processor parameters
429 */
430 smp_store_cpu_info(cpuid);
431
432 disable_APIC_timer();
433
434 /*
435 * Allow the master to continue.
436 */
437 cpu_set(cpuid, cpu_callin_map);
438
439 /*
440 * Synchronize the TSC with the BP
441 */
442 if (cpu_has_tsc && cpu_khz && !tsc_sync_disabled)
443 synchronize_tsc_ap();
444 }
445
446 static int cpucount;
447
448 /* maps the cpu to the sched domain representing multi-core */
449 cpumask_t cpu_coregroup_map(int cpu)
450 {
451 struct cpuinfo_x86 *c = cpu_data + cpu;
452 /*
453 * For perf, we return last level cache shared map.
454 * And for power savings, we return cpu_core_map
455 */
456 if (sched_mc_power_savings || sched_smt_power_savings)
457 return cpu_core_map[cpu];
458 else
459 return c->llc_shared_map;
460 }
461
462 /* representing cpus for which sibling maps can be computed */
463 static cpumask_t cpu_sibling_setup_map;
464
465 static inline void
466 set_cpu_sibling_map(int cpu)
467 {
468 int i;
469 struct cpuinfo_x86 *c = cpu_data;
470
471 cpu_set(cpu, cpu_sibling_setup_map);
472
473 if (smp_num_siblings > 1) {
474 for_each_cpu_mask(i, cpu_sibling_setup_map) {
475 if (c[cpu].phys_proc_id == c[i].phys_proc_id &&
476 c[cpu].cpu_core_id == c[i].cpu_core_id) {
477 cpu_set(i, cpu_sibling_map[cpu]);
478 cpu_set(cpu, cpu_sibling_map[i]);
479 cpu_set(i, cpu_core_map[cpu]);
480 cpu_set(cpu, cpu_core_map[i]);
481 cpu_set(i, c[cpu].llc_shared_map);
482 cpu_set(cpu, c[i].llc_shared_map);
483 }
484 }
485 } else {
486 cpu_set(cpu, cpu_sibling_map[cpu]);
487 }
488
489 cpu_set(cpu, c[cpu].llc_shared_map);
490
491 if (current_cpu_data.x86_max_cores == 1) {
492 cpu_core_map[cpu] = cpu_sibling_map[cpu];
493 c[cpu].booted_cores = 1;
494 return;
495 }
496
497 for_each_cpu_mask(i, cpu_sibling_setup_map) {
498 if (cpu_llc_id[cpu] != BAD_APICID &&
499 cpu_llc_id[cpu] == cpu_llc_id[i]) {
500 cpu_set(i, c[cpu].llc_shared_map);
501 cpu_set(cpu, c[i].llc_shared_map);
502 }
503 if (c[cpu].phys_proc_id == c[i].phys_proc_id) {
504 cpu_set(i, cpu_core_map[cpu]);
505 cpu_set(cpu, cpu_core_map[i]);
506 /*
507 * Does this new cpu bringup a new core?
508 */
509 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
510 /*
511 * for each core in package, increment
512 * the booted_cores for this new cpu
513 */
514 if (first_cpu(cpu_sibling_map[i]) == i)
515 c[cpu].booted_cores++;
516 /*
517 * increment the core count for all
518 * the other cpus in this package
519 */
520 if (i != cpu)
521 c[i].booted_cores++;
522 } else if (i != cpu && !c[cpu].booted_cores)
523 c[cpu].booted_cores = c[i].booted_cores;
524 }
525 }
526 }
527
528 /*
529 * Activate a secondary processor.
530 */
531 static void __devinit start_secondary(void *unused)
532 {
533 /*
534 * Dont put anything before smp_callin(), SMP
535 * booting is too fragile that we want to limit the
536 * things done here to the most necessary things.
537 */
538 cpu_init();
539 preempt_disable();
540 smp_callin();
541 while (!cpu_isset(smp_processor_id(), smp_commenced_mask))
542 rep_nop();
543 setup_secondary_APIC_clock();
544 if (nmi_watchdog == NMI_IO_APIC) {
545 disable_8259A_irq(0);
546 enable_NMI_through_LVT0(NULL);
547 enable_8259A_irq(0);
548 }
549 enable_APIC_timer();
550 /*
551 * low-memory mappings have been cleared, flush them from
552 * the local TLBs too.
