01ffdd4964f08e9bec86c5ae759da9f5cbe8270a
[deliverable/linux.git] / arch / i386 / mm / fault.c
1 /*
2 * linux/arch/i386/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 */
6
7 #include <linux/signal.h>
8 #include <linux/sched.h>
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/string.h>
12 #include <linux/types.h>
13 #include <linux/ptrace.h>
14 #include <linux/mman.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/interrupt.h>
18 #include <linux/init.h>
19 #include <linux/tty.h>
20 #include <linux/vt_kern.h> /* For unblank_screen() */
21 #include <linux/highmem.h>
22 #include <linux/bootmem.h> /* for max_low_pfn */
23 #include <linux/vmalloc.h>
24 #include <linux/module.h>
25 #include <linux/kprobes.h>
26 #include <linux/uaccess.h>
27 #include <linux/kdebug.h>
28
29 #include <asm/system.h>
30 #include <asm/desc.h>
31 #include <asm/segment.h>
32
33 extern void die(const char *,struct pt_regs *,long);
34
35 static ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain);
36
37 int register_page_fault_notifier(struct notifier_block *nb)
38 {
39 vmalloc_sync_all();
40 return atomic_notifier_chain_register(&notify_page_fault_chain, nb);
41 }
42 EXPORT_SYMBOL_GPL(register_page_fault_notifier);
43
44 int unregister_page_fault_notifier(struct notifier_block *nb)
45 {
46 return atomic_notifier_chain_unregister(&notify_page_fault_chain, nb);
47 }
48 EXPORT_SYMBOL_GPL(unregister_page_fault_notifier);
49
50 static inline int notify_page_fault(struct pt_regs *regs, long err)
51 {
52 struct die_args args = {
53 .regs = regs,
54 .str = "page fault",
55 .err = err,
56 .trapnr = 14,
57 .signr = SIGSEGV
58 };
59 return atomic_notifier_call_chain(&notify_page_fault_chain,
60 DIE_PAGE_FAULT, &args);
61 }
62
63 /*
64 * Return EIP plus the CS segment base. The segment limit is also
65 * adjusted, clamped to the kernel/user address space (whichever is
66 * appropriate), and returned in *eip_limit.
67 *
68 * The segment is checked, because it might have been changed by another
69 * task between the original faulting instruction and here.
70 *
71 * If CS is no longer a valid code segment, or if EIP is beyond the
72 * limit, or if it is a kernel address when CS is not a kernel segment,
73 * then the returned value will be greater than *eip_limit.
74 *
75 * This is slow, but is very rarely executed.
76 */
77 static inline unsigned long get_segment_eip(struct pt_regs *regs,
78 unsigned long *eip_limit)
79 {
80 unsigned long eip = regs->eip;
81 unsigned seg = regs->xcs & 0xffff;
82 u32 seg_ar, seg_limit, base, *desc;
83
84 /* Unlikely, but must come before segment checks. */
85 if (unlikely(regs->eflags & VM_MASK)) {
86 base = seg << 4;
87 *eip_limit = base + 0xffff;
88 return base + (eip & 0xffff);
89 }
90
91 /* The standard kernel/user address space limit. */
92 *eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg;
93
94 /* By far the most common cases. */
95 if (likely(SEGMENT_IS_FLAT_CODE(seg)))
96 return eip;
97
98 /* Check the segment exists, is within the current LDT/GDT size,
99 that kernel/user (ring 0..3) has the appropriate privilege,
100 that it's a code segment, and get the limit. */
101 __asm__ ("larl %3,%0; lsll %3,%1"
102 : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg));
103 if ((~seg_ar & 0x9800) || eip > seg_limit) {
104 *eip_limit = 0;
105 return 1; /* So that returned eip > *eip_limit. */
106 }
107
108 /* Get the GDT/LDT descriptor base.
109 When you look for races in this code remember that
110 LDT and other horrors are only used in user space. */
111 if (seg & (1<<2)) {
112 /* Must lock the LDT while reading it. */
113 down(&current->mm->context.sem);
114 desc = current->mm->context.ldt;
115 desc = (void *)desc + (seg & ~7);
116 } else {
117 /* Must disable preemption while reading the GDT. */
118 desc = (u32 *)get_cpu_gdt_table(get_cpu());
119 desc = (void *)desc + (seg & ~7);
120 }
121
122 /* Decode the code segment base from the descriptor */
123 base = get_desc_base((unsigned long *)desc);
124
125 if (seg & (1<<2)) {
126 up(&current->mm->context.sem);
127 } else
128 put_cpu();
129
130 /* Adjust EIP and segment limit, and clamp at the kernel limit.
