[PATCH] xen: x86: Use more usermode macro
[deliverable/linux.git] / arch / i386 / kernel / traps.c
1 /*
2 * linux/arch/i386/traps.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
9
10 /*
11 * 'Traps.c' handles hardware traps and faults after we have saved some
12 * state in 'asm.s'.
13 */
14 #include <linux/config.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/string.h>
18 #include <linux/errno.h>
19 #include <linux/timer.h>
20 #include <linux/mm.h>
21 #include <linux/init.h>
22 #include <linux/delay.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/highmem.h>
26 #include <linux/kallsyms.h>
27 #include <linux/ptrace.h>
28 #include <linux/utsname.h>
29 #include <linux/kprobes.h>
30
31 #ifdef CONFIG_EISA
32 #include <linux/ioport.h>
33 #include <linux/eisa.h>
34 #endif
35
36 #ifdef CONFIG_MCA
37 #include <linux/mca.h>
38 #endif
39
40 #include <asm/processor.h>
41 #include <asm/system.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/atomic.h>
45 #include <asm/debugreg.h>
46 #include <asm/desc.h>
47 #include <asm/i387.h>
48 #include <asm/nmi.h>
49
50 #include <asm/smp.h>
51 #include <asm/arch_hooks.h>
52 #include <asm/kdebug.h>
53
54 #include <linux/irq.h>
55 #include <linux/module.h>
56
57 #include "mach_traps.h"
58
59 asmlinkage int system_call(void);
60
61 struct desc_struct default_ldt[] = { { 0, 0 }, { 0, 0 }, { 0, 0 },
62 { 0, 0 }, { 0, 0 } };
63
64 /* Do we ignore FPU interrupts ? */
65 char ignore_fpu_irq = 0;
66
67 /*
68 * The IDT has to be page-aligned to simplify the Pentium
69 * F0 0F bug workaround.. We have a special link segment
70 * for this.
71 */
72 struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, };
73
74 asmlinkage void divide_error(void);
75 asmlinkage void debug(void);
76 asmlinkage void nmi(void);
77 asmlinkage void int3(void);
78 asmlinkage void overflow(void);
79 asmlinkage void bounds(void);
80 asmlinkage void invalid_op(void);
81 asmlinkage void device_not_available(void);
82 asmlinkage void coprocessor_segment_overrun(void);
83 asmlinkage void invalid_TSS(void);
84 asmlinkage void segment_not_present(void);
85 asmlinkage void stack_segment(void);
86 asmlinkage void general_protection(void);
87 asmlinkage void page_fault(void);
88 asmlinkage void coprocessor_error(void);
89 asmlinkage void simd_coprocessor_error(void);
90 asmlinkage void alignment_check(void);
91 asmlinkage void spurious_interrupt_bug(void);
92 asmlinkage void machine_check(void);
93
94 static int kstack_depth_to_print = 24;
95 struct notifier_block *i386die_chain;
96 static DEFINE_SPINLOCK(die_notifier_lock);
97
98 int register_die_notifier(struct notifier_block *nb)
99 {
100 int err = 0;
101 unsigned long flags;
102 spin_lock_irqsave(&die_notifier_lock, flags);
103 err = notifier_chain_register(&i386die_chain, nb);
104 spin_unlock_irqrestore(&die_notifier_lock, flags);
105 return err;
106 }
107 EXPORT_SYMBOL(register_die_notifier);
108
109 static inline int valid_stack_ptr(struct thread_info *tinfo, void *p)
110 {
111 return p > (void *)tinfo &&
112 p < (void *)tinfo + THREAD_SIZE - 3;
113 }
114
115 static inline unsigned long print_context_stack(struct thread_info *tinfo,
116 unsigned long *stack, unsigned long ebp)
117 {
118 unsigned long addr;
119
120 #ifdef CONFIG_FRAME_POINTER
121 while (valid_stack_ptr(tinfo, (void *)ebp)) {
122 addr = *(unsigned long *)(ebp + 4);
123 printk(" [<%08lx>] ", addr);
124 print_symbol("%s", addr);
125 printk("\n");
126 ebp = *(unsigned long *)ebp;
127 }
128 #else
129 while (valid_stack_ptr(tinfo, stack)) {
130 addr = *stack++;
131 if (__kernel_text_address(addr)) {
132 printk(" [<%08lx>]", addr);
133 print_symbol(" %s", addr);
134 printk("\n");
135 }
136 }
137 #endif
138 return ebp;
139 }
140
141 void show_trace(struct task_struct *task, unsigned long * stack)
142 {
143 unsigned long ebp;
144
145 if (!task)
146 task = current;
147
148 if (task == current) {
149 /* Grab ebp right from our regs */
150 asm ("movl %%ebp, %0" : "=r" (ebp) : );
151 } else {
152 /* ebp is the last reg pushed by switch_to */
153 ebp = *(unsigned long *) task->thread.esp;
154 }
155
156 while (1) {
157 struct thread_info *context;
158 context = (struct thread_info *)
159 ((unsigned long)stack & (~(THREAD_SIZE - 1)));