553 */
554 local_flush_tlb();
555
556 /* This must be done before setting cpu_online_map */
557 set_cpu_sibling_map(raw_smp_processor_id());
558 wmb();
559
560 /*
561 * We need to hold call_lock, so there is no inconsistency
562 * between the time smp_call_function() determines number of
563 * IPI receipients, and the time when the determination is made
564 * for which cpus receive the IPI. Holding this
565 * lock helps us to not include this cpu in a currently in progress
566 * smp_call_function().
567 */
568 lock_ipi_call_lock();
569 cpu_set(smp_processor_id(), cpu_online_map);
570 unlock_ipi_call_lock();
571 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
572
573 /* We can take interrupts now: we're officially "up". */
574 local_irq_enable();
575
576 wmb();
577 cpu_idle();
578 }
579
580 /*
581 * Everything has been set up for the secondary
582 * CPUs - they just need to reload everything
583 * from the task structure
584 * This function must not return.
585 */
586 void __devinit initialize_secondary(void)
587 {
588 /*
589 * We don't actually need to load the full TSS,
590 * basically just the stack pointer and the eip.
591 */
592
593 asm volatile(
594 "movl %0,%%esp\n\t"
595 "jmp *%1"
596 :
597 :"r" (current->thread.esp),"r" (current->thread.eip));
598 }
599
600 extern struct {
601 void * esp;
602 unsigned short ss;
603 } stack_start;
604
605 #ifdef CONFIG_NUMA
606
607 /* which logical CPUs are on which nodes */
608 cpumask_t node_2_cpu_mask[MAX_NUMNODES] __read_mostly =
609 { [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE };
610 /* which node each logical CPU is on */
611 int cpu_2_node[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 };
612 EXPORT_SYMBOL(cpu_2_node);
613
614 /* set up a mapping between cpu and node. */
615 static inline void map_cpu_to_node(int cpu, int node)
616 {
617 printk("Mapping cpu %d to node %d\n", cpu, node);
618 cpu_set(cpu, node_2_cpu_mask[node]);
619 cpu_2_node[cpu] = node;
620 }
621
622 /* undo a mapping between cpu and node. */
623 static inline void unmap_cpu_to_node(int cpu)
624 {
625 int node;
626
627 printk("Unmapping cpu %d from all nodes\n", cpu);
628 for (node = 0; node < MAX_NUMNODES; node ++)
629 cpu_clear(cpu, node_2_cpu_mask[node]);
630 cpu_2_node[cpu] = 0;
631 }
632 #else /* !CONFIG_NUMA */
633
634 #define map_cpu_to_node(cpu, node) ({})
635 #define unmap_cpu_to_node(cpu) ({})
636
637 #endif /* CONFIG_NUMA */
638
639 u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
640
641 static void map_cpu_to_logical_apicid(void)
642 {
643 int cpu = smp_processor_id();
644 int apicid = logical_smp_processor_id();
645
646 cpu_2_logical_apicid[cpu] = apicid;
647 map_cpu_to_node(cpu, apicid_to_node(apicid));
648 }
649
650 static void unmap_cpu_to_logical_apicid(int cpu)
651 {
652 cpu_2_logical_apicid[cpu] = BAD_APICID;
653 unmap_cpu_to_node(cpu);
654 }
655
656 #if APIC_DEBUG
657 static inline void __inquire_remote_apic(int apicid)
658 {
659 int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
660 char *names[] = { "ID", "VERSION", "SPIV" };
661 int timeout, status;
662
663 printk("Inquiring remote APIC #%d...\n", apicid);
664
665 for (i = 0; i < ARRAY_SIZE(regs); i++) {
666 printk("... APIC #%d %s: ", apicid, names[i]);
667
668 /*
669 * Wait for idle.
670 */
671 apic_wait_icr_idle();
672
673 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
674 apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
675
676 timeout = 0;
677 do {
678 udelay(100);
679 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
680 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
681
682 switch (status) {
683 case APIC_ICR_RR_VALID:
684 status = apic_read(APIC_RRR);
685 printk("%08x\n", status);
686 break;
687 default:
688 printk("failed\n");
689 }
690 }
691 }
692 #endif
693
694 #ifdef WAKE_SECONDARY_VIA_NMI
695 /*
696 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
697 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
698 * won't ... remember to clear down the APIC, etc later.