131 It's legitimate for segments to wrap at 0xffffffff. */
132 seg_limit += base;
133 if (seg_limit < *eip_limit && seg_limit >= base)
134 *eip_limit = seg_limit;
135 return eip + base;
136 }
137
138 /*
139 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
140 * Check that here and ignore it.
141 */
142 static int __is_prefetch(struct pt_regs *regs, unsigned long addr)
143 {
144 unsigned long limit;
145 unsigned char *instr = (unsigned char *)get_segment_eip (regs, &limit);
146 int scan_more = 1;
147 int prefetch = 0;
148 int i;
149
150 for (i = 0; scan_more && i < 15; i++) {
151 unsigned char opcode;
152 unsigned char instr_hi;
153 unsigned char instr_lo;
154
155 if (instr > (unsigned char *)limit)
156 break;
157 if (probe_kernel_address(instr, opcode))
158 break;
159
160 instr_hi = opcode & 0xf0;
161 instr_lo = opcode & 0x0f;
162 instr++;
163
164 switch (instr_hi) {
165 case 0x20:
166 case 0x30:
167 /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */
168 scan_more = ((instr_lo & 7) == 0x6);
169 break;
170
171 case 0x60:
172 /* 0x64 thru 0x67 are valid prefixes in all modes. */
173 scan_more = (instr_lo & 0xC) == 0x4;
174 break;
175 case 0xF0:
176 /* 0xF0, 0xF2, and 0xF3 are valid prefixes */
177 scan_more = !instr_lo || (instr_lo>>1) == 1;
178 break;
179 case 0x00:
180 /* Prefetch instruction is 0x0F0D or 0x0F18 */
181 scan_more = 0;
182 if (instr > (unsigned char *)limit)
183 break;
184 if (probe_kernel_address(instr, opcode))
185 break;
186 prefetch = (instr_lo == 0xF) &&
187 (opcode == 0x0D || opcode == 0x18);
188 break;
189 default:
190 scan_more = 0;
191 break;
192 }
193 }
194 return prefetch;
195 }
196
197 static inline int is_prefetch(struct pt_regs *regs, unsigned long addr,
198 unsigned long error_code)
199 {
200 if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
201 boot_cpu_data.x86 >= 6)) {
202 /* Catch an obscure case of prefetch inside an NX page. */
203 if (nx_enabled && (error_code & 16))
204 return 0;
205 return __is_prefetch(regs, addr);
206 }
207 return 0;
208 }
209
210 static noinline void force_sig_info_fault(int si_signo, int si_code,
211 unsigned long address, struct task_struct *tsk)
212 {
213 siginfo_t info;
214
215 info.si_signo = si_signo;
216 info.si_errno = 0;
217 info.si_code = si_code;
218 info.si_addr = (void __user *)address;
219 force_sig_info(si_signo, &info, tsk);
220 }
221
222 fastcall void do_invalid_op(struct pt_regs *, unsigned long);
223
224 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
225 {
226 unsigned index = pgd_index(address);
227 pgd_t *pgd_k;
228 pud_t *pud, *pud_k;
229 pmd_t *pmd, *pmd_k;
230
231 pgd += index;
232 pgd_k = init_mm.pgd + index;
233
234 if (!pgd_present(*pgd_k))
235 return NULL;
236
237 /*
238 * set_pgd(pgd, *pgd_k); here would be useless on PAE
239 * and redundant with the set_pmd() on non-PAE. As would
240 * set_pud.
241 */
242
243 pud = pud_offset(pgd, address);
244 pud_k = pud_offset(pgd_k, address);
245 if (!pud_present(*pud_k))
246 return NULL;
247
248 pmd = pmd_offset(pud, address);
249 pmd_k = pmd_offset(pud_k, address);
250 if (!pmd_present(*pmd_k))
251 return NULL;
252 if (!pmd_present(*pmd))
253 set_pmd(pmd, *pmd_k);
254 else
255 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
256 return pmd_k;
257 }
258
259 /*
260 * Handle a fault on the vmalloc or module mapping area
261 *
262 * This assumes no large pages in there.