160 ebp = print_context_stack(context, stack, ebp);
161 stack = (unsigned long*)context->previous_esp;
162 if (!stack)
163 break;
164 printk(" =======================\n");
165 }
166 }
167
168 void show_stack(struct task_struct *task, unsigned long *esp)
169 {
170 unsigned long *stack;
171 int i;
172
173 if (esp == NULL) {
174 if (task)
175 esp = (unsigned long*)task->thread.esp;
176 else
177 esp = (unsigned long *)&esp;
178 }
179
180 stack = esp;
181 for(i = 0; i < kstack_depth_to_print; i++) {
182 if (kstack_end(stack))
183 break;
184 if (i && ((i % 8) == 0))
185 printk("\n ");
186 printk("%08lx ", *stack++);
187 }
188 printk("\nCall Trace:\n");
189 show_trace(task, esp);
190 }
191
192 /*
193 * The architecture-independent dump_stack generator
194 */
195 void dump_stack(void)
196 {
197 unsigned long stack;
198
199 show_trace(current, &stack);
200 }
201
202 EXPORT_SYMBOL(dump_stack);
203
204 void show_registers(struct pt_regs *regs)
205 {
206 int i;
207 int in_kernel = 1;
208 unsigned long esp;
209 unsigned short ss;
210
211 esp = (unsigned long) (&regs->esp);
212 ss = __KERNEL_DS;
213 if (user_mode(regs)) {
214 in_kernel = 0;
215 esp = regs->esp;
216 ss = regs->xss & 0xffff;
217 }
218 print_modules();
219 printk("CPU: %d\nEIP: %04x:[<%08lx>] %s VLI\nEFLAGS: %08lx"
220 " (%s) \n",
221 smp_processor_id(), 0xffff & regs->xcs, regs->eip,
222 print_tainted(), regs->eflags, system_utsname.release);
223 print_symbol("EIP is at %s\n", regs->eip);
224 printk("eax: %08lx ebx: %08lx ecx: %08lx edx: %08lx\n",
225 regs->eax, regs->ebx, regs->ecx, regs->edx);
226 printk("esi: %08lx edi: %08lx ebp: %08lx esp: %08lx\n",
227 regs->esi, regs->edi, regs->ebp, esp);
228 printk("ds: %04x es: %04x ss: %04x\n",
229 regs->xds & 0xffff, regs->xes & 0xffff, ss);
230 printk("Process %s (pid: %d, threadinfo=%p task=%p)",
231 current->comm, current->pid, current_thread_info(), current);
232 /*
233 * When in-kernel, we also print out the stack and code at the
234 * time of the fault..
235 */
236 if (in_kernel) {
237 u8 *eip;
238
239 printk("\nStack: ");
240 show_stack(NULL, (unsigned long*)esp);
241
242 printk("Code: ");
243
244 eip = (u8 *)regs->eip - 43;
245 for (i = 0; i < 64; i++, eip++) {
246 unsigned char c;
247
248 if (eip < (u8 *)PAGE_OFFSET || __get_user(c, eip)) {
249 printk(" Bad EIP value.");
250 break;
251 }
252 if (eip == (u8 *)regs->eip)
253 printk("<%02x> ", c);
254 else
255 printk("%02x ", c);
256 }
257 }
258 printk("\n");
259 }
260
261 static void handle_BUG(struct pt_regs *regs)
262 {
263 unsigned short ud2;
264 unsigned short line;
265 char *file;
266 char c;
267 unsigned long eip;
268
269 if (user_mode(regs))
270 goto no_bug; /* Not in kernel */
271
272 eip = regs->eip;
273
274 if (eip < PAGE_OFFSET)
275 goto no_bug;
276 if (__get_user(ud2, (unsigned short *)eip))
277 goto no_bug;
278 if (ud2 != 0x0b0f)
279 goto no_bug;
280 if (__get_user(line, (unsigned short *)(eip + 2)))
281 goto bug;
282 if (__get_user(file, (char **)(eip + 4)) ||
283 (unsigned long)file < PAGE_OFFSET || __get_user(c, file))
284 file = "<bad filename>";
285
286 printk("------------[ cut here ]------------\n");
287 printk(KERN_ALERT "kernel BUG at %s:%d!\n", file, line);
288
289 no_bug:
290 return;
291
292 /* Here we know it was a BUG but file-n-line is unavailable */
293 bug:
294 printk("Kernel BUG\n");
295 }
296
297 void die(const char * str, struct pt_regs * regs, long err)
298 {
299 static struct {
300 spinlock_t lock;
301 u32 lock_owner;
302 int lock_owner_depth;
303 } die = {
304 .lock = SPIN_LOCK_UNLOCKED,
305 .lock_owner = -1,
306 .lock_owner_depth = 0
307 };
308 static int die_counter;
309
310 if (die.lock_owner != raw_smp_processor_id()) {
311 console_verbose();
312 spin_lock_irq(&die.lock);
313 die.lock_owner = smp_processor_id();
314 die.lock_owner_depth = 0;
315 bust_spinlocks(1);
316 }
317
318 if (++die.lock_owner_depth < 3) {
319 int nl = 0;
320 handle_BUG(regs);
321 printk(KERN_ALERT "%s: %04lx [#%d]\n", str, err & 0xffff, ++die_counter);
322 #ifdef CONFIG_PREEMPT
323 printk("PREEMPT ");
324 nl = 1;
325 #endif
326 #ifdef CONFIG_SMP
327 printk("SMP ");
328 nl = 1;
329 #endif
330 #ifdef CONFIG_DEBUG_PAGEALLOC
331 printk("DEBUG_PAGEALLOC");
