typo fixes: infomation -> information
[deliverable/linux.git] / arch / i386 / mm / fault.c
1 /*
2 * linux/arch/i386/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 */
6
7 #include <linux/signal.h>
8 #include <linux/sched.h>
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/string.h>
12 #include <linux/types.h>
13 #include <linux/ptrace.h>
14 #include <linux/mman.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/smp_lock.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/tty.h>
21 #include <linux/vt_kern.h> /* For unblank_screen() */
22 #include <linux/highmem.h>
23 #include <linux/module.h>
24 #include <linux/kprobes.h>
25
26 #include <asm/system.h>
27 #include <asm/uaccess.h>
28 #include <asm/desc.h>
29 #include <asm/kdebug.h>
30
31 extern void die(const char *,struct pt_regs *,long);
32
33 #ifdef CONFIG_KPROBES
34 ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain);
35 int register_page_fault_notifier(struct notifier_block *nb)
36 {
37 vmalloc_sync_all();
38 return atomic_notifier_chain_register(&notify_page_fault_chain, nb);
39 }
40
41 int unregister_page_fault_notifier(struct notifier_block *nb)
42 {
43 return atomic_notifier_chain_unregister(&notify_page_fault_chain, nb);
44 }
45
46 static inline int notify_page_fault(enum die_val val, const char *str,
47 struct pt_regs *regs, long err, int trap, int sig)
48 {
49 struct die_args args = {
50 .regs = regs,
51 .str = str,
52 .err = err,
53 .trapnr = trap,
54 .signr = sig
55 };
56 return atomic_notifier_call_chain(&notify_page_fault_chain, val, &args);
57 }
58 #else
59 static inline int notify_page_fault(enum die_val val, const char *str,
60 struct pt_regs *regs, long err, int trap, int sig)
61 {
62 return NOTIFY_DONE;
63 }
64 #endif
65
66
67 /*
68 * Unlock any spinlocks which will prevent us from getting the
69 * message out
70 */
71 void bust_spinlocks(int yes)
72 {
73 int loglevel_save = console_loglevel;
74
75 if (yes) {
76 oops_in_progress = 1;
77 return;
78 }
79 #ifdef CONFIG_VT
80 unblank_screen();
81 #endif
82 oops_in_progress = 0;
83 /*
84 * OK, the message is on the console. Now we call printk()
85 * without oops_in_progress set so that printk will give klogd
86 * a poke. Hold onto your hats...
87 */
88 console_loglevel = 15; /* NMI oopser may have shut the console up */
89 printk(" ");
90 console_loglevel = loglevel_save;
91 }
92
93 /*
94 * Return EIP plus the CS segment base. The segment limit is also
95 * adjusted, clamped to the kernel/user address space (whichever is
96 * appropriate), and returned in *eip_limit.
97 *
98 * The segment is checked, because it might have been changed by another
99 * task between the original faulting instruction and here.
100 *
101 * If CS is no longer a valid code segment, or if EIP is beyond the
102 * limit, or if it is a kernel address when CS is not a kernel segment,
103 * then the returned value will be greater than *eip_limit.
104 *
105 * This is slow, but is very rarely executed.
106 */
107 static inline unsigned long get_segment_eip(struct pt_regs *regs,
108 unsigned long *eip_limit)
109 {
110 unsigned long eip = regs->eip;
111 unsigned seg = regs->xcs & 0xffff;
112 u32 seg_ar, seg_limit, base, *desc;
113
114 /* Unlikely, but must come before segment checks. */
115 if (unlikely(regs->eflags & VM_MASK)) {
116 base = seg << 4;
117 *eip_limit = base + 0xffff;
118 return base + (eip & 0xffff);
119 }
120
121 /* The standard kernel/user address space limit. */
122 *eip_limit = (seg & 3) ? USER_DS.seg : KERNEL_DS.seg;
123
124 /* By far the most common cases. */
125 if (likely(seg == __USER_CS || seg == __KERNEL_CS))
126 return eip;
127
128 /* Check the segment exists, is within the current LDT/GDT size,
129 that kernel/user (ring 0..3) has the appropriate privilege,
130 that it's a code segment, and get the limit. */
131 __asm__ ("larl %3,%0; lsll %3,%1"
132 : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg));
133 if ((~seg_ar & 0x9800) || eip > seg_limit) {
134 *eip_limit = 0;
135 return 1; /* So that returned eip > *eip_limit. */
136 }
137
138 /* Get the GDT/LDT descriptor base.