263 */
264 static inline int vmalloc_fault(unsigned long address)
265 {
266 unsigned long pgd_paddr;
267 pmd_t *pmd_k;
268 pte_t *pte_k;
269 /*
270 * Synchronize this task's top level page-table
271 * with the 'reference' page table.
272 *
273 * Do _not_ use "current" here. We might be inside
274 * an interrupt in the middle of a task switch..
275 */
276 pgd_paddr = read_cr3();
277 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
278 if (!pmd_k)
279 return -1;
280 pte_k = pte_offset_kernel(pmd_k, address);
281 if (!pte_present(*pte_k))
282 return -1;
283 return 0;
284 }
285
286 int show_unhandled_signals = 1;
287
288 /*
289 * This routine handles page faults. It determines the address,
290 * and the problem, and then passes it off to one of the appropriate
291 * routines.
292 *
293 * error_code:
294 * bit 0 == 0 means no page found, 1 means protection fault
295 * bit 1 == 0 means read, 1 means write
296 * bit 2 == 0 means kernel, 1 means user-mode
297 * bit 3 == 1 means use of reserved bit detected
298 * bit 4 == 1 means fault was an instruction fetch
299 */
300 fastcall void __kprobes do_page_fault(struct pt_regs *regs,
301 unsigned long error_code)
302 {
303 struct task_struct *tsk;
304 struct mm_struct *mm;
305 struct vm_area_struct * vma;
306 unsigned long address;
307 int write, si_code;
308 int fault;
309
310 /* get the address */
311 address = read_cr2();
312
313 tsk = current;
314
315 si_code = SEGV_MAPERR;
316
317 /*
318 * We fault-in kernel-space virtual memory on-demand. The
319 * 'reference' page table is init_mm.pgd.
320 *
321 * NOTE! We MUST NOT take any locks for this case. We may
322 * be in an interrupt or a critical region, and should
323 * only copy the information from the master page table,
324 * nothing more.
325 *
326 * This verifies that the fault happens in kernel space
327 * (error_code & 4) == 0, and that the fault was not a
328 * protection error (error_code & 9) == 0.
329 */
330 if (unlikely(address >= TASK_SIZE)) {
331 if (!(error_code & 0x0000000d) && vmalloc_fault(address) >= 0)
332 return;
333 if (notify_page_fault(regs, error_code) == NOTIFY_STOP)
334 return;
335 /*
336 * Don't take the mm semaphore here. If we fixup a prefetch
337 * fault we could otherwise deadlock.
338 */
339 goto bad_area_nosemaphore;
340 }
341
342 if (notify_page_fault(regs, error_code) == NOTIFY_STOP)
343 return;
344
345 /* It's safe to allow irq's after cr2 has been saved and the vmalloc
346 fault has been handled. */
347 if (regs->eflags & (X86_EFLAGS_IF|VM_MASK))
348 local_irq_enable();
349
350 mm = tsk->mm;
351
352 /*
353 * If we're in an interrupt, have no user context or are running in an
354 * atomic region then we must not take the fault..
355 */
356 if (in_atomic() || !mm)
357 goto bad_area_nosemaphore;
358
359 /* When running in the kernel we expect faults to occur only to
360 * addresses in user space. All other faults represent errors in the
361 * kernel and should generate an OOPS. Unfortunatly, in the case of an
362 * erroneous fault occurring in a code path which already holds mmap_sem
363 * we will deadlock attempting to validate the fault against the
364 * address space. Luckily the kernel only validly references user
365 * space from well defined areas of code, which are listed in the
366 * exceptions table.
367 *
368 * As the vast majority of faults will be valid we will only perform
369 * the source reference check when there is a possibilty of a deadlock.
370 * Attempt to lock the address space, if we cannot we then validate the
371 * source. If this is invalid we can skip the address space check,
372 * thus avoiding the deadlock.
373 */
374 if (!down_read_trylock(&mm->mmap_sem)) {
375 if ((error_code & 4) == 0 &&
376 !search_exception_tables(regs->eip))
377 goto bad_area_nosemaphore;
378 down_read(&mm->mmap_sem);
379 }
380
381 vma = find_vma(mm, address);
382 if (!vma)
383 goto bad_area;
384 if (vma->vm_start <= address)
385 goto good_area;
386 if (!(vma->vm_flags & VM_GROWSDOWN))
387 goto bad_area;
388 if (error_code & 4) {
389 /*
390 * Accessing the stack below %esp is always a bug.