332 nl = 1;
333 #endif
334 if (nl)
335 printk("\n");
336 notify_die(DIE_OOPS, (char *)str, regs, err, 255, SIGSEGV);
337 show_registers(regs);
338 } else
339 printk(KERN_ERR "Recursive die() failure, output suppressed\n");
340
341 bust_spinlocks(0);
342 die.lock_owner = -1;
343 spin_unlock_irq(&die.lock);
344 if (in_interrupt())
345 panic("Fatal exception in interrupt");
346
347 if (panic_on_oops) {
348 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
349 ssleep(5);
350 panic("Fatal exception");
351 }
352 do_exit(SIGSEGV);
353 }
354
355 static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err)
356 {
357 if (!user_mode_vm(regs))
358 die(str, regs, err);
359 }
360
361 static void do_trap(int trapnr, int signr, char *str, int vm86,
362 struct pt_regs * regs, long error_code, siginfo_t *info)
363 {
364 if (regs->eflags & VM_MASK) {
365 if (vm86)
366 goto vm86_trap;
367 goto trap_signal;
368 }
369
370 if (!user_mode(regs))
371 goto kernel_trap;
372
373 trap_signal: {
374 struct task_struct *tsk = current;
375 tsk->thread.error_code = error_code;
376 tsk->thread.trap_no = trapnr;
377 if (info)
378 force_sig_info(signr, info, tsk);
379 else
380 force_sig(signr, tsk);
381 return;
382 }
383
384 kernel_trap: {
385 if (!fixup_exception(regs))
386 die(str, regs, error_code);
387 return;
388 }
389
390 vm86_trap: {
391 int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr);
392 if (ret) goto trap_signal;
393 return;
394 }
395 }
396
397 #define DO_ERROR(trapnr, signr, str, name) \
398 fastcall void do_##name(struct pt_regs * regs, long error_code) \
399 { \
400 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
401 == NOTIFY_STOP) \
402 return; \
403 do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
404 }
405
406 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
407 fastcall void do_##name(struct pt_regs * regs, long error_code) \
408 { \
409 siginfo_t info; \
410 info.si_signo = signr; \
411 info.si_errno = 0; \
412 info.si_code = sicode; \
413 info.si_addr = (void __user *)siaddr; \
414 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
415 == NOTIFY_STOP) \
416 return; \
417 do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
418 }
419
420 #define DO_VM86_ERROR(trapnr, signr, str, name) \
421 fastcall void do_##name(struct pt_regs * regs, long error_code) \
422 { \
423 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
424 == NOTIFY_STOP) \
425 return; \
426 do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
427 }
428
429 #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
430 fastcall void do_##name(struct pt_regs * regs, long error_code) \
431 { \
432 siginfo_t info; \
433 info.si_signo = signr; \
434 info.si_errno = 0; \
435 info.si_code = sicode; \
436 info.si_addr = (void __user *)siaddr; \
437 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
438 == NOTIFY_STOP) \
439 return; \
440 do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
441 }
442
443 DO_VM86_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->eip)
444 #ifndef CONFIG_KPROBES
445 DO_VM86_ERROR( 3, SIGTRAP, "int3", int3)
446 #endif
447 DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow)
448 DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds)
449 DO_ERROR_INFO( 6, SIGILL, "invalid operand", invalid_op, ILL_ILLOPN, regs->eip)
450 DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
451 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
452 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
453 DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
454 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
455 DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0)
456
457 fastcall void do_general_protection(struct pt_regs * regs, long error_code)
458 {
459 int cpu = get_cpu();
460 struct tss_struct *tss = &per_cpu(init_tss, cpu);
461 struct thread_struct *thread = &current->thread;
462
463 /*
464 * Perform the lazy TSS's I/O bitmap copy. If the TSS has an
465 * invalid offset set (the LAZY one) and the faulting thread has
466 * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
467 * and we set the offset field correctly. Then we let the CPU to
468 * restart the faulting instruction.
