Merge branch 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm
[deliverable/linux.git] / arch / i386 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 *
7 * Much of the core SMP work is based on previous work by Thomas Radke, to
8 * whom a great many thanks are extended.
9 *
10 * Thanks to Intel for making available several different Pentium,
11 * Pentium Pro and Pentium-II/Xeon MP machines.
12 * Original development of Linux SMP code supported by Caldera.
13 *
14 * This code is released under the GNU General Public License version 2 or
15 * later.
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process. */
35
36 #include <linux/module.h>
37 #include <linux/init.h>
38 #include <linux/kernel.h>
39
40 #include <linux/mm.h>
41 #include <linux/sched.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/smp_lock.h>
44 #include <linux/bootmem.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/percpu.h>
48
49 #include <linux/delay.h>
50 #include <linux/mc146818rtc.h>
51 #include <asm/tlbflush.h>
52 #include <asm/desc.h>
53 #include <asm/arch_hooks.h>
54 #include <asm/nmi.h>
55
56 #include <mach_apic.h>
57 #include <mach_wakecpu.h>
58 #include <smpboot_hooks.h>
59
60 /* Set if we find a B stepping CPU */
61 static int __devinitdata smp_b_stepping;
62
63 /* Number of siblings per CPU package */
64 int smp_num_siblings = 1;
65 #ifdef CONFIG_X86_HT
66 EXPORT_SYMBOL(smp_num_siblings);
67 #endif
68
69 /* Last level cache ID of each logical CPU */
70 int cpu_llc_id[NR_CPUS] __cpuinitdata = {[0 ... NR_CPUS-1] = BAD_APICID};
71
72 /* representing HT siblings of each logical CPU */
73 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
74 EXPORT_SYMBOL(cpu_sibling_map);
75
76 /* representing HT and core siblings of each logical CPU */
77 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
78 EXPORT_SYMBOL(cpu_core_map);
79
80 /* bitmap of online cpus */
81 cpumask_t cpu_online_map __read_mostly;
82 EXPORT_SYMBOL(cpu_online_map);
83
84 cpumask_t cpu_callin_map;
85 cpumask_t cpu_callout_map;
86 EXPORT_SYMBOL(cpu_callout_map);
87 cpumask_t cpu_possible_map;
88 EXPORT_SYMBOL(cpu_possible_map);
89 static cpumask_t smp_commenced_mask;
90
91 /* TSC's upper 32 bits can't be written in eariler CPU (before prescott), there
92 * is no way to resync one AP against BP. TBD: for prescott and above, we
93 * should use IA64's algorithm
94 */
95 static int __devinitdata tsc_sync_disabled;
96
97 /* Per CPU bogomips and other parameters */
98 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
99 EXPORT_SYMBOL(cpu_data);
100
101 u8 x86_cpu_to_apicid[NR_CPUS] __read_mostly =
102 { [0 ... NR_CPUS-1] = 0xff };
103 EXPORT_SYMBOL(x86_cpu_to_apicid);
104
105 /*
106 * Trampoline 80x86 program as an array.
107 */
108
109 extern unsigned char trampoline_data [];
110 extern unsigned char trampoline_end [];
111 static unsigned char *trampoline_base;
112 static int trampoline_exec;
113
114 static void map_cpu_to_logical_apicid(void);
115
116 /* State of each CPU. */
117 DEFINE_PER_CPU(int, cpu_state) = { 0 };
118
119 /*
120 * Currently trivial. Write the real->protected mode
121 * bootstrap into the page concerned. The caller
122 * has made sure it's suitably aligned.
123 */
124
125 static unsigned long __devinit setup_trampoline(void)
126 {
127 memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data);
128 return virt_to_phys(trampoline_base);
129 }
130
131 /*
132 * We are called very early to get the low memory for the
133 * SMP bootup trampoline page.
134 */
135 void __init smp_alloc_memory(void)
136 {
137 trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE);
138 /*
139 * Has to be in very low memory so we can execute
140 * real-mode AP code.
141 */
142 if (__pa(trampoline_base) >= 0x9F000)
143 BUG();
144 /*
145 * Make the SMP trampoline executable:
146 */
147 trampoline_exec = set_kernel_exec((unsigned long)trampoline_base, 1);
148 }
149
150 /*
151 * The bootstrap kernel entry code has set these up. Save them for
152 * a given CPU
153 */
154
155 static void __devinit smp_store_cpu_info(int id)
156 {
157 struct cpuinfo_x86 *c = cpu_data + id;
158
159 *c = boot_cpu_data;
160 if (id!=0)
161 identify_cpu(c);
162 /*
163 * Mask B, Pentium, but not Pentium MMX
164 */
165 if (c->x86_vendor == X86_VENDOR_INTEL &&
166 c->x86 == 5 &&
167 c->x86_mask >= 1 && c->x86_mask <= 4 &&
168 c->x86_model <= 3)
169 /*
170 * Remember we have B step Pentia with bugs
171 */
172 smp_b_stepping = 1;
173
174 /*
175 * Certain Athlons might work (for various values of 'work') in SMP
176 * but they are not certified as MP capable.
177 */
178 if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) {
179
180 if (num_possible_cpus() == 1)
181 goto valid_k7;
182
183 /* Athlon 660/661 is valid. */
184 if ((c->x86_model==6) && ((c->x86_mask==0) || (c->x86_mask==1)))
185 goto valid_k7;
186
187 /* Duron 670 is valid */
188 if ((c->x86_model==7) && (c->x86_mask==0))
189 goto valid_k7;
190
191 /*
192 * Athlon 662, Duron 671, and Athlon >model 7 have capability bit.
193 * It's worth noting that the A5 stepping (662) of some Athlon XP's
194 * have the MP bit set.
195 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for more.
196 */
197 if (((c->x86_model==6) && (c->x86_mask>=2)) ||
198 ((c->x86_model==7) && (c->x86_mask>=1)) ||
199 (c->x86_model> 7))
200 if (cpu_has_mp)
201 goto valid_k7;
202
203 /* If we get here, it's not a certified SMP capable AMD system. */
204 add_taint(TAINT_UNSAFE_SMP);
205 }
206
207 valid_k7:
208 ;
209 }
210
211 /*
212 * TSC synchronization.