699 */
700 static int __devinit
701 wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip)
702 {
703 unsigned long send_status = 0, accept_status = 0;
704 int timeout, maxlvt;
705
706 /* Target chip */
707 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid));
708
709 /* Boot on the stack */
710 /* Kick the second */
711 apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL);
712
713 Dprintk("Waiting for send to finish...\n");
714 timeout = 0;
715 do {
716 Dprintk("+");
717 udelay(100);
718 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
719 } while (send_status && (timeout++ < 1000));
720
721 /*
722 * Give the other CPU some time to accept the IPI.
723 */
724 udelay(200);
725 /*
726 * Due to the Pentium erratum 3AP.
727 */
728 maxlvt = get_maxlvt();
729 if (maxlvt > 3) {
730 apic_read_around(APIC_SPIV);
731 apic_write(APIC_ESR, 0);
732 }
733 accept_status = (apic_read(APIC_ESR) & 0xEF);
734 Dprintk("NMI sent.\n");
735
736 if (send_status)
737 printk("APIC never delivered???\n");
738 if (accept_status)
739 printk("APIC delivery error (%lx).\n", accept_status);
740
741 return (send_status | accept_status);
742 }
743 #endif /* WAKE_SECONDARY_VIA_NMI */
744
745 #ifdef WAKE_SECONDARY_VIA_INIT
746 static int __devinit
747 wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip)
748 {
749 unsigned long send_status = 0, accept_status = 0;
750 int maxlvt, timeout, num_starts, j;
751
752 /*
753 * Be paranoid about clearing APIC errors.
754 */
755 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
756 apic_read_around(APIC_SPIV);
757 apic_write(APIC_ESR, 0);
758 apic_read(APIC_ESR);
759 }
760
761 Dprintk("Asserting INIT.\n");
762
763 /*
764 * Turn INIT on target chip
765 */
766 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
767
768 /*
769 * Send IPI
770 */
771 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
772 | APIC_DM_INIT);
773
774 Dprintk("Waiting for send to finish...\n");
775 timeout = 0;
776 do {
777 Dprintk("+");
778 udelay(100);
779 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
780 } while (send_status && (timeout++ < 1000));
781
782 mdelay(10);
783
784 Dprintk("Deasserting INIT.\n");
785
786 /* Target chip */
787 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
788
789 /* Send IPI */
790 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
791
792 Dprintk("Waiting for send to finish...\n");
793 timeout = 0;
794 do {
795 Dprintk("+");
796 udelay(100);
797 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
798 } while (send_status && (timeout++ < 1000));
799
800 atomic_set(&init_deasserted, 1);
801
802 /*
803 * Should we send STARTUP IPIs ?
804 *
805 * Determine this based on the APIC version.
806 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
807 */
808 if (APIC_INTEGRATED(apic_version[phys_apicid]))
809 num_starts = 2;
810 else
811 num_starts = 0;
812
813 /*
814 * Run STARTUP IPI loop.
815 */
816 Dprintk("#startup loops: %d.\n", num_starts);
817
818 maxlvt = get_maxlvt();
819
820 for (j = 1; j <= num_starts; j++) {
821 Dprintk("Sending STARTUP #%d.\n",j);
822 apic_read_around(APIC_SPIV);
823 apic_write(APIC_ESR, 0);
824 apic_read(APIC_ESR);
825 Dprintk("After apic_write.\n");
826
827 /*
828 * STARTUP IPI
829 */
830
831 /* Target chip */
832 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
833
834 /* Boot on the stack */
835 /* Kick the second */
836 apic_write_around(APIC_ICR, APIC_DM_STARTUP
837 | (start_eip >> 12));
838
839 /*
840 * Give the other CPU some time to accept the IPI.
841 */
842 udelay(300);
843
844 Dprintk("Startup point 1.\n");
845
846 Dprintk("Waiting for send to finish...\n");
847 timeout = 0;
848 do {
849 Dprintk("+");
850 udelay(100);
851 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
852 } while (send_status && (timeout++ < 1000));
853
854 /*
855 * Give the other CPU some time to accept the IPI.
856 */
857 udelay(200);
858 /*
859 * Due to the Pentium erratum 3AP.