469 */
470 if (tss->io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
471 thread->io_bitmap_ptr) {
472 memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
473 thread->io_bitmap_max);
474 /*
475 * If the previously set map was extending to higher ports
476 * than the current one, pad extra space with 0xff (no access).
477 */
478 if (thread->io_bitmap_max < tss->io_bitmap_max)
479 memset((char *) tss->io_bitmap +
480 thread->io_bitmap_max, 0xff,
481 tss->io_bitmap_max - thread->io_bitmap_max);
482 tss->io_bitmap_max = thread->io_bitmap_max;
483 tss->io_bitmap_base = IO_BITMAP_OFFSET;
484 put_cpu();
485 return;
486 }
487 put_cpu();
488
489 if (regs->eflags & VM_MASK)
490 goto gp_in_vm86;
491
492 if (!user_mode(regs))
493 goto gp_in_kernel;
494
495 current->thread.error_code = error_code;
496 current->thread.trap_no = 13;
497 force_sig(SIGSEGV, current);
498 return;
499
500 gp_in_vm86:
501 local_irq_enable();
502 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
503 return;
504
505 gp_in_kernel:
506 if (!fixup_exception(regs)) {
507 if (notify_die(DIE_GPF, "general protection fault", regs,
508 error_code, 13, SIGSEGV) == NOTIFY_STOP)
509 return;
510 die("general protection fault", regs, error_code);
511 }
512 }
513
514 static void mem_parity_error(unsigned char reason, struct pt_regs * regs)
515 {
516 printk("Uhhuh. NMI received. Dazed and confused, but trying to continue\n");
517 printk("You probably have a hardware problem with your RAM chips\n");
518
519 /* Clear and disable the memory parity error line. */
520 clear_mem_error(reason);
521 }
522
523 static void io_check_error(unsigned char reason, struct pt_regs * regs)
524 {
525 unsigned long i;
526
527 printk("NMI: IOCK error (debug interrupt?)\n");
528 show_registers(regs);
529
530 /* Re-enable the IOCK line, wait for a few seconds */
531 reason = (reason & 0xf) | 8;
532 outb(reason, 0x61);
533 i = 2000;
534 while (--i) udelay(1000);
535 reason &= ~8;
536 outb(reason, 0x61);
537 }
538
539 static void unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
540 {
541 #ifdef CONFIG_MCA
542 /* Might actually be able to figure out what the guilty party
543 * is. */
544 if( MCA_bus ) {
545 mca_handle_nmi();
546 return;
547 }
548 #endif
549 printk("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
550 reason, smp_processor_id());
551 printk("Dazed and confused, but trying to continue\n");
552 printk("Do you have a strange power saving mode enabled?\n");
553 }
554
555 static DEFINE_SPINLOCK(nmi_print_lock);
556
557 void die_nmi (struct pt_regs *regs, const char *msg)
558 {
559 spin_lock(&nmi_print_lock);
560 /*
561 * We are in trouble anyway, lets at least try
562 * to get a message out.