213 *
214 * We first check whether all CPUs have their TSC's synchronized,
215 * then we print a warning if not, and always resync.
216 */
217
218 static struct {
219 atomic_t start_flag;
220 atomic_t count_start;
221 atomic_t count_stop;
222 unsigned long long values[NR_CPUS];
223 } tsc __initdata = {
224 .start_flag = ATOMIC_INIT(0),
225 .count_start = ATOMIC_INIT(0),
226 .count_stop = ATOMIC_INIT(0),
227 };
228
229 #define NR_LOOPS 5
230
231 static void __init synchronize_tsc_bp(void)
232 {
233 int i;
234 unsigned long long t0;
235 unsigned long long sum, avg;
236 long long delta;
237 unsigned int one_usec;
238 int buggy = 0;
239
240 printk(KERN_INFO "checking TSC synchronization across %u CPUs: ", num_booting_cpus());
241
242 /* convert from kcyc/sec to cyc/usec */
243 one_usec = cpu_khz / 1000;
244
245 atomic_set(&tsc.start_flag, 1);
246 wmb();
247
248 /*
249 * We loop a few times to get a primed instruction cache,
250 * then the last pass is more or less synchronized and
251 * the BP and APs set their cycle counters to zero all at
252 * once. This reduces the chance of having random offsets
253 * between the processors, and guarantees that the maximum
254 * delay between the cycle counters is never bigger than
255 * the latency of information-passing (cachelines) between
256 * two CPUs.
257 */
258 for (i = 0; i < NR_LOOPS; i++) {
259 /*
260 * all APs synchronize but they loop on '== num_cpus'
261 */
262 while (atomic_read(&tsc.count_start) != num_booting_cpus()-1)
263 cpu_relax();
264 atomic_set(&tsc.count_stop, 0);
265 wmb();
266 /*
267 * this lets the APs save their current TSC:
268 */
269 atomic_inc(&tsc.count_start);
270
271 rdtscll(tsc.values[smp_processor_id()]);
272 /*
273 * We clear the TSC in the last loop:
274 */
275 if (i == NR_LOOPS-1)
276 write_tsc(0, 0);
277
278 /*
279 * Wait for all APs to leave the synchronization point:
280 */
281 while (atomic_read(&tsc.count_stop) != num_booting_cpus()-1)
282 cpu_relax();
283 atomic_set(&tsc.count_start, 0);
284 wmb();
285 atomic_inc(&tsc.count_stop);
286 }
287
288 sum = 0;
289 for (i = 0; i < NR_CPUS; i++) {
290 if (cpu_isset(i, cpu_callout_map)) {
291 t0 = tsc.values[i];
292 sum += t0;
293 }
294 }
295 avg = sum;
296 do_div(avg, num_booting_cpus());
297
298 for (i = 0; i < NR_CPUS; i++) {
299 if (!cpu_isset(i, cpu_callout_map))
300 continue;
301 delta = tsc.values[i] - avg;
302 if (delta < 0)
303 delta = -delta;
304 /*
305 * We report bigger than 2 microseconds clock differences.
306 */
307 if (delta > 2*one_usec) {
308 long long realdelta;
309
310 if (!buggy) {
311 buggy = 1;
312 printk("\n");
313 }
314 realdelta = delta;
315 do_div(realdelta, one_usec);
316 if (tsc.values[i] < avg)
317 realdelta = -realdelta;
318
319 if (realdelta)
320 printk(KERN_INFO "CPU#%d had %Ld usecs TSC "
321 "skew, fixed it up.\n", i, realdelta);
322 }
323 }
324 if (!buggy)
325 printk("passed.\n");
326 }
327
328 static void __init synchronize_tsc_ap(void)
329 {
330 int i;
331
332 /*
333 * Not every cpu is online at the time
334 * this gets called, so we first wait for the BP to
335 * finish SMP initialization:
336 */
337 while (!atomic_read(&tsc.start_flag))
338 cpu_relax();
339
340 for (i = 0; i < NR_LOOPS; i++) {
341 atomic_inc(&tsc.count_start);
342 while (atomic_read(&tsc.count_start) != num_booting_cpus())
343 cpu_relax();
344
345 rdtscll(tsc.values[smp_processor_id()]);
346 if (i == NR_LOOPS-1)
347 write_tsc(0, 0);
348
349 atomic_inc(&tsc.count_stop);
350 while (atomic_read(&tsc.count_stop) != num_booting_cpus())
351 cpu_relax();
352 }
353 }
354 #undef NR_LOOPS
355
356 extern void calibrate_delay(void);
357
358 static atomic_t init_deasserted;
359
360 static void __devinit smp_callin(void)
361 {
362 int cpuid, phys_id;
363 unsigned long timeout;
364
365 /*
366 * If waken up by an INIT in an 82489DX configuration
367 * we may get here before an INIT-deassert IPI reaches
368 * our local APIC. We have to wait for the IPI or we'll
369 * lock up on an APIC access.
370 */
371 wait_for_init_deassert(&init_deasserted);
372
373 /*
374 * (This works even if the APIC is not enabled.)
375 */
376 phys_id = GET_APIC_ID(apic_read(APIC_ID));
377 cpuid = smp_processor_id();
378 if (cpu_isset(cpuid, cpu_callin_map)) {
379 printk("huh, phys CPU#%d, CPU#%d already present??\n",
380 phys_id, cpuid);
381 BUG();
382 }
383 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
384
385 /*
386 * STARTUP IPIs are fragile beasts as they might sometimes
387 * trigger some glue motherboard logic. Complete APIC bus
388 * silence for 1 second, this overestimates the time the
389 * boot CPU is spending to send the up to 2 STARTUP IPIs
390 * by a factor of two. This should be enough.