139 When you look for races in this code remember that
140 LDT and other horrors are only used in user space. */
141 if (seg & (1<<2)) {
142 /* Must lock the LDT while reading it. */
143 down(&current->mm->context.sem);
144 desc = current->mm->context.ldt;
145 desc = (void *)desc + (seg & ~7);
146 } else {
147 /* Must disable preemption while reading the GDT. */
148 desc = (u32 *)get_cpu_gdt_table(get_cpu());
149 desc = (void *)desc + (seg & ~7);
150 }
151
152 /* Decode the code segment base from the descriptor */
153 base = get_desc_base((unsigned long *)desc);
154
155 if (seg & (1<<2)) {
156 up(&current->mm->context.sem);
157 } else
158 put_cpu();
159
160 /* Adjust EIP and segment limit, and clamp at the kernel limit.
161 It's legitimate for segments to wrap at 0xffffffff. */
162 seg_limit += base;
163 if (seg_limit < *eip_limit && seg_limit >= base)
164 *eip_limit = seg_limit;
165 return eip + base;
166 }
167
168 /*
169 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
170 * Check that here and ignore it.
171 */
172 static int __is_prefetch(struct pt_regs *regs, unsigned long addr)
173 {
174 unsigned long limit;
175 unsigned long instr = get_segment_eip (regs, &limit);
176 int scan_more = 1;
177 int prefetch = 0;
178 int i;
179
180 for (i = 0; scan_more && i < 15; i++) {
181 unsigned char opcode;
182 unsigned char instr_hi;
183 unsigned char instr_lo;
184
185 if (instr > limit)
186 break;
187 if (__get_user(opcode, (unsigned char __user *) instr))
188 break;
189
190 instr_hi = opcode & 0xf0;
191 instr_lo = opcode & 0x0f;
192 instr++;
193
194 switch (instr_hi) {
195 case 0x20:
196 case 0x30:
197 /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */
198 scan_more = ((instr_lo & 7) == 0x6);
199 break;
200
201 case 0x60:
202 /* 0x64 thru 0x67 are valid prefixes in all modes. */
203 scan_more = (instr_lo & 0xC) == 0x4;
204 break;
205 case 0xF0:
206 /* 0xF0, 0xF2, and 0xF3 are valid prefixes */
207 scan_more = !instr_lo || (instr_lo>>1) == 1;
208 break;
209 case 0x00:
210 /* Prefetch instruction is 0x0F0D or 0x0F18 */
211 scan_more = 0;
212 if (instr > limit)
213 break;
214 if (__get_user(opcode, (unsigned char __user *) instr))
215 break;
216 prefetch = (instr_lo == 0xF) &&
217 (opcode == 0x0D || opcode == 0x18);
218 break;
219 default:
220 scan_more = 0;
221 break;
222 }
223 }
224 return prefetch;
225 }
226
227 static inline int is_prefetch(struct pt_regs *regs, unsigned long addr,
228 unsigned long error_code)
229 {
230 if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
231 boot_cpu_data.x86 >= 6)) {
232 /* Catch an obscure case of prefetch inside an NX page. */
233 if (nx_enabled && (error_code & 16))
234 return 0;
235 return __is_prefetch(regs, addr);
236 }
237 return 0;
238 }
239
240 static noinline void force_sig_info_fault(int si_signo, int si_code,
241 unsigned long address, struct task_struct *tsk)
242 {
243 siginfo_t info;
244
245 info.si_signo = si_signo;
246 info.si_errno = 0;
247 info.si_code = si_code;
248 info.si_addr = (void __user *)address;
249 force_sig_info(si_signo, &info, tsk);
250 }
251
252 fastcall void do_invalid_op(struct pt_regs *, unsigned long);
253
254 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
255 {
256 unsigned index = pgd_index(address);
257 pgd_t *pgd_k;
258 pud_t *pud, *pud_k;
259 pmd_t *pmd, *pmd_k;
260
261 pgd += index;
262 pgd_k = init_mm.pgd + index;
263
264 if (!pgd_present(*pgd_k))
265 return NULL;
266
267 /*
268 * set_pgd(pgd, *pgd_k); here would be useless on PAE
269 * and redundant with the set_pmd() on non-PAE. As would
270 * set_pud.