563 */
564 bust_spinlocks(1);
565 printk(msg);
566 printk(" on CPU%d, eip %08lx, registers:\n",
567 smp_processor_id(), regs->eip);
568 show_registers(regs);
569 printk("console shuts up ...\n");
570 console_silent();
571 spin_unlock(&nmi_print_lock);
572 bust_spinlocks(0);
573 do_exit(SIGSEGV);
574 }
575
576 static void default_do_nmi(struct pt_regs * regs)
577 {
578 unsigned char reason = 0;
579
580 /* Only the BSP gets external NMIs from the system. */
581 if (!smp_processor_id())
582 reason = get_nmi_reason();
583
584 if (!(reason & 0xc0)) {
585 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 0, SIGINT)
586 == NOTIFY_STOP)
587 return;
588 #ifdef CONFIG_X86_LOCAL_APIC
589 /*
590 * Ok, so this is none of the documented NMI sources,
591 * so it must be the NMI watchdog.
592 */
593 if (nmi_watchdog) {
594 nmi_watchdog_tick(regs);
595 return;
596 }
597 #endif
598 unknown_nmi_error(reason, regs);
599 return;
600 }
601 if (notify_die(DIE_NMI, "nmi", regs, reason, 0, SIGINT) == NOTIFY_STOP)
602 return;
603 if (reason & 0x80)
604 mem_parity_error(reason, regs);
605 if (reason & 0x40)
606 io_check_error(reason, regs);
607 /*
608 * Reassert NMI in case it became active meanwhile
609 * as it's edge-triggered.
610 */
611 reassert_nmi();
612 }
613
614 static int dummy_nmi_callback(struct pt_regs * regs, int cpu)
615 {
616 return 0;
617 }
618
619 static nmi_callback_t nmi_callback = dummy_nmi_callback;
620
621 fastcall void do_nmi(struct pt_regs * regs, long error_code)
622 {
623 int cpu;
624
625 nmi_enter();
626
627 cpu = smp_processor_id();
628 ++nmi_count(cpu);
629
630 if (!nmi_callback(regs, cpu))
631 default_do_nmi(regs);
632
633 nmi_exit();
634 }
635
636 void set_nmi_callback(nmi_callback_t callback)
637 {
638 nmi_callback = callback;
639 }
640 EXPORT_SYMBOL_GPL(set_nmi_callback);
641
642 void unset_nmi_callback(void)
643 {
644 nmi_callback = dummy_nmi_callback;
645 }
646 EXPORT_SYMBOL_GPL(unset_nmi_callback);
647
648 #ifdef CONFIG_KPROBES
649 fastcall void do_int3(struct pt_regs *regs, long error_code)
650 {
651 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
652 == NOTIFY_STOP)
653 return;
654 /* This is an interrupt gate, because kprobes wants interrupts
655 disabled. Normal trap handlers don't. */
656 restore_interrupts(regs);
657 do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
658 }
659 #endif
660
661 /*
662 * Our handling of the processor debug registers is non-trivial.
663 * We do not clear them on entry and exit from the kernel. Therefore
664 * it is possible to get a watchpoint trap here from inside the kernel.
665 * However, the code in ./ptrace.c has ensured that the user can
666 * only set watchpoints on userspace addresses. Therefore the in-kernel
667 * watchpoint trap can only occur in code which is reading/writing
668 * from user space. Such code must not hold kernel locks (since it
669 * can equally take a page fault), therefore it is safe to call
670 * force_sig_info even though that claims and releases locks.
671 *
672 * Code in ./signal.c ensures that the debug control register
673 * is restored before we deliver any signal, and therefore that
674 * user code runs with the correct debug control register even though
675 * we clear it here.
676 *
677 * Being careful here means that we don't have to be as careful in a
678 * lot of more complicated places (task switching can be a bit lazy
679 * about restoring all the debug state, and ptrace doesn't have to
680 * find every occurrence of the TF bit that could be saved away even
681 * by user code)
682 */
683 fastcall void do_debug(struct pt_regs * regs, long error_code)
684 {
685 unsigned int condition;
686 struct task_struct *tsk = current;
687
688 get_debugreg(condition, 6);
689
690 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
691 SIGTRAP) == NOTIFY_STOP)
692 return;
693 /* It's safe to allow irq's after DR6 has been saved */
694 if (regs->eflags & X86_EFLAGS_IF)
695 local_irq_enable();
696
697 /* Mask out spurious debug traps due to lazy DR7 setting */
698 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
699 if (!tsk->thread.debugreg[7])
700 goto clear_dr7;
701 }
702
703 if (regs->eflags & VM_MASK)
704 goto debug_vm86;
705
706 /* Save debug status register where ptrace can see it */
707 tsk->thread.debugreg[6] = condition;
708
709 /*
710 * Single-stepping through TF: make sure we ignore any events in
711 * kernel space (but re-enable TF when returning to user mode).
712 */
713 if (condition & DR_STEP) {
714 /*
715 * We already checked v86 mode above, so we can
716 * check for kernel mode by just checking the CPL
717 * of CS.