391 */
392
393 /*
394 * Waiting 2s total for startup (udelay is not yet working)
395 */
396 timeout = jiffies + 2*HZ;
397 while (time_before(jiffies, timeout)) {
398 /*
399 * Has the boot CPU finished it's STARTUP sequence?
400 */
401 if (cpu_isset(cpuid, cpu_callout_map))
402 break;
403 rep_nop();
404 }
405
406 if (!time_before(jiffies, timeout)) {
407 printk("BUG: CPU%d started up but did not get a callout!\n",
408 cpuid);
409 BUG();
410 }
411
412 /*
413 * the boot CPU has finished the init stage and is spinning
414 * on callin_map until we finish. We are free to set up this
415 * CPU, first the APIC. (this is probably redundant on most
416 * boards)
417 */
418
419 Dprintk("CALLIN, before setup_local_APIC().\n");
420 smp_callin_clear_local_apic();
421 setup_local_APIC();
422 map_cpu_to_logical_apicid();
423
424 /*
425 * Get our bogomips.
426 */
427 calibrate_delay();
428 Dprintk("Stack at about %p\n",&cpuid);
429
430 /*
431 * Save our processor parameters
432 */
433 smp_store_cpu_info(cpuid);
434
435 disable_APIC_timer();
436
437 /*
438 * Allow the master to continue.
439 */
440 cpu_set(cpuid, cpu_callin_map);
441
442 /*
443 * Synchronize the TSC with the BP
444 */
445 if (cpu_has_tsc && cpu_khz && !tsc_sync_disabled)
446 synchronize_tsc_ap();
447 }
448
449 static int cpucount;
450
451 /* maps the cpu to the sched domain representing multi-core */
452 cpumask_t cpu_coregroup_map(int cpu)
453 {
454 struct cpuinfo_x86 *c = cpu_data + cpu;
455 /*
456 * For perf, we return last level cache shared map.
457 * And for power savings, we return cpu_core_map
458 */
459 if (sched_mc_power_savings || sched_smt_power_savings)
460 return cpu_core_map[cpu];
461 else
462 return c->llc_shared_map;
463 }
464
465 /* representing cpus for which sibling maps can be computed */
466 static cpumask_t cpu_sibling_setup_map;
467
468 static inline void
469 set_cpu_sibling_map(int cpu)
470 {
471 int i;
472 struct cpuinfo_x86 *c = cpu_data;
473
474 cpu_set(cpu, cpu_sibling_setup_map);
475
476 if (smp_num_siblings > 1) {
477 for_each_cpu_mask(i, cpu_sibling_setup_map) {
478 if (c[cpu].phys_proc_id == c[i].phys_proc_id &&
479 c[cpu].cpu_core_id == c[i].cpu_core_id) {
480 cpu_set(i, cpu_sibling_map[cpu]);
481 cpu_set(cpu, cpu_sibling_map[i]);
482 cpu_set(i, cpu_core_map[cpu]);
483 cpu_set(cpu, cpu_core_map[i]);
484 cpu_set(i, c[cpu].llc_shared_map);
485 cpu_set(cpu, c[i].llc_shared_map);
486 }
487 }
488 } else {
489 cpu_set(cpu, cpu_sibling_map[cpu]);
490 }
491
492 cpu_set(cpu, c[cpu].llc_shared_map);
493
494 if (current_cpu_data.x86_max_cores == 1) {
495 cpu_core_map[cpu] = cpu_sibling_map[cpu];
496 c[cpu].booted_cores = 1;
497 return;
498 }
499
500 for_each_cpu_mask(i, cpu_sibling_setup_map) {
501 if (cpu_llc_id[cpu] != BAD_APICID &&
502 cpu_llc_id[cpu] == cpu_llc_id[i]) {
503 cpu_set(i, c[cpu].llc_shared_map);
504 cpu_set(cpu, c[i].llc_shared_map);
505 }
506 if (c[cpu].phys_proc_id == c[i].phys_proc_id) {
507 cpu_set(i, cpu_core_map[cpu]);
508 cpu_set(cpu, cpu_core_map[i]);
509 /*
510 * Does this new cpu bringup a new core?
511 */
512 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
513 /*
514 * for each core in package, increment
515 * the booted_cores for this new cpu
516 */
517 if (first_cpu(cpu_sibling_map[i]) == i)
518 c[cpu].booted_cores++;
519 /*
520 * increment the core count for all
521 * the other cpus in this package
522 */
523 if (i != cpu)
524 c[i].booted_cores++;
525 } else if (i != cpu && !c[cpu].booted_cores)
526 c[cpu].booted_cores = c[i].booted_cores;
527 }
528 }
529 }
530
531 /*
532 * Activate a secondary processor.
533 */
534 static void __devinit start_secondary(void *unused)
535 {
536 /*
537 * Dont put anything before smp_callin(), SMP
538 * booting is too fragile that we want to limit the
539 * things done here to the most necessary things.
540 */
541 cpu_init();
542 preempt_disable();
543 smp_callin();
544 while (!cpu_isset(smp_processor_id(), smp_commenced_mask))
545 rep_nop();
546 setup_secondary_APIC_clock();
547 if (nmi_watchdog == NMI_IO_APIC) {
548 disable_8259A_irq(0);
549 enable_NMI_through_LVT0(NULL);
550 enable_8259A_irq(0);
551 }
552 enable_APIC_timer();
553 /*
554 * low-memory mappings have been cleared, flush them from
555 * the local TLBs too.
556 */
557 local_flush_tlb();
558
559 /* This must be done before setting cpu_online_map */
560 set_cpu_sibling_map(raw_smp_processor_id());
561 wmb();
562
563 /*
564 * We need to hold call_lock, so there is no inconsistency
565 * between the time smp_call_function() determines number of
566 * IPI receipients, and the time when the determination is made
567 * for which cpus receive the IPI. Holding this
568 * lock helps us to not include this cpu in a currently in progress
569 * smp_call_function().