271 */
272
273 pud = pud_offset(pgd, address);
274 pud_k = pud_offset(pgd_k, address);
275 if (!pud_present(*pud_k))
276 return NULL;
277
278 pmd = pmd_offset(pud, address);
279 pmd_k = pmd_offset(pud_k, address);
280 if (!pmd_present(*pmd_k))
281 return NULL;
282 if (!pmd_present(*pmd))
283 set_pmd(pmd, *pmd_k);
284 else
285 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
286 return pmd_k;
287 }
288
289 /*
290 * Handle a fault on the vmalloc or module mapping area
291 *
292 * This assumes no large pages in there.
293 */
294 static inline int vmalloc_fault(unsigned long address)
295 {
296 unsigned long pgd_paddr;
297 pmd_t *pmd_k;
298 pte_t *pte_k;
299 /*
300 * Synchronize this task's top level page-table
301 * with the 'reference' page table.
302 *
303 * Do _not_ use "current" here. We might be inside
304 * an interrupt in the middle of a task switch..
305 */
306 pgd_paddr = read_cr3();
307 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
308 if (!pmd_k)
309 return -1;
310 pte_k = pte_offset_kernel(pmd_k, address);
311 if (!pte_present(*pte_k))
312 return -1;
313 return 0;
314 }
315
316 /*
317 * This routine handles page faults. It determines the address,
318 * and the problem, and then passes it off to one of the appropriate
319 * routines.
320 *
321 * error_code:
322 * bit 0 == 0 means no page found, 1 means protection fault
323 * bit 1 == 0 means read, 1 means write
324 * bit 2 == 0 means kernel, 1 means user-mode
325 * bit 3 == 1 means use of reserved bit detected
326 * bit 4 == 1 means fault was an instruction fetch
327 */
328 fastcall void __kprobes do_page_fault(struct pt_regs *regs,
329 unsigned long error_code)
330 {
331 struct task_struct *tsk;
332 struct mm_struct *mm;
333 struct vm_area_struct * vma;
334 unsigned long address;
335 unsigned long page;
336 int write, si_code;
337
338 /* get the address */
339 address = read_cr2();
340
341 tsk = current;
342
343 si_code = SEGV_MAPERR;
344
345 /*
346 * We fault-in kernel-space virtual memory on-demand. The
347 * 'reference' page table is init_mm.pgd.
348 *
349 * NOTE! We MUST NOT take any locks for this case. We may
350 * be in an interrupt or a critical region, and should
351 * only copy the information from the master page table,
352 * nothing more.
353 *
354 * This verifies that the fault happens in kernel space
355 * (error_code & 4) == 0, and that the fault was not a
356 * protection error (error_code & 9) == 0.
357 */
358 if (unlikely(address >= TASK_SIZE)) {
359 if (!(error_code & 0x0000000d) && vmalloc_fault(address) >= 0)
360 return;
361 if (notify_page_fault(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
362 SIGSEGV) == NOTIFY_STOP)
363 return;
364 /*
365 * Don't take the mm semaphore here. If we fixup a prefetch
366 * fault we could otherwise deadlock.
367 */
368 goto bad_area_nosemaphore;
369 }
370
371 if (notify_page_fault(DIE_PAGE_FAULT, "page fault", regs, error_code, 14,
372 SIGSEGV) == NOTIFY_STOP)
373 return;
374
375 /* It's safe to allow irq's after cr2 has been saved and the vmalloc
376 fault has been handled. */
377 if (regs->eflags & (X86_EFLAGS_IF|VM_MASK))
378 local_irq_enable();
379
380 mm = tsk->mm;
381
382 /*
383 * If we're in an interrupt, have no user context or are running in an
384 * atomic region then we must not take the fault..
385 */
386 if (in_atomic() || !mm)
387 goto bad_area_nosemaphore;
388
389 /* When running in the kernel we expect faults to occur only to
390 * addresses in user space. All other faults represent errors in the
391 * kernel and should generate an OOPS. Unfortunatly, in the case of an
392 * erroneous fault occuring in a code path which already holds mmap_sem
393 * we will deadlock attempting to validate the fault against the
394 * address space. Luckily the kernel only validly references user
395 * space from well defined areas of code, which are listed in the
396 * exceptions table.