860 */
861 if (maxlvt > 3) {
862 apic_read_around(APIC_SPIV);
863 apic_write(APIC_ESR, 0);
864 }
865 accept_status = (apic_read(APIC_ESR) & 0xEF);
866 if (send_status || accept_status)
867 break;
868 }
869 Dprintk("After Startup.\n");
870
871 if (send_status)
872 printk("APIC never delivered???\n");
873 if (accept_status)
874 printk("APIC delivery error (%lx).\n", accept_status);
875
876 return (send_status | accept_status);
877 }
878 #endif /* WAKE_SECONDARY_VIA_INIT */
879
880 extern cpumask_t cpu_initialized;
881 static inline int alloc_cpu_id(void)
882 {
883 cpumask_t tmp_map;
884 int cpu;
885 cpus_complement(tmp_map, cpu_present_map);
886 cpu = first_cpu(tmp_map);
887 if (cpu >= NR_CPUS)
888 return -ENODEV;
889 return cpu;
890 }
891
892 #ifdef CONFIG_HOTPLUG_CPU
893 static struct task_struct * __devinitdata cpu_idle_tasks[NR_CPUS];
894 static inline struct task_struct * alloc_idle_task(int cpu)
895 {
896 struct task_struct *idle;
897
898 if ((idle = cpu_idle_tasks[cpu]) != NULL) {
899 /* initialize thread_struct. we really want to avoid destroy
900 * idle tread
901 */
902 idle->thread.esp = (unsigned long)task_pt_regs(idle);
903 init_idle(idle, cpu);
904 return idle;
905 }
906 idle = fork_idle(cpu);
907
908 if (!IS_ERR(idle))
909 cpu_idle_tasks[cpu] = idle;
910 return idle;
911 }
912 #else
913 #define alloc_idle_task(cpu) fork_idle(cpu)
914 #endif
915
916 static int __devinit do_boot_cpu(int apicid, int cpu)
917 /*
918 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
919 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
920 * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu.
921 */
922 {
923 struct task_struct *idle;
924 unsigned long boot_error;
925 int timeout;
926 unsigned long start_eip;
927 unsigned short nmi_high = 0, nmi_low = 0;
928
929 ++cpucount;
930 alternatives_smp_switch(1);
931
932 /*
933 * We can't use kernel_thread since we must avoid to
934 * reschedule the child.
935 */
936 idle = alloc_idle_task(cpu);
937 if (IS_ERR(idle))
938 panic("failed fork for CPU %d", cpu);
939 idle->thread.eip = (unsigned long) start_secondary;
940 /* start_eip had better be page-aligned! */
941 start_eip = setup_trampoline();
942
943 /* So we see what's up */
944 printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip);
945 /* Stack for startup_32 can be just as for start_secondary onwards */
946 stack_start.esp = (void *) idle->thread.esp;
947
948 irq_ctx_init(cpu);
949
950 /*
951 * This grunge runs the startup process for
952 * the targeted processor.
953 */
954
955 atomic_set(&init_deasserted, 0);
956
957 Dprintk("Setting warm reset code and vector.\n");
958
959 store_NMI_vector(&nmi_high, &nmi_low);
960
961 smpboot_setup_warm_reset_vector(start_eip);
962
963 /*
964 * Starting actual IPI sequence...
965 */
966 boot_error = wakeup_secondary_cpu(apicid, start_eip);
967
968 if (!boot_error) {
969 /*
970 * allow APs to start initializing.