570 */
571 lock_ipi_call_lock();
572 cpu_set(smp_processor_id(), cpu_online_map);
573 unlock_ipi_call_lock();
574 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
575
576 /* We can take interrupts now: we're officially "up". */
577 local_irq_enable();
578
579 wmb();
580 cpu_idle();
581 }
582
583 /*
584 * Everything has been set up for the secondary
585 * CPUs - they just need to reload everything
586 * from the task structure
587 * This function must not return.
588 */
589 void __devinit initialize_secondary(void)
590 {
591 /*
592 * We don't actually need to load the full TSS,
593 * basically just the stack pointer and the eip.
594 */
595
596 asm volatile(
597 "movl %0,%%esp\n\t"
598 "jmp *%1"
599 :
600 :"r" (current->thread.esp),"r" (current->thread.eip));
601 }
602
603 extern struct {
604 void * esp;
605 unsigned short ss;
606 } stack_start;
607
608 #ifdef CONFIG_NUMA
609
610 /* which logical CPUs are on which nodes */
611 cpumask_t node_2_cpu_mask[MAX_NUMNODES] __read_mostly =
612 { [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE };
613 /* which node each logical CPU is on */
614 int cpu_2_node[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 };
615 EXPORT_SYMBOL(cpu_2_node);
616
617 /* set up a mapping between cpu and node. */
618 static inline void map_cpu_to_node(int cpu, int node)
619 {
620 printk("Mapping cpu %d to node %d\n", cpu, node);
621 cpu_set(cpu, node_2_cpu_mask[node]);
622 cpu_2_node[cpu] = node;
623 }
624
625 /* undo a mapping between cpu and node. */
626 static inline void unmap_cpu_to_node(int cpu)
627 {
628 int node;
629
630 printk("Unmapping cpu %d from all nodes\n", cpu);
631 for (node = 0; node < MAX_NUMNODES; node ++)
632 cpu_clear(cpu, node_2_cpu_mask[node]);
633 cpu_2_node[cpu] = 0;
634 }
635 #else /* !CONFIG_NUMA */
636
637 #define map_cpu_to_node(cpu, node) ({})
638 #define unmap_cpu_to_node(cpu) ({})
639
640 #endif /* CONFIG_NUMA */
641
642 u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
643
644 static void map_cpu_to_logical_apicid(void)
645 {
646 int cpu = smp_processor_id();
647 int apicid = logical_smp_processor_id();
648 int node = apicid_to_node(apicid);
649
650 if (!node_online(node))
651 node = first_online_node;
652
653 cpu_2_logical_apicid[cpu] = apicid;
654 map_cpu_to_node(cpu, node);
655 }
656
657 static void unmap_cpu_to_logical_apicid(int cpu)
658 {
659 cpu_2_logical_apicid[cpu] = BAD_APICID;
660 unmap_cpu_to_node(cpu);
661 }
662
663 #if APIC_DEBUG
664 static inline void __inquire_remote_apic(int apicid)
665 {
666 int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
667 char *names[] = { "ID", "VERSION", "SPIV" };
668 int timeout, status;
669
670 printk("Inquiring remote APIC #%d...\n", apicid);
671
672 for (i = 0; i < ARRAY_SIZE(regs); i++) {
673 printk("... APIC #%d %s: ", apicid, names[i]);
674
675 /*
676 * Wait for idle.
677 */
678 apic_wait_icr_idle();
679
680 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
681 apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
682
683 timeout = 0;
684 do {
685 udelay(100);
686 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
687 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
688
689 switch (status) {
690 case APIC_ICR_RR_VALID:
691 status = apic_read(APIC_RRR);
692 printk("%08x\n", status);
693 break;
694 default:
695 printk("failed\n");
696 }
697 }
698 }
699 #endif
700
701 #ifdef WAKE_SECONDARY_VIA_NMI
702 /*
703 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
704 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
705 * won't ... remember to clear down the APIC, etc later.
706 */
707 static int __devinit
708 wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip)
709 {
710 unsigned long send_status = 0, accept_status = 0;
711 int timeout, maxlvt;
712
713 /* Target chip */
714 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid));
715
716 /* Boot on the stack */
717 /* Kick the second */
718 apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL);
719
720 Dprintk("Waiting for send to finish...\n");
721 timeout = 0;
722 do {
723 Dprintk("+");
724 udelay(100);
725 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
726 } while (send_status && (timeout++ < 1000));
727
728 /*
729 * Give the other CPU some time to accept the IPI.
730 */
731 udelay(200);
732 /*
733 * Due to the Pentium erratum 3AP.
734 */
735 maxlvt = get_maxlvt();
736 if (maxlvt > 3) {
737 apic_read_around(APIC_SPIV);
738 apic_write(APIC_ESR, 0);
739 }
740 accept_status = (apic_read(APIC_ESR) & 0xEF);
741 Dprintk("NMI sent.\n");
742
743 if (send_status)
744 printk("APIC never delivered???\n");
745 if (accept_status)
746 printk("APIC delivery error (%lx).\n", accept_status);
747
748 return (send_status | accept_status);
749 }
750 #endif /* WAKE_SECONDARY_VIA_NMI */
751
752 #ifdef WAKE_SECONDARY_VIA_INIT
753 static int __devinit
754 wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip)
755 {
756 unsigned long send_status = 0, accept_status = 0;
757 int maxlvt, timeout, num_starts, j;
758
759 /*
760 * Be paranoid about clearing APIC errors.
761 */
762 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
763 apic_read_around(APIC_SPIV);
764 apic_write(APIC_ESR, 0);
765 apic_read(APIC_ESR);
766 }
767
768 Dprintk("Asserting INIT.\n");
769
770 /*
771 * Turn INIT on target chip
772 */
773 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
774
775 /*
776 * Send IPI
777 */
778 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
779 | APIC_DM_INIT);
780
781 Dprintk("Waiting for send to finish...\n");
782 timeout = 0;
783 do {
784 Dprintk("+");
785 udelay(100);
786 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
787 } while (send_status && (timeout++ < 1000));
788
789 mdelay(10);
790
791 Dprintk("Deasserting INIT.\n");
792
793 /* Target chip */
794 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
795
796 /* Send IPI */
797 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
798
799 Dprintk("Waiting for send to finish...\n");
800 timeout = 0;
801 do {
802 Dprintk("+");
803 udelay(100);
804 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
805 } while (send_status && (timeout++ < 1000));
806
807 atomic_set(&init_deasserted, 1);
808
809 /*
810 * Should we send STARTUP IPIs ?