397 *
398 * As the vast majority of faults will be valid we will only perform
399 * the source reference check when there is a possibilty of a deadlock.
400 * Attempt to lock the address space, if we cannot we then validate the
401 * source. If this is invalid we can skip the address space check,
402 * thus avoiding the deadlock.
403 */
404 if (!down_read_trylock(&mm->mmap_sem)) {
405 if ((error_code & 4) == 0 &&
406 !search_exception_tables(regs->eip))
407 goto bad_area_nosemaphore;
408 down_read(&mm->mmap_sem);
409 }
410
411 vma = find_vma(mm, address);
412 if (!vma)
413 goto bad_area;
414 if (vma->vm_start <= address)
415 goto good_area;
416 if (!(vma->vm_flags & VM_GROWSDOWN))
417 goto bad_area;
418 if (error_code & 4) {
419 /*
420 * Accessing the stack below %esp is always a bug.
421 * The large cushion allows instructions like enter
422 * and pusha to work. ("enter $65535,$31" pushes
423 * 32 pointers and then decrements %esp by 65535.)
424 */
425 if (address + 65536 + 32 * sizeof(unsigned long) < regs->esp)
426 goto bad_area;
427 }
428 if (expand_stack(vma, address))
429 goto bad_area;
430 /*
431 * Ok, we have a good vm_area for this memory access, so
432 * we can handle it..
433 */
434 good_area:
435 si_code = SEGV_ACCERR;
436 write = 0;
437 switch (error_code & 3) {
438 default: /* 3: write, present */
439 #ifdef TEST_VERIFY_AREA
440 if (regs->cs == KERNEL_CS)
441 printk("WP fault at %08lx\n", regs->eip);
442 #endif
443 /* fall through */
444 case 2: /* write, not present */
445 if (!(vma->vm_flags & VM_WRITE))
446 goto bad_area;
447 write++;
448 break;
449 case 1: /* read, present */
450 goto bad_area;
451 case 0: /* read, not present */
452 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
453 goto bad_area;
454 }
455
456 survive:
457 /*
458 * If for any reason at all we couldn't handle the fault,
459 * make sure we exit gracefully rather than endlessly redo
460 * the fault.
461 */
462 switch (handle_mm_fault(mm, vma, address, write)) {
463 case VM_FAULT_MINOR:
464 tsk->min_flt++;
465 break;
466 case VM_FAULT_MAJOR:
467 tsk->maj_flt++;
468 break;
469 case VM_FAULT_SIGBUS:
470 goto do_sigbus;
471 case VM_FAULT_OOM:
472 goto out_of_memory;
473 default:
474 BUG();
475 }
476
477 /*
478 * Did it hit the DOS screen memory VA from vm86 mode?
479 */
480 if (regs->eflags & VM_MASK) {
481 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
482 if (bit < 32)
483 tsk->thread.screen_bitmap |= 1 << bit;
484 }
485 up_read(&mm->mmap_sem);
486 return;
487
488 /*
489 * Something tried to access memory that isn't in our memory map..
490 * Fix it, but check if it's kernel or user first..
491 */
492 bad_area:
493 up_read(&mm->mmap_sem);
494
495 bad_area_nosemaphore:
496 /* User mode accesses just cause a SIGSEGV */
497 if (error_code & 4) {
498 /*
499 * Valid to do another page fault here because this one came
500 * from user space.
501 */
502 if (is_prefetch(regs, address, error_code))
503 return;
504
505 tsk->thread.cr2 = address;
506 /* Kernel addresses are always protection faults */
507 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
508 tsk->thread.trap_no = 14;
509 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
510 return;
511 }
512
513 #ifdef CONFIG_X86_F00F_BUG
514 /*
515 * Pentium F0 0F C7 C8 bug workaround.
516 */
517 if (boot_cpu_data.f00f_bug) {
518 unsigned long nr;
519
520 nr = (address - idt_descr.address) >> 3;
521
522 if (nr == 6) {
523 do_invalid_op(regs, 0);
524 return;
525 }
526 }
527 #endif
528
529 no_context:
530 /* Are we prepared to handle this kernel fault? */
531 if (fixup_exception(regs))
532 return;
533
534 /*
535 * Valid to do another page fault here, because if this fault
536 * had been triggered by is_prefetch fixup_exception would have
537 * handled it.