718 */
719 if (!user_mode(regs))
720 goto clear_TF_reenable;
721 }
722
723 /* Ok, finally something we can handle */
724 send_sigtrap(tsk, regs, error_code);
725
726 /* Disable additional traps. They'll be re-enabled when
727 * the signal is delivered.
728 */
729 clear_dr7:
730 set_debugreg(0, 7);
731 return;
732
733 debug_vm86:
734 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
735 return;
736
737 clear_TF_reenable:
738 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
739 regs->eflags &= ~TF_MASK;
740 return;
741 }
742
743 /*
744 * Note that we play around with the 'TS' bit in an attempt to get
745 * the correct behaviour even in the presence of the asynchronous
746 * IRQ13 behaviour
747 */
748 void math_error(void __user *eip)
749 {
750 struct task_struct * task;
751 siginfo_t info;
752 unsigned short cwd, swd;
753
754 /*
755 * Save the info for the exception handler and clear the error.
756 */
757 task = current;
758 save_init_fpu(task);
759 task->thread.trap_no = 16;
760 task->thread.error_code = 0;
761 info.si_signo = SIGFPE;
762 info.si_errno = 0;
763 info.si_code = __SI_FAULT;
764 info.si_addr = eip;
765 /*
766 * (~cwd & swd) will mask out exceptions that are not set to unmasked
767 * status. 0x3f is the exception bits in these regs, 0x200 is the
768 * C1 reg you need in case of a stack fault, 0x040 is the stack
769 * fault bit. We should only be taking one exception at a time,
770 * so if this combination doesn't produce any single exception,
771 * then we have a bad program that isn't syncronizing its FPU usage
772 * and it will suffer the consequences since we won't be able to
773 * fully reproduce the context of the exception
774 */
775 cwd = get_fpu_cwd(task);
776 swd = get_fpu_swd(task);
777 switch (((~cwd) & swd & 0x3f) | (swd & 0x240)) {
778 case 0x000:
779 default:
780 break;
781 case 0x001: /* Invalid Op */
782 case 0x041: /* Stack Fault */
783 case 0x241: /* Stack Fault | Direction */
784 info.si_code = FPE_FLTINV;
785 /* Should we clear the SF or let user space do it ???? */
786 break;
787 case 0x002: /* Denormalize */
788 case 0x010: /* Underflow */
789 info.si_code = FPE_FLTUND;
790 break;
791 case 0x004: /* Zero Divide */
792 info.si_code = FPE_FLTDIV;
793 break;
794 case 0x008: /* Overflow */
795 info.si_code = FPE_FLTOVF;
796 break;
797 case 0x020: /* Precision */
798 info.si_code = FPE_FLTRES;
799 break;
800 }
801 force_sig_info(SIGFPE, &info, task);
802 }
803
804 fastcall void do_coprocessor_error(struct pt_regs * regs, long error_code)
805 {
806 ignore_fpu_irq = 1;
807 math_error((void __user *)regs->eip);
808 }
809
810 static void simd_math_error(void __user *eip)
811 {
812 struct task_struct * task;
813 siginfo_t info;
814 unsigned short mxcsr;
815
816 /*
817 * Save the info for the exception handler and clear the error.
818 */
819 task = current;
820 save_init_fpu(task);
821 task->thread.trap_no = 19;
822 task->thread.error_code = 0;
823 info.si_signo = SIGFPE;
824 info.si_errno = 0;
825 info.si_code = __SI_FAULT;
826 info.si_addr = eip;
827 /*
828 * The SIMD FPU exceptions are handled a little differently, as there
829 * is only a single status/control register. Thus, to determine which
830 * unmasked exception was caught we must mask the exception mask bits
831 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
832 */
833 mxcsr = get_fpu_mxcsr(task);
834 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
835 case 0x000:
836 default:
837 break;
838 case 0x001: /* Invalid Op */
839 info.si_code = FPE_FLTINV;
840 break;
841 case 0x002: /* Denormalize */
842 case 0x010: /* Underflow */
843 info.si_code = FPE_FLTUND;
844 break;
845 case 0x004: /* Zero Divide */
846 info.si_code = FPE_FLTDIV;
847 break;
848 case 0x008: /* Overflow */
849 info.si_code = FPE_FLTOVF;
850 break;
851 case 0x020: /* Precision */
852 info.si_code = FPE_FLTRES;
853 break;
854 }
855 force_sig_info(SIGFPE, &info, task);
856 }
857
858 fastcall void do_simd_coprocessor_error(struct pt_regs * regs,
859 long error_code)
860 {
861 if (cpu_has_xmm) {
862 /* Handle SIMD FPU exceptions on PIII+ processors. */
863 ignore_fpu_irq = 1;
864 simd_math_error((void __user *)regs->eip);
865 } else {
866 /*
867 * Handle strange cache flush from user space exception
868 * in all other cases. This is undocumented behaviour.