811 *
812 * Determine this based on the APIC version.
813 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
814 */
815 if (APIC_INTEGRATED(apic_version[phys_apicid]))
816 num_starts = 2;
817 else
818 num_starts = 0;
819
820 /*
821 * Run STARTUP IPI loop.
822 */
823 Dprintk("#startup loops: %d.\n", num_starts);
824
825 maxlvt = get_maxlvt();
826
827 for (j = 1; j <= num_starts; j++) {
828 Dprintk("Sending STARTUP #%d.\n",j);
829 apic_read_around(APIC_SPIV);
830 apic_write(APIC_ESR, 0);
831 apic_read(APIC_ESR);
832 Dprintk("After apic_write.\n");
833
834 /*
835 * STARTUP IPI
836 */
837
838 /* Target chip */
839 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
840
841 /* Boot on the stack */
842 /* Kick the second */
843 apic_write_around(APIC_ICR, APIC_DM_STARTUP
844 | (start_eip >> 12));
845
846 /*
847 * Give the other CPU some time to accept the IPI.
848 */
849 udelay(300);
850
851 Dprintk("Startup point 1.\n");
852
853 Dprintk("Waiting for send to finish...\n");
854 timeout = 0;
855 do {
856 Dprintk("+");
857 udelay(100);
858 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
859 } while (send_status && (timeout++ < 1000));
860
861 /*
862 * Give the other CPU some time to accept the IPI.
863 */
864 udelay(200);
865 /*
866 * Due to the Pentium erratum 3AP.
867 */
868 if (maxlvt > 3) {
869 apic_read_around(APIC_SPIV);
870 apic_write(APIC_ESR, 0);
871 }
872 accept_status = (apic_read(APIC_ESR) & 0xEF);
873 if (send_status || accept_status)
874 break;
875 }
876 Dprintk("After Startup.\n");
877
878 if (send_status)
879 printk("APIC never delivered???\n");
880 if (accept_status)
881 printk("APIC delivery error (%lx).\n", accept_status);
882
883 return (send_status | accept_status);
884 }
885 #endif /* WAKE_SECONDARY_VIA_INIT */
886
887 extern cpumask_t cpu_initialized;
888 static inline int alloc_cpu_id(void)
889 {
890 cpumask_t tmp_map;
891 int cpu;
892 cpus_complement(tmp_map, cpu_present_map);
893 cpu = first_cpu(tmp_map);
894 if (cpu >= NR_CPUS)
895 return -ENODEV;
896 return cpu;
897 }
898
899 #ifdef CONFIG_HOTPLUG_CPU
900 static struct task_struct * __devinitdata cpu_idle_tasks[NR_CPUS];
901 static inline struct task_struct * alloc_idle_task(int cpu)
902 {
903 struct task_struct *idle;
904
905 if ((idle = cpu_idle_tasks[cpu]) != NULL) {
906 /* initialize thread_struct. we really want to avoid destroy
907 * idle tread
908 */
909 idle->thread.esp = (unsigned long)task_pt_regs(idle);
910 init_idle(idle, cpu);
911 return idle;
912 }
913 idle = fork_idle(cpu);
914
915 if (!IS_ERR(idle))
916 cpu_idle_tasks[cpu] = idle;
917 return idle;
918 }
919 #else
920 #define alloc_idle_task(cpu) fork_idle(cpu)
921 #endif
922
923 static int __devinit do_boot_cpu(int apicid, int cpu)
924 /*
925 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
926 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
927 * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu.
928 */
929 {
930 struct task_struct *idle;
931 unsigned long boot_error;
932 int timeout;
933 unsigned long start_eip;
934 unsigned short nmi_high = 0, nmi_low = 0;
935
936 ++cpucount;
937 alternatives_smp_switch(1);
938
939 /*
940 * We can't use kernel_thread since we must avoid to
941 * reschedule the child.
942 */
943 idle = alloc_idle_task(cpu);
944 if (IS_ERR(idle))
945 panic("failed fork for CPU %d", cpu);
946 idle->thread.eip = (unsigned long) start_secondary;
947 /* start_eip had better be page-aligned! */
948 start_eip = setup_trampoline();
949
950 /* So we see what's up */
951 printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip);
952 /* Stack for startup_32 can be just as for start_secondary onwards */
953 stack_start.esp = (void *) idle->thread.esp;
954
955 irq_ctx_init(cpu);
956
957 /*
958 * This grunge runs the startup process for
959 * the targeted processor.
960 */
961
962 atomic_set(&init_deasserted, 0);
963
964 Dprintk("Setting warm reset code and vector.\n");
965
966 store_NMI_vector(&nmi_high, &nmi_low);
967
968 smpboot_setup_warm_reset_vector(start_eip);
969
970 /*
971 * Starting actual IPI sequence...
972 */
973 boot_error = wakeup_secondary_cpu(apicid, start_eip);
974
975 if (!boot_error) {
976 /*
977 * allow APs to start initializing.