538 */
539 if (is_prefetch(regs, address, error_code))
540 return;
541
542 /*
543 * Oops. The kernel tried to access some bad page. We'll have to
544 * terminate things with extreme prejudice.
545 */
546
547 bust_spinlocks(1);
548
549 if (oops_may_print()) {
550 #ifdef CONFIG_X86_PAE
551 if (error_code & 16) {
552 pte_t *pte = lookup_address(address);
553
554 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
555 printk(KERN_CRIT "kernel tried to execute "
556 "NX-protected page - exploit attempt? "
557 "(uid: %d)\n", current->uid);
558 }
559 #endif
560 if (address < PAGE_SIZE)
561 printk(KERN_ALERT "BUG: unable to handle kernel NULL "
562 "pointer dereference");
563 else
564 printk(KERN_ALERT "BUG: unable to handle kernel paging"
565 " request");
566 printk(" at virtual address %08lx\n",address);
567 printk(KERN_ALERT " printing eip:\n");
568 printk("%08lx\n", regs->eip);
569 }
570 page = read_cr3();
571 page = ((unsigned long *) __va(page))[address >> 22];
572 if (oops_may_print())
573 printk(KERN_ALERT "*pde = %08lx\n", page);
574 /*
575 * We must not directly access the pte in the highpte
576 * case, the page table might be allocated in highmem.
577 * And lets rather not kmap-atomic the pte, just in case
578 * it's allocated already.
579 */
580 #ifndef CONFIG_HIGHPTE
581 if ((page & 1) && oops_may_print()) {
582 page &= PAGE_MASK;
583 address &= 0x003ff000;
584 page = ((unsigned long *) __va(page))[address >> PAGE_SHIFT];
585 printk(KERN_ALERT "*pte = %08lx\n", page);
586 }
587 #endif
588 tsk->thread.cr2 = address;
589 tsk->thread.trap_no = 14;
590 tsk->thread.error_code = error_code;
591 die("Oops", regs, error_code);
592 bust_spinlocks(0);
593 do_exit(SIGKILL);
594
595 /*
596 * We ran out of memory, or some other thing happened to us that made
597 * us unable to handle the page fault gracefully.
598 */
599 out_of_memory:
600 up_read(&mm->mmap_sem);
601 if (tsk->pid == 1) {
602 yield();
603 down_read(&mm->mmap_sem);
604 goto survive;
605 }
606 printk("VM: killing process %s\n", tsk->comm);
607 if (error_code & 4)
608 do_exit(SIGKILL);
609 goto no_context;
610
611 do_sigbus:
612 up_read(&mm->mmap_sem);
613
614 /* Kernel mode? Handle exceptions or die */
615 if (!(error_code & 4))
616 goto no_context;
617
618 /* User space => ok to do another page fault */
619 if (is_prefetch(regs, address, error_code))
620 return;
621
622 tsk->thread.cr2 = address;
623 tsk->thread.error_code = error_code;
624 tsk->thread.trap_no = 14;
625 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
626 }
627
628 #ifndef CONFIG_X86_PAE
629 void vmalloc_sync_all(void)
630 {
631 /*
632 * Note that races in the updates of insync and start aren't
633 * problematic: insync can only get set bits added, and updates to
634 * start are only improving performance (without affecting correctness
635 * if undone).
636 */
637 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
638 static unsigned long start = TASK_SIZE;
639 unsigned long address;
640
641 BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
642 for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
643 if (!test_bit(pgd_index(address), insync)) {
644 unsigned long flags;
645 struct page *page;
646
647 spin_lock_irqsave(&pgd_lock, flags);
648 for (page = pgd_list; page; page =
649 (struct page *)page->index)
650 if (!vmalloc_sync_one(page_address(page),
651 address)) {
652 BUG_ON(page != pgd_list);
653 break;
654 }
655 spin_unlock_irqrestore(&pgd_lock, flags);
656 if (!page)
657 set_bit(pgd_index(address), insync);
658 }
659 if (address == start && test_bit(pgd_index(address), insync))
660 start = address + PGDIR_SIZE;
661 }
662 }
663 #endif
This page took 0.069151 seconds and 5 git commands to generate.