971 */
972 Dprintk("Before Callout %d.\n", cpu);
973 cpu_set(cpu, cpu_callout_map);
974 Dprintk("After Callout %d.\n", cpu);
975
976 /*
977 * Wait 5s total for a response
978 */
979 for (timeout = 0; timeout < 50000; timeout++) {
980 if (cpu_isset(cpu, cpu_callin_map))
981 break; /* It has booted */
982 udelay(100);
983 }
984
985 if (cpu_isset(cpu, cpu_callin_map)) {
986 /* number CPUs logically, starting from 1 (BSP is 0) */
987 Dprintk("OK.\n");
988 printk("CPU%d: ", cpu);
989 print_cpu_info(&cpu_data[cpu]);
990 Dprintk("CPU has booted.\n");
991 } else {
992 boot_error= 1;
993 if (*((volatile unsigned char *)trampoline_base)
994 == 0xA5)
995 /* trampoline started but...? */
996 printk("Stuck ??\n");
997 else
998 /* trampoline code not run */
999 printk("Not responding.\n");
1000 inquire_remote_apic(apicid);
1001 }
1002 }
1003
1004 if (boot_error) {
1005 /* Try to put things back the way they were before ... */
1006 unmap_cpu_to_logical_apicid(cpu);
1007 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
1008 cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */
1009 cpucount--;
1010 } else {
1011 x86_cpu_to_apicid[cpu] = apicid;
1012 cpu_set(cpu, cpu_present_map);
1013 }
1014
1015 /* mark "stuck" area as not stuck */
1016 *((volatile unsigned long *)trampoline_base) = 0;
1017
1018 return boot_error;
1019 }
1020
1021 #ifdef CONFIG_HOTPLUG_CPU
1022 void cpu_exit_clear(void)
1023 {
1024 int cpu = raw_smp_processor_id();
1025
1026 idle_task_exit();
1027
1028 cpucount --;
1029 cpu_uninit();
1030 irq_ctx_exit(cpu);
1031
1032 cpu_clear(cpu, cpu_callout_map);
1033 cpu_clear(cpu, cpu_callin_map);
1034
1035 cpu_clear(cpu, smp_commenced_mask);
1036 unmap_cpu_to_logical_apicid(cpu);
1037 }
1038
1039 struct warm_boot_cpu_info {
1040 struct completion *complete;
1041 int apicid;
1042 int cpu;
1043 };
1044
1045 static void __cpuinit do_warm_boot_cpu(void *p)
1046 {
1047 struct warm_boot_cpu_info *info = p;
1048 do_boot_cpu(info->apicid, info->cpu);
1049 complete(info->complete);
1050 }
1051
1052 static int __cpuinit __smp_prepare_cpu(int cpu)
1053 {
1054 DECLARE_COMPLETION(done);
1055 struct warm_boot_cpu_info info;
1056 struct work_struct task;
1057 int apicid, ret;
1058 struct Xgt_desc_struct *cpu_gdt_descr = &per_cpu(cpu_gdt_descr, cpu);
1059
1060 apicid = x86_cpu_to_apicid[cpu];
1061 if (apicid == BAD_APICID) {
1062 ret = -ENODEV;
1063 goto exit;
1064 }
1065
1066 /*
1067 * the CPU isn't initialized at boot time, allocate gdt table here.
1068 * cpu_init will initialize it
1069 */
1070 if (!cpu_gdt_descr->address) {
1071 cpu_gdt_descr->address = get_zeroed_page(GFP_KERNEL);
1072 if (!cpu_gdt_descr->address)
1073 printk(KERN_CRIT "CPU%d failed to allocate GDT\n", cpu);
1074 ret = -ENOMEM;
1075 goto exit;
1076 }
1077
1078 info.complete = &done;
1079 info.apicid = apicid;
1080 info.cpu = cpu;
1081 INIT_WORK(&task, do_warm_boot_cpu, &info);
1082
1083 tsc_sync_disabled = 1;
1084
1085 /* init low mem mapping */
1086 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
1087 KERNEL_PGD_PTRS);
1088 flush_tlb_all();
1089 schedule_work(&task);
1090 wait_for_completion(&done);
1091
1092 tsc_sync_disabled = 0;
1093 zap_low_mappings();
1094 ret = 0;
1095 exit:
1096 return ret;
1097 }
1098 #endif
1099
1100 static void smp_tune_scheduling (void)
1101 {
1102 unsigned long cachesize; /* kB */
1103 unsigned long bandwidth = 350; /* MB/s */
1104 /*
1105 * Rough estimation for SMP scheduling, this is the number of
1106 * cycles it takes for a fully memory-limited process to flush
1107 * the SMP-local cache.
1108 *
1109 * (For a P5 this pretty much means we will choose another idle
1110 * CPU almost always at wakeup time (this is due to the small
1111 * L1 cache), on PIIs it's around 50-100 usecs, depending on
1112 * the cache size)
1113 */
1114
1115 if (!cpu_khz) {
1116 /*
1117 * this basically disables processor-affinity
1118 * scheduling on SMP without a TSC.