869 */
870 if (regs->eflags & VM_MASK) {
871 handle_vm86_fault((struct kernel_vm86_regs *)regs,
872 error_code);
873 return;
874 }
875 die_if_kernel("cache flush denied", regs, error_code);
876 current->thread.trap_no = 19;
877 current->thread.error_code = error_code;
878 force_sig(SIGSEGV, current);
879 }
880 }
881
882 fastcall void do_spurious_interrupt_bug(struct pt_regs * regs,
883 long error_code)
884 {
885 #if 0
886 /* No need to warn about this any longer. */
887 printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
888 #endif
889 }
890
891 fastcall void setup_x86_bogus_stack(unsigned char * stk)
892 {
893 unsigned long *switch16_ptr, *switch32_ptr;
894 struct pt_regs *regs;
895 unsigned long stack_top, stack_bot;
896 unsigned short iret_frame16_off;
897 int cpu = smp_processor_id();
898 /* reserve the space on 32bit stack for the magic switch16 pointer */
899 memmove(stk, stk + 8, sizeof(struct pt_regs));
900 switch16_ptr = (unsigned long *)(stk + sizeof(struct pt_regs));
901 regs = (struct pt_regs *)stk;
902 /* now the switch32 on 16bit stack */
903 stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu);
904 stack_top = stack_bot + CPU_16BIT_STACK_SIZE;
905 switch32_ptr = (unsigned long *)(stack_top - 8);
906 iret_frame16_off = CPU_16BIT_STACK_SIZE - 8 - 20;
907 /* copy iret frame on 16bit stack */
908 memcpy((void *)(stack_bot + iret_frame16_off), &regs->eip, 20);
909 /* fill in the switch pointers */
910 switch16_ptr[0] = (regs->esp & 0xffff0000) | iret_frame16_off;
911 switch16_ptr[1] = __ESPFIX_SS;
912 switch32_ptr[0] = (unsigned long)stk + sizeof(struct pt_regs) +
913 8 - CPU_16BIT_STACK_SIZE;
914 switch32_ptr[1] = __KERNEL_DS;
915 }
916
917 fastcall unsigned char * fixup_x86_bogus_stack(unsigned short sp)
918 {
919 unsigned long *switch32_ptr;
920 unsigned char *stack16, *stack32;
921 unsigned long stack_top, stack_bot;
922 int len;
923 int cpu = smp_processor_id();
924 stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu);
925 stack_top = stack_bot + CPU_16BIT_STACK_SIZE;
926 switch32_ptr = (unsigned long *)(stack_top - 8);
927 /* copy the data from 16bit stack to 32bit stack */
928 len = CPU_16BIT_STACK_SIZE - 8 - sp;
929 stack16 = (unsigned char *)(stack_bot + sp);
930 stack32 = (unsigned char *)
931 (switch32_ptr[0] + CPU_16BIT_STACK_SIZE - 8 - len);
932 memcpy(stack32, stack16, len);
933 return stack32;
934 }
935
936 /*
937 * 'math_state_restore()' saves the current math information in the
938 * old math state array, and gets the new ones from the current task
939 *
940 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
941 * Don't touch unless you *really* know how it works.
942 *
943 * Must be called with kernel preemption disabled (in this case,
944 * local interrupts are disabled at the call-site in entry.S).
945 */
946 asmlinkage void math_state_restore(struct pt_regs regs)
947 {
948 struct thread_info *thread = current_thread_info();
949 struct task_struct *tsk = thread->task;
950
951 clts(); /* Allow maths ops (or we recurse) */
952 if (!tsk_used_math(tsk))
953 init_fpu(tsk);
954 restore_fpu(tsk);
955 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
956 }
957
958 #ifndef CONFIG_MATH_EMULATION
959
960 asmlinkage void math_emulate(long arg)
961 {
962 printk("math-emulation not enabled and no coprocessor found.\n");
963 printk("killing %s.\n",current->comm);
964 force_sig(SIGFPE,current);
965 schedule();
966 }
967
968 #endif /* CONFIG_MATH_EMULATION */
969
970 #ifdef CONFIG_X86_F00F_BUG
971 void __init trap_init_f00f_bug(void)
972 {
973 __set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO);
974
975 /*
976 * Update the IDT descriptor and reload the IDT so that
977 * it uses the read-only mapped virtual address.