978 */
979 Dprintk("Before Callout %d.\n", cpu);
980 cpu_set(cpu, cpu_callout_map);
981 Dprintk("After Callout %d.\n", cpu);
982
983 /*
984 * Wait 5s total for a response
985 */
986 for (timeout = 0; timeout < 50000; timeout++) {
987 if (cpu_isset(cpu, cpu_callin_map))
988 break; /* It has booted */
989 udelay(100);
990 }
991
992 if (cpu_isset(cpu, cpu_callin_map)) {
993 /* number CPUs logically, starting from 1 (BSP is 0) */
994 Dprintk("OK.\n");
995 printk("CPU%d: ", cpu);
996 print_cpu_info(&cpu_data[cpu]);
997 Dprintk("CPU has booted.\n");
998 } else {
999 boot_error= 1;
1000 if (*((volatile unsigned char *)trampoline_base)
1001 == 0xA5)
1002 /* trampoline started but...? */
1003 printk("Stuck ??\n");
1004 else
1005 /* trampoline code not run */
1006 printk("Not responding.\n");
1007 inquire_remote_apic(apicid);
1008 }
1009 }
1010
1011 if (boot_error) {
1012 /* Try to put things back the way they were before ... */
1013 unmap_cpu_to_logical_apicid(cpu);
1014 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
1015 cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */
1016 cpucount--;
1017 } else {
1018 x86_cpu_to_apicid[cpu] = apicid;
1019 cpu_set(cpu, cpu_present_map);
1020 }
1021
1022 /* mark "stuck" area as not stuck */
1023 *((volatile unsigned long *)trampoline_base) = 0;
1024
1025 return boot_error;
1026 }
1027
1028 #ifdef CONFIG_HOTPLUG_CPU
1029 void cpu_exit_clear(void)
1030 {
1031 int cpu = raw_smp_processor_id();
1032
1033 idle_task_exit();
1034
1035 cpucount --;
1036 cpu_uninit();
1037 irq_ctx_exit(cpu);
1038
1039 cpu_clear(cpu, cpu_callout_map);
1040 cpu_clear(cpu, cpu_callin_map);
1041
1042 cpu_clear(cpu, smp_commenced_mask);
1043 unmap_cpu_to_logical_apicid(cpu);
1044 }
1045
1046 struct warm_boot_cpu_info {
1047 struct completion *complete;
1048 int apicid;
1049 int cpu;
1050 };
1051
1052 static void __cpuinit do_warm_boot_cpu(void *p)
1053 {
1054 struct warm_boot_cpu_info *info = p;
1055 do_boot_cpu(info->apicid, info->cpu);
1056 complete(info->complete);
1057 }
1058
1059 static int __cpuinit __smp_prepare_cpu(int cpu)
1060 {
1061 DECLARE_COMPLETION(done);
1062 struct warm_boot_cpu_info info;
1063 struct work_struct task;
1064 int apicid, ret;
1065 struct Xgt_desc_struct *cpu_gdt_descr = &per_cpu(cpu_gdt_descr, cpu);
1066
1067 apicid = x86_cpu_to_apicid[cpu];
1068 if (apicid == BAD_APICID) {
1069 ret = -ENODEV;
1070 goto exit;
1071 }
1072
1073 /*
1074 * the CPU isn't initialized at boot time, allocate gdt table here.
1075 * cpu_init will initialize it
1076 */
1077 if (!cpu_gdt_descr->address) {
1078 cpu_gdt_descr->address = get_zeroed_page(GFP_KERNEL);
1079 if (!cpu_gdt_descr->address)
1080 printk(KERN_CRIT "CPU%d failed to allocate GDT\n", cpu);
1081 ret = -ENOMEM;
1082 goto exit;
1083 }
1084
1085 info.complete = &done;
1086 info.apicid = apicid;
1087 info.cpu = cpu;
1088 INIT_WORK(&task, do_warm_boot_cpu, &info);
1089
1090 tsc_sync_disabled = 1;
1091
1092 /* init low mem mapping */
1093 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
1094 KERNEL_PGD_PTRS);
1095 flush_tlb_all();
1096 schedule_work(&task);
1097 wait_for_completion(&done);
1098
1099 tsc_sync_disabled = 0;
1100 zap_low_mappings();
1101 ret = 0;
1102 exit:
1103 return ret;
1104 }
1105 #endif
1106
1107 static void smp_tune_scheduling (void)
1108 {
1109 unsigned long cachesize; /* kB */
1110 unsigned long bandwidth = 350; /* MB/s */
1111 /*
1112 * Rough estimation for SMP scheduling, this is the number of
1113 * cycles it takes for a fully memory-limited process to flush
1114 * the SMP-local cache.
1115 *
1116 * (For a P5 this pretty much means we will choose another idle
1117 * CPU almost always at wakeup time (this is due to the small
1118 * L1 cache), on PIIs it's around 50-100 usecs, depending on
1119 * the cache size)
1120 */
1121
1122 if (!cpu_khz) {
1123 /*
1124 * this basically disables processor-affinity
1125 * scheduling on SMP without a TSC.
1126 */
1127 return;
1128 } else {
1129 cachesize = boot_cpu_data.x86_cache_size;
1130 if (cachesize == -1) {
1131 cachesize = 16; /* Pentiums, 2x8kB cache */
1132 bandwidth = 100;
1133 }
1134 max_cache_size = cachesize * 1024;
1135 }
1136 }
1137
1138 /*
1139 * Cycle through the processors sending APIC IPIs to boot each.
1140 */
1141
1142 static int boot_cpu_logical_apicid;
1143 /* Where the IO area was mapped on multiquad, always 0 otherwise */
1144 void *xquad_portio;
1145 #ifdef CONFIG_X86_NUMAQ
1146 EXPORT_SYMBOL(xquad_portio);
1147 #endif
1148
1149 static void __init smp_boot_cpus(unsigned int max_cpus)
1150 {
1151 int apicid, cpu, bit, kicked;
1152 unsigned long bogosum = 0;
1153
1154 /*
1155 * Setup boot CPU information
1156 */
1157 smp_store_cpu_info(0); /* Final full version of the data */
1158 printk("CPU%d: ", 0);
1159 print_cpu_info(&cpu_data[0]);
1160
1161 boot_cpu_physical_apicid = GET_APIC_ID(apic_read(APIC_ID));
1162 boot_cpu_logical_apicid = logical_smp_processor_id();
1163 x86_cpu_to_apicid[0] = boot_cpu_physical_apicid;
1164
1165 current_thread_info()->cpu = 0;
1166 smp_tune_scheduling();
1167
1168 set_cpu_sibling_map(0);
1169
1170 /*
1171 * If we couldn't find an SMP configuration at boot time,
1172 * get out of here now!