1119 */
1120 return;
1121 } else {
1122 cachesize = boot_cpu_data.x86_cache_size;
1123 if (cachesize == -1) {
1124 cachesize = 16; /* Pentiums, 2x8kB cache */
1125 bandwidth = 100;
1126 }
1127 max_cache_size = cachesize * 1024;
1128 }
1129 }
1130
1131 /*
1132 * Cycle through the processors sending APIC IPIs to boot each.
1133 */
1134
1135 static int boot_cpu_logical_apicid;
1136 /* Where the IO area was mapped on multiquad, always 0 otherwise */
1137 void *xquad_portio;
1138 #ifdef CONFIG_X86_NUMAQ
1139 EXPORT_SYMBOL(xquad_portio);
1140 #endif
1141
1142 static void __init smp_boot_cpus(unsigned int max_cpus)
1143 {
1144 int apicid, cpu, bit, kicked;
1145 unsigned long bogosum = 0;
1146
1147 /*
1148 * Setup boot CPU information
1149 */
1150 smp_store_cpu_info(0); /* Final full version of the data */
1151 printk("CPU%d: ", 0);
1152 print_cpu_info(&cpu_data[0]);
1153
1154 boot_cpu_physical_apicid = GET_APIC_ID(apic_read(APIC_ID));
1155 boot_cpu_logical_apicid = logical_smp_processor_id();
1156 x86_cpu_to_apicid[0] = boot_cpu_physical_apicid;
1157
1158 current_thread_info()->cpu = 0;
1159 smp_tune_scheduling();
1160
1161 set_cpu_sibling_map(0);
1162
1163 /*
1164 * If we couldn't find an SMP configuration at boot time,
1165 * get out of here now!
1166 */
1167 if (!smp_found_config && !acpi_lapic) {
1168 printk(KERN_NOTICE "SMP motherboard not detected.\n");
1169 smpboot_clear_io_apic_irqs();
1170 phys_cpu_present_map = physid_mask_of_physid(0);
1171 if (APIC_init_uniprocessor())
1172 printk(KERN_NOTICE "Local APIC not detected."
1173 " Using dummy APIC emulation.\n");
1174 map_cpu_to_logical_apicid();
1175 cpu_set(0, cpu_sibling_map[0]);
1176 cpu_set(0, cpu_core_map[0]);
1177 return;
1178 }
1179
1180 /*
1181 * Should not be necessary because the MP table should list the boot
1182 * CPU too, but we do it for the sake of robustness anyway.
1183 * Makes no sense to do this check in clustered apic mode, so skip it
1184 */
1185 if (!check_phys_apicid_present(boot_cpu_physical_apicid)) {
1186 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
1187 boot_cpu_physical_apicid);
1188 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1189 }
1190
1191 /*
1192 * If we couldn't find a local APIC, then get out of here now!
1193 */
1194 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && !cpu_has_apic) {
1195 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1196 boot_cpu_physical_apicid);
1197 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1198 smpboot_clear_io_apic_irqs();
1199 phys_cpu_present_map = physid_mask_of_physid(0);
1200 cpu_set(0, cpu_sibling_map[0]);
1201 cpu_set(0, cpu_core_map[0]);
1202 return;
1203 }
1204
1205 verify_local_APIC();
1206
1207 /*
1208 * If SMP should be disabled, then really disable it!
1209 */
1210 if (!max_cpus) {
1211 smp_found_config = 0;
1212 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1213 smpboot_clear_io_apic_irqs();
1214 phys_cpu_present_map = physid_mask_of_physid(0);
1215 cpu_set(0, cpu_sibling_map[0]);
1216 cpu_set(0, cpu_core_map[0]);
1217 return;
1218 }
1219
1220 connect_bsp_APIC();
1221 setup_local_APIC();
1222 map_cpu_to_logical_apicid();
1223
1224
1225 setup_portio_remap();
1226
1227 /*
1228 * Scan the CPU present map and fire up the other CPUs via do_boot_cpu
1229 *
1230 * In clustered apic mode, phys_cpu_present_map is a constructed thus:
1231 * bits 0-3 are quad0, 4-7 are quad1, etc. A perverse twist on the
1232 * clustered apic ID.
1233 */
1234 Dprintk("CPU present map: %lx\n", physids_coerce(phys_cpu_present_map));
1235
1236 kicked = 1;
1237 for (bit = 0; kicked < NR_CPUS && bit < MAX_APICS; bit++) {
1238 apicid = cpu_present_to_apicid(bit);
1239 /*
1240 * Don't even attempt to start the boot CPU!