978 */
979 idt_descr.address = fix_to_virt(FIX_F00F_IDT);
980 __asm__ __volatile__("lidt %0" : : "m" (idt_descr));
981 }
982 #endif
983
984 #define _set_gate(gate_addr,type,dpl,addr,seg) \
985 do { \
986 int __d0, __d1; \
987 __asm__ __volatile__ ("movw %%dx,%%ax\n\t" \
988 "movw %4,%%dx\n\t" \
989 "movl %%eax,%0\n\t" \
990 "movl %%edx,%1" \
991 :"=m" (*((long *) (gate_addr))), \
992 "=m" (*(1+(long *) (gate_addr))), "=&a" (__d0), "=&d" (__d1) \
993 :"i" ((short) (0x8000+(dpl<<13)+(type<<8))), \
994 "3" ((char *) (addr)),"2" ((seg) << 16)); \
995 } while (0)
996
997
998 /*
999 * This needs to use 'idt_table' rather than 'idt', and
1000 * thus use the _nonmapped_ version of the IDT, as the
1001 * Pentium F0 0F bugfix can have resulted in the mapped
1002 * IDT being write-protected.
1003 */
1004 void set_intr_gate(unsigned int n, void *addr)
1005 {
1006 _set_gate(idt_table+n,14,0,addr,__KERNEL_CS);
1007 }
1008
1009 /*
1010 * This routine sets up an interrupt gate at directory privilege level 3.
1011 */
1012 static inline void set_system_intr_gate(unsigned int n, void *addr)
1013 {
1014 _set_gate(idt_table+n, 14, 3, addr, __KERNEL_CS);
1015 }
1016
1017 static void __init set_trap_gate(unsigned int n, void *addr)
1018 {
1019 _set_gate(idt_table+n,15,0,addr,__KERNEL_CS);
1020 }
1021
1022 static void __init set_system_gate(unsigned int n, void *addr)
1023 {
1024 _set_gate(idt_table+n,15,3,addr,__KERNEL_CS);
1025 }
1026
1027 static void __init set_task_gate(unsigned int n, unsigned int gdt_entry)
1028 {
1029 _set_gate(idt_table+n,5,0,0,(gdt_entry<<3));
1030 }
1031
1032
1033 void __init trap_init(void)
1034 {
1035 #ifdef CONFIG_EISA
1036 void __iomem *p = ioremap(0x0FFFD9, 4);
1037 if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) {
1038 EISA_bus = 1;
1039 }
1040 iounmap(p);
1041 #endif
1042
1043 #ifdef CONFIG_X86_LOCAL_APIC
1044 init_apic_mappings();
1045 #endif
1046
1047 set_trap_gate(0,&divide_error);
1048 set_intr_gate(1,&debug);
1049 set_intr_gate(2,&nmi);
1050 set_system_intr_gate(3, &int3); /* int3-5 can be called from all */
1051 set_system_gate(4,&overflow);
1052 set_system_gate(5,&bounds);
1053 set_trap_gate(6,&invalid_op);
1054 set_trap_gate(7,&device_not_available);
1055 set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS);
1056 set_trap_gate(9,&coprocessor_segment_overrun);
1057 set_trap_gate(10,&invalid_TSS);
1058 set_trap_gate(11,&segment_not_present);
1059 set_trap_gate(12,&stack_segment);
1060 set_trap_gate(13,&general_protection);
1061 set_intr_gate(14,&page_fault);
1062 set_trap_gate(15,&spurious_interrupt_bug);
1063 set_trap_gate(16,&coprocessor_error);
1064 set_trap_gate(17,&alignment_check);
1065 #ifdef CONFIG_X86_MCE
1066 set_trap_gate(18,&machine_check);
1067 #endif
1068 set_trap_gate(19,&simd_coprocessor_error);
1069
1070 set_system_gate(SYSCALL_VECTOR,&system_call);
1071
1072 /*
1073 * Should be a barrier for any external CPU state.
1074 */
1075 cpu_init();
1076
1077 trap_init_hook();
1078 }
1079
1080 static int __init kstack_setup(char *s)
1081 {
1082 kstack_depth_to_print = simple_strtoul(s, NULL, 0);
1083 return 0;
1084 }
1085 __setup("kstack=", kstack_setup);
This page took 0.052322 seconds and 6 git commands to generate.