1173 */
1174 if (!smp_found_config && !acpi_lapic) {
1175 printk(KERN_NOTICE "SMP motherboard not detected.\n");
1176 smpboot_clear_io_apic_irqs();
1177 phys_cpu_present_map = physid_mask_of_physid(0);
1178 if (APIC_init_uniprocessor())
1179 printk(KERN_NOTICE "Local APIC not detected."
1180 " Using dummy APIC emulation.\n");
1181 map_cpu_to_logical_apicid();
1182 cpu_set(0, cpu_sibling_map[0]);
1183 cpu_set(0, cpu_core_map[0]);
1184 return;
1185 }
1186
1187 /*
1188 * Should not be necessary because the MP table should list the boot
1189 * CPU too, but we do it for the sake of robustness anyway.
1190 * Makes no sense to do this check in clustered apic mode, so skip it
1191 */
1192 if (!check_phys_apicid_present(boot_cpu_physical_apicid)) {
1193 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
1194 boot_cpu_physical_apicid);
1195 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1196 }
1197
1198 /*
1199 * If we couldn't find a local APIC, then get out of here now!
1200 */
1201 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && !cpu_has_apic) {
1202 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1203 boot_cpu_physical_apicid);
1204 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1205 smpboot_clear_io_apic_irqs();
1206 phys_cpu_present_map = physid_mask_of_physid(0);
1207 cpu_set(0, cpu_sibling_map[0]);
1208 cpu_set(0, cpu_core_map[0]);
1209 return;
1210 }
1211
1212 verify_local_APIC();
1213
1214 /*
1215 * If SMP should be disabled, then really disable it!
1216 */
1217 if (!max_cpus) {
1218 smp_found_config = 0;
1219 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1220 smpboot_clear_io_apic_irqs();
1221 phys_cpu_present_map = physid_mask_of_physid(0);
1222 cpu_set(0, cpu_sibling_map[0]);
1223 cpu_set(0, cpu_core_map[0]);
1224 return;
1225 }
1226
1227 connect_bsp_APIC();
1228 setup_local_APIC();
1229 map_cpu_to_logical_apicid();
1230
1231
1232 setup_portio_remap();
1233
1234 /*
1235 * Scan the CPU present map and fire up the other CPUs via do_boot_cpu
1236 *
1237 * In clustered apic mode, phys_cpu_present_map is a constructed thus:
1238 * bits 0-3 are quad0, 4-7 are quad1, etc. A perverse twist on the
1239 * clustered apic ID.
1240 */
1241 Dprintk("CPU present map: %lx\n", physids_coerce(phys_cpu_present_map));
1242
1243 kicked = 1;
1244 for (bit = 0; kicked < NR_CPUS && bit < MAX_APICS; bit++) {
1245 apicid = cpu_present_to_apicid(bit);
1246 /*
1247 * Don't even attempt to start the boot CPU!
1248 */
1249 if ((apicid == boot_cpu_apicid) || (apicid == BAD_APICID))
1250 continue;
1251
1252 if (!check_apicid_present(bit))
1253 continue;
1254 if (max_cpus <= cpucount+1)
1255 continue;
1256
1257 if (((cpu = alloc_cpu_id()) <= 0) || do_boot_cpu(apicid, cpu))
1258 printk("CPU #%d not responding - cannot use it.\n",
1259 apicid);
1260 else
1261 ++kicked;
1262 }
1263
1264 /*
1265 * Cleanup possible dangling ends...
1266 */
1267 smpboot_restore_warm_reset_vector();
1268
1269 /*
1270 * Allow the user to impress friends.
1271 */
1272 Dprintk("Before bogomips.\n");
1273 for (cpu = 0; cpu < NR_CPUS; cpu++)
1274 if (cpu_isset(cpu, cpu_callout_map))
1275 bogosum += cpu_data[cpu].loops_per_jiffy;
1276 printk(KERN_INFO
1277 "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
1278 cpucount+1,
1279 bogosum/(500000/HZ),
1280 (bogosum/(5000/HZ))%100);
1281
1282 Dprintk("Before bogocount - setting activated=1.\n");
1283
1284 if (smp_b_stepping)
1285 printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n");
1286
1287 /*
1288 * Don't taint if we are running SMP kernel on a single non-MP
1289 * approved Athlon
1290 */
1291 if (tainted & TAINT_UNSAFE_SMP) {
1292 if (cpucount)
1293 printk (KERN_INFO "WARNING: This combination of AMD processors is not suitable for SMP.\n");
1294 else
1295 tainted &= ~TAINT_UNSAFE_SMP;
1296 }
1297
1298 Dprintk("Boot done.\n");
1299
1300 /*
1301 * construct cpu_sibling_map[], so that we can tell sibling CPUs
1302 * efficiently.