391 * The large cushion allows instructions like enter
392 * and pusha to work. ("enter $65535,$31" pushes
393 * 32 pointers and then decrements %esp by 65535.)
394 */
395 if (address + 65536 + 32 * sizeof(unsigned long) < regs->esp)
396 goto bad_area;
397 }
398 if (expand_stack(vma, address))
399 goto bad_area;
400 /*
401 * Ok, we have a good vm_area for this memory access, so
402 * we can handle it..
403 */
404 good_area:
405 si_code = SEGV_ACCERR;
406 write = 0;
407 switch (error_code & 3) {
408 default: /* 3: write, present */
409 /* fall through */
410 case 2: /* write, not present */
411 if (!(vma->vm_flags & VM_WRITE))
412 goto bad_area;
413 write++;
414 break;
415 case 1: /* read, present */
416 goto bad_area;
417 case 0: /* read, not present */
418 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
419 goto bad_area;
420 }
421
422 survive:
423 /*
424 * If for any reason at all we couldn't handle the fault,
425 * make sure we exit gracefully rather than endlessly redo
426 * the fault.
427 */
428 fault = handle_mm_fault(mm, vma, address, write);
429 if (unlikely(fault & VM_FAULT_ERROR)) {
430 if (fault & VM_FAULT_OOM)
431 goto out_of_memory;
432 else if (fault & VM_FAULT_SIGBUS)
433 goto do_sigbus;
434 BUG();
435 }
436 if (fault & VM_FAULT_MAJOR)
437 tsk->maj_flt++;
438 else
439 tsk->min_flt++;
440
441 /*
442 * Did it hit the DOS screen memory VA from vm86 mode?
443 */
444 if (regs->eflags & VM_MASK) {
445 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
446 if (bit < 32)
447 tsk->thread.screen_bitmap |= 1 << bit;
448 }
449 up_read(&mm->mmap_sem);
450 return;
451
452 /*
453 * Something tried to access memory that isn't in our memory map..
454 * Fix it, but check if it's kernel or user first..
455 */
456 bad_area:
457 up_read(&mm->mmap_sem);
458
459 bad_area_nosemaphore:
460 /* User mode accesses just cause a SIGSEGV */
461 if (error_code & 4) {
462 /*
463 * It's possible to have interrupts off here.
464 */
465 local_irq_enable();
466
467 /*
468 * Valid to do another page fault here because this one came
469 * from user space.
470 */
471 if (is_prefetch(regs, address, error_code))
472 return;
473
474 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
475 printk_ratelimit()) {
476 printk("%s%s[%d]: segfault at %08lx eip %08lx "
477 "esp %08lx error %lx\n",
478 tsk->pid > 1 ? KERN_INFO : KERN_EMERG,
479 tsk->comm, tsk->pid, address, regs->eip,
480 regs->esp, error_code);
481 }
482 tsk->thread.cr2 = address;
483 /* Kernel addresses are always protection faults */
484 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
485 tsk->thread.trap_no = 14;
486 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
487 return;
488 }
489
490 #ifdef CONFIG_X86_F00F_BUG
491 /*
492 * Pentium F0 0F C7 C8 bug workaround.
493 */
494 if (boot_cpu_data.f00f_bug) {
495 unsigned long nr;
496
497 nr = (address - idt_descr.address) >> 3;
498
499 if (nr == 6) {
500 do_invalid_op(regs, 0);
501 return;
502 }
503 }
504 #endif
505
506 no_context:
507 /* Are we prepared to handle this kernel fault? */
508 if (fixup_exception(regs))
509 return;
510
511 /*
512 * Valid to do another page fault here, because if this fault
513 * had been triggered by is_prefetch fixup_exception would have
514 * handled it.
515 */
516 if (is_prefetch(regs, address, error_code))
517 return;
518
519 /*
520 * Oops. The kernel tried to access some bad page. We'll have to
521 * terminate things with extreme prejudice.