1241 */
1242 if ((apicid == boot_cpu_apicid) || (apicid == BAD_APICID))
1243 continue;
1244
1245 if (!check_apicid_present(bit))
1246 continue;
1247 if (max_cpus <= cpucount+1)
1248 continue;
1249
1250 if (((cpu = alloc_cpu_id()) <= 0) || do_boot_cpu(apicid, cpu))
1251 printk("CPU #%d not responding - cannot use it.\n",
1252 apicid);
1253 else
1254 ++kicked;
1255 }
1256
1257 /*
1258 * Cleanup possible dangling ends...
1259 */
1260 smpboot_restore_warm_reset_vector();
1261
1262 /*
1263 * Allow the user to impress friends.
1264 */
1265 Dprintk("Before bogomips.\n");
1266 for (cpu = 0; cpu < NR_CPUS; cpu++)
1267 if (cpu_isset(cpu, cpu_callout_map))
1268 bogosum += cpu_data[cpu].loops_per_jiffy;
1269 printk(KERN_INFO
1270 "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
1271 cpucount+1,
1272 bogosum/(500000/HZ),
1273 (bogosum/(5000/HZ))%100);
1274
1275 Dprintk("Before bogocount - setting activated=1.\n");
1276
1277 if (smp_b_stepping)
1278 printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n");
1279
1280 /*
1281 * Don't taint if we are running SMP kernel on a single non-MP
1282 * approved Athlon
1283 */
1284 if (tainted & TAINT_UNSAFE_SMP) {
1285 if (cpucount)
1286 printk (KERN_INFO "WARNING: This combination of AMD processors is not suitable for SMP.\n");
1287 else
1288 tainted &= ~TAINT_UNSAFE_SMP;
1289 }
1290
1291 Dprintk("Boot done.\n");
1292
1293 /*
1294 * construct cpu_sibling_map[], so that we can tell sibling CPUs
1295 * efficiently.
1296 */
1297 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1298 cpus_clear(cpu_sibling_map[cpu]);
1299 cpus_clear(cpu_core_map[cpu]);
1300 }
1301
1302 cpu_set(0, cpu_sibling_map[0]);
1303 cpu_set(0, cpu_core_map[0]);
1304
1305 smpboot_setup_io_apic();
1306
1307 setup_boot_APIC_clock();
1308
1309 /*
1310 * Synchronize the TSC with the AP
1311 */
1312 if (cpu_has_tsc && cpucount && cpu_khz)
1313 synchronize_tsc_bp();
1314 }
1315
1316 /* These are wrappers to interface to the new boot process. Someone
1317 who understands all this stuff should rewrite it properly. --RR 15/Jul/02 */
1318 void __init smp_prepare_cpus(unsigned int max_cpus)
1319 {
1320 smp_commenced_mask = cpumask_of_cpu(0);
1321 cpu_callin_map = cpumask_of_cpu(0);
1322 mb();
1323 smp_boot_cpus(max_cpus);
1324 }
1325
1326 void __devinit smp_prepare_boot_cpu(void)
1327 {
1328 cpu_set(smp_processor_id(), cpu_online_map);
1329 cpu_set(smp_processor_id(), cpu_callout_map);
1330 cpu_set(smp_processor_id(), cpu_present_map);
1331 cpu_set(smp_processor_id(), cpu_possible_map);
1332 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
1333 }
1334
1335 #ifdef CONFIG_HOTPLUG_CPU
1336 static void
1337 remove_siblinginfo(int cpu)
1338 {
1339 int sibling;
1340 struct cpuinfo_x86 *c = cpu_data;
1341
1342 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1343 cpu_clear(cpu, cpu_core_map[sibling]);
1344 /*
1345 * last thread sibling in this cpu core going down
1346 */
1347 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1348 c[sibling].booted_cores--;
1349 }
1350
1351 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1352 cpu_clear(cpu, cpu_sibling_map[sibling]);
1353 cpus_clear(cpu_sibling_map[cpu]);
1354 cpus_clear(cpu_core_map[cpu]);
1355 c[cpu].phys_proc_id = 0;
1356 c[cpu].cpu_core_id = 0;
1357 cpu_clear(cpu, cpu_sibling_setup_map);
1358 }
1359
1360 int __cpu_disable(void)
1361 {
1362 cpumask_t map = cpu_online_map;
1363 int cpu = smp_processor_id();
1364
1365 /*
1366 * Perhaps use cpufreq to drop frequency, but that could go
1367 * into generic code.