1303 */
1304 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1305 cpus_clear(cpu_sibling_map[cpu]);
1306 cpus_clear(cpu_core_map[cpu]);
1307 }
1308
1309 cpu_set(0, cpu_sibling_map[0]);
1310 cpu_set(0, cpu_core_map[0]);
1311
1312 smpboot_setup_io_apic();
1313
1314 setup_boot_APIC_clock();
1315
1316 /*
1317 * Synchronize the TSC with the AP
1318 */
1319 if (cpu_has_tsc && cpucount && cpu_khz)
1320 synchronize_tsc_bp();
1321 }
1322
1323 /* These are wrappers to interface to the new boot process. Someone
1324 who understands all this stuff should rewrite it properly. --RR 15/Jul/02 */
1325 void __init smp_prepare_cpus(unsigned int max_cpus)
1326 {
1327 smp_commenced_mask = cpumask_of_cpu(0);
1328 cpu_callin_map = cpumask_of_cpu(0);
1329 mb();
1330 smp_boot_cpus(max_cpus);
1331 }
1332
1333 void __devinit smp_prepare_boot_cpu(void)
1334 {
1335 cpu_set(smp_processor_id(), cpu_online_map);
1336 cpu_set(smp_processor_id(), cpu_callout_map);
1337 cpu_set(smp_processor_id(), cpu_present_map);
1338 cpu_set(smp_processor_id(), cpu_possible_map);
1339 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
1340 }
1341
1342 #ifdef CONFIG_HOTPLUG_CPU
1343 static void
1344 remove_siblinginfo(int cpu)
1345 {
1346 int sibling;
1347 struct cpuinfo_x86 *c = cpu_data;
1348
1349 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1350 cpu_clear(cpu, cpu_core_map[sibling]);
1351 /*
1352 * last thread sibling in this cpu core going down
1353 */
1354 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1355 c[sibling].booted_cores--;
1356 }
1357
1358 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1359 cpu_clear(cpu, cpu_sibling_map[sibling]);
1360 cpus_clear(cpu_sibling_map[cpu]);
1361 cpus_clear(cpu_core_map[cpu]);
1362 c[cpu].phys_proc_id = 0;
1363 c[cpu].cpu_core_id = 0;
1364 cpu_clear(cpu, cpu_sibling_setup_map);
1365 }
1366
1367 int __cpu_disable(void)
1368 {
1369 cpumask_t map = cpu_online_map;
1370 int cpu = smp_processor_id();
1371
1372 /*
1373 * Perhaps use cpufreq to drop frequency, but that could go
1374 * into generic code.
1375 *
1376 * We won't take down the boot processor on i386 due to some
1377 * interrupts only being able to be serviced by the BSP.
1378 * Especially so if we're not using an IOAPIC -zwane
1379 */
1380 if (cpu == 0)
1381 return -EBUSY;
1382 if (nmi_watchdog == NMI_LOCAL_APIC)
1383 stop_apic_nmi_watchdog(NULL);
1384 clear_local_APIC();
1385 /* Allow any queued timer interrupts to get serviced */
1386 local_irq_enable();
1387 mdelay(1);
1388 local_irq_disable();
1389
1390 remove_siblinginfo(cpu);
1391
1392 cpu_clear(cpu, map);
1393 fixup_irqs(map);
1394 /* It's now safe to remove this processor from the online map */
1395 cpu_clear(cpu, cpu_online_map);
1396 return 0;
1397 }
1398
1399 void __cpu_die(unsigned int cpu)
1400 {
1401 /* We don't do anything here: idle task is faking death itself. */
1402 unsigned int i;
1403
1404 for (i = 0; i < 10; i++) {
1405 /* They ack this in play_dead by setting CPU_DEAD */
1406 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1407 printk ("CPU %d is now offline\n", cpu);
1408 if (1 == num_online_cpus())
1409 alternatives_smp_switch(0);
1410 return;
1411 }
1412 msleep(100);
1413 }
1414 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1415 }
1416 #else /* ... !CONFIG_HOTPLUG_CPU */
1417 int __cpu_disable(void)
1418 {
1419 return -ENOSYS;
1420 }
1421
1422 void __cpu_die(unsigned int cpu)
1423 {
1424 /* We said "no" in __cpu_disable */
1425 BUG();
1426 }
1427 #endif /* CONFIG_HOTPLUG_CPU */
1428
1429 int __devinit __cpu_up(unsigned int cpu)
1430 {
1431 #ifdef CONFIG_HOTPLUG_CPU
1432 int ret=0;
1433
1434 /*
1435 * We do warm boot only on cpus that had booted earlier
1436 * Otherwise cold boot is all handled from smp_boot_cpus().
1437 * cpu_callin_map is set during AP kickstart process. Its reset
1438 * when a cpu is taken offline from cpu_exit_clear().
1439 */
1440 if (!cpu_isset(cpu, cpu_callin_map))
1441 ret = __smp_prepare_cpu(cpu);
1442
1443 if (ret)
1444 return -EIO;
1445 #endif
1446
1447 /* In case one didn't come up */
1448 if (!cpu_isset(cpu, cpu_callin_map)) {
1449 printk(KERN_DEBUG "skipping cpu%d, didn't come online\n", cpu);
1450 local_irq_enable();
1451 return -EIO;
1452 }
1453
1454 local_irq_enable();
1455 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1456 /* Unleash the CPU! */
1457 cpu_set(cpu, smp_commenced_mask);
1458 while (!cpu_isset(cpu, cpu_online_map))
1459 cpu_relax();
1460 return 0;
1461 }
1462
1463 void __init smp_cpus_done(unsigned int max_cpus)
1464 {
1465 #ifdef CONFIG_X86_IO_APIC
1466 setup_ioapic_dest();
1467 #endif
1468 zap_low_mappings();
1469 #ifndef CONFIG_HOTPLUG_CPU
1470 /*
1471 * Disable executability of the SMP trampoline:
1472 */
1473 set_kernel_exec((unsigned long)trampoline_base, trampoline_exec);
1474 #endif
1475 }
1476
1477 void __init smp_intr_init(void)
1478 {
1479 /*
1480 * IRQ0 must be given a fixed assignment and initialized,
1481 * because it's used before the IO-APIC is set up.
1482 */
1483 set_intr_gate(FIRST_DEVICE_VECTOR, interrupt[0]);
1484
1485 /*
1486 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
1487 * IPI, driven by wakeup.
1488 */
1489 set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
1490
1491 /* IPI for invalidation */
1492 set_intr_gate(INVALIDATE_TLB_VECTOR, invalidate_interrupt);
1493
1494 /* IPI for generic function call */
1495 set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
1496 }
1497
1498 /*
1499 * If the BIOS enumerates physical processors before logical,
1500 * maxcpus=N at enumeration-time can be used to disable HT.
1501 */
1502 static int __init parse_maxcpus(char *arg)
1503 {
1504 extern unsigned int maxcpus;
1505
1506 maxcpus = simple_strtoul(arg, NULL, 0);
1507 return 0;
1508 }
1509 early_param("maxcpus", parse_maxcpus);
This page took 0.061739 seconds and 6 git commands to generate.