522 */
523
524 bust_spinlocks(1);
525
526 if (oops_may_print()) {
527 __typeof__(pte_val(__pte(0))) page;
528
529 #ifdef CONFIG_X86_PAE
530 if (error_code & 16) {
531 pte_t *pte = lookup_address(address);
532
533 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
534 printk(KERN_CRIT "kernel tried to execute "
535 "NX-protected page - exploit attempt? "
536 "(uid: %d)\n", current->uid);
537 }
538 #endif
539 if (address < PAGE_SIZE)
540 printk(KERN_ALERT "BUG: unable to handle kernel NULL "
541 "pointer dereference");
542 else
543 printk(KERN_ALERT "BUG: unable to handle kernel paging"
544 " request");
545 printk(" at virtual address %08lx\n",address);
546 printk(KERN_ALERT " printing eip:\n");
547 printk("%08lx\n", regs->eip);
548
549 page = read_cr3();
550 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
551 #ifdef CONFIG_X86_PAE
552 printk(KERN_ALERT "*pdpt = %016Lx\n", page);
553 if ((page >> PAGE_SHIFT) < max_low_pfn
554 && page & _PAGE_PRESENT) {
555 page &= PAGE_MASK;
556 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
557 & (PTRS_PER_PMD - 1)];
558 printk(KERN_ALERT "*pde = %016Lx\n", page);
559 page &= ~_PAGE_NX;
560 }
561 #else
562 printk(KERN_ALERT "*pde = %08lx\n", page);
563 #endif
564
565 /*
566 * We must not directly access the pte in the highpte
567 * case if the page table is located in highmem.
568 * And let's rather not kmap-atomic the pte, just in case
569 * it's allocated already.
570 */
571 if ((page >> PAGE_SHIFT) < max_low_pfn
572 && (page & _PAGE_PRESENT)) {
573 page &= PAGE_MASK;
574 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
575 & (PTRS_PER_PTE - 1)];
576 printk(KERN_ALERT "*pte = %0*Lx\n", sizeof(page)*2, (u64)page);
577 }
578 }
579
580 tsk->thread.cr2 = address;
581 tsk->thread.trap_no = 14;
582 tsk->thread.error_code = error_code;
583 die("Oops", regs, error_code);
584 bust_spinlocks(0);
585 do_exit(SIGKILL);
586
587 /*
588 * We ran out of memory, or some other thing happened to us that made
589 * us unable to handle the page fault gracefully.
590 */
591 out_of_memory:
592 up_read(&mm->mmap_sem);
593 if (is_init(tsk)) {
594 yield();
595 down_read(&mm->mmap_sem);
596 goto survive;
597 }
598 printk("VM: killing process %s\n", tsk->comm);
599 if (error_code & 4)
600 do_exit(SIGKILL);
601 goto no_context;
602
603 do_sigbus:
604 up_read(&mm->mmap_sem);
605
606 /* Kernel mode? Handle exceptions or die */
607 if (!(error_code & 4))
608 goto no_context;
609
610 /* User space => ok to do another page fault */
611 if (is_prefetch(regs, address, error_code))
612 return;
613
614 tsk->thread.cr2 = address;
615 tsk->thread.error_code = error_code;
616 tsk->thread.trap_no = 14;
617 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
618 }
619
620 void vmalloc_sync_all(void)
621 {
622 /*
623 * Note that races in the updates of insync and start aren't
624 * problematic: insync can only get set bits added, and updates to
625 * start are only improving performance (without affecting correctness
626 * if undone).
627 */
628 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
629 static unsigned long start = TASK_SIZE;
630 unsigned long address;
631
632 if (SHARED_KERNEL_PMD)
633 return;
634
635 BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
636 for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
637 if (!test_bit(pgd_index(address), insync)) {
638 unsigned long flags;
639 struct page *page;
640
641 spin_lock_irqsave(&pgd_lock, flags);
642 for (page = pgd_list; page; page =
643 (struct page *)page->index)
644 if (!vmalloc_sync_one(page_address(page),
645 address)) {
646 BUG_ON(page != pgd_list);
647 break;
648 }
649 spin_unlock_irqrestore(&pgd_lock, flags);
650 if (!page)
651 set_bit(pgd_index(address), insync);
652 }
653 if (address == start && test_bit(pgd_index(address), insync))
654 start = address + PGDIR_SIZE;
655 }
656 }
This page took 0.05331 seconds and 5 git commands to generate.