1368 *
1369 * We won't take down the boot processor on i386 due to some
1370 * interrupts only being able to be serviced by the BSP.
1371 * Especially so if we're not using an IOAPIC -zwane
1372 */
1373 if (cpu == 0)
1374 return -EBUSY;
1375
1376 clear_local_APIC();
1377 /* Allow any queued timer interrupts to get serviced */
1378 local_irq_enable();
1379 mdelay(1);
1380 local_irq_disable();
1381
1382 remove_siblinginfo(cpu);
1383
1384 cpu_clear(cpu, map);
1385 fixup_irqs(map);
1386 /* It's now safe to remove this processor from the online map */
1387 cpu_clear(cpu, cpu_online_map);
1388 return 0;
1389 }
1390
1391 void __cpu_die(unsigned int cpu)
1392 {
1393 /* We don't do anything here: idle task is faking death itself. */
1394 unsigned int i;
1395
1396 for (i = 0; i < 10; i++) {
1397 /* They ack this in play_dead by setting CPU_DEAD */
1398 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1399 printk ("CPU %d is now offline\n", cpu);
1400 if (1 == num_online_cpus())
1401 alternatives_smp_switch(0);
1402 return;
1403 }
1404 msleep(100);
1405 }
1406 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1407 }
1408 #else /* ... !CONFIG_HOTPLUG_CPU */
1409 int __cpu_disable(void)
1410 {
1411 return -ENOSYS;
1412 }
1413
1414 void __cpu_die(unsigned int cpu)
1415 {
1416 /* We said "no" in __cpu_disable */
1417 BUG();
1418 }
1419 #endif /* CONFIG_HOTPLUG_CPU */
1420
1421 int __devinit __cpu_up(unsigned int cpu)
1422 {
1423 #ifdef CONFIG_HOTPLUG_CPU
1424 int ret=0;
1425
1426 /*
1427 * We do warm boot only on cpus that had booted earlier
1428 * Otherwise cold boot is all handled from smp_boot_cpus().
1429 * cpu_callin_map is set during AP kickstart process. Its reset
1430 * when a cpu is taken offline from cpu_exit_clear().
1431 */
1432 if (!cpu_isset(cpu, cpu_callin_map))
1433 ret = __smp_prepare_cpu(cpu);
1434
1435 if (ret)
1436 return -EIO;
1437 #endif
1438
1439 /* In case one didn't come up */
1440 if (!cpu_isset(cpu, cpu_callin_map)) {
1441 printk(KERN_DEBUG "skipping cpu%d, didn't come online\n", cpu);
1442 local_irq_enable();
1443 return -EIO;
1444 }
1445
1446 local_irq_enable();
1447 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1448 /* Unleash the CPU! */
1449 cpu_set(cpu, smp_commenced_mask);
1450 while (!cpu_isset(cpu, cpu_online_map))
1451 cpu_relax();
1452 return 0;
1453 }
1454
1455 void __init smp_cpus_done(unsigned int max_cpus)
1456 {
1457 #ifdef CONFIG_X86_IO_APIC
1458 setup_ioapic_dest();
1459 #endif
1460 zap_low_mappings();
1461 #ifndef CONFIG_HOTPLUG_CPU
1462 /*
1463 * Disable executability of the SMP trampoline:
1464 */
1465 set_kernel_exec((unsigned long)trampoline_base, trampoline_exec);
1466 #endif
1467 }
1468
1469 void __init smp_intr_init(void)
1470 {
1471 /*
1472 * IRQ0 must be given a fixed assignment and initialized,
1473 * because it's used before the IO-APIC is set up.
1474 */
1475 set_intr_gate(FIRST_DEVICE_VECTOR, interrupt[0]);
1476
1477 /*
1478 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
1479 * IPI, driven by wakeup.
1480 */
1481 set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
1482
1483 /* IPI for invalidation */
1484 set_intr_gate(INVALIDATE_TLB_VECTOR, invalidate_interrupt);
1485
1486 /* IPI for generic function call */
1487 set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
1488 }
This page took 0.060388 seconds and 6 git commands to generate.