xen: Place vcpu_info structure into per-cpu memory
[deliverable/linux.git] / arch / i386 / xen / enlighten.c
1 /*
2 * Core of Xen paravirt_ops implementation.
3 *
4 * This file contains the xen_paravirt_ops structure itself, and the
5 * implementations for:
6 * - privileged instructions
7 * - interrupt flags
8 * - segment operations
9 * - booting and setup
10 *
11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/preempt.h>
18 #include <linux/hardirq.h>
19 #include <linux/percpu.h>
20 #include <linux/delay.h>
21 #include <linux/start_kernel.h>
22 #include <linux/sched.h>
23 #include <linux/bootmem.h>
24 #include <linux/module.h>
25 #include <linux/mm.h>
26 #include <linux/page-flags.h>
27 #include <linux/highmem.h>
28 #include <linux/smp.h>
29
30 #include <xen/interface/xen.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/interface/vcpu.h>
33 #include <xen/interface/sched.h>
34 #include <xen/features.h>
35 #include <xen/page.h>
36
37 #include <asm/paravirt.h>
38 #include <asm/page.h>
39 #include <asm/xen/hypercall.h>
40 #include <asm/xen/hypervisor.h>
41 #include <asm/fixmap.h>
42 #include <asm/processor.h>
43 #include <asm/setup.h>
44 #include <asm/desc.h>
45 #include <asm/pgtable.h>
46 #include <asm/tlbflush.h>
47 #include <asm/reboot.h>
48
49 #include "xen-ops.h"
50 #include "mmu.h"
51 #include "multicalls.h"
52
53 EXPORT_SYMBOL_GPL(hypercall_page);
54
55 DEFINE_PER_CPU(enum paravirt_lazy_mode, xen_lazy_mode);
56
57 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
58 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
59 DEFINE_PER_CPU(unsigned long, xen_cr3);
60
61 struct start_info *xen_start_info;
62 EXPORT_SYMBOL_GPL(xen_start_info);
63
64 static /* __initdata */ struct shared_info dummy_shared_info;
65
66 /*
67 * Point at some empty memory to start with. We map the real shared_info
68 * page as soon as fixmap is up and running.
69 */
70 struct shared_info *HYPERVISOR_shared_info = (void *)&dummy_shared_info;
71
72 /*
73 * Flag to determine whether vcpu info placement is available on all
74 * VCPUs. We assume it is to start with, and then set it to zero on
75 * the first failure. This is because it can succeed on some VCPUs
76 * and not others, since it can involve hypervisor memory allocation,
77 * or because the guest failed to guarantee all the appropriate
78 * constraints on all VCPUs (ie buffer can't cross a page boundary).
79 *
80 * Note that any particular CPU may be using a placed vcpu structure,
81 * but we can only optimise if the all are.
82 *
83 * 0: not available, 1: available
84 */
85 static int have_vcpu_info_placement = 1;
86
87 static void __init xen_vcpu_setup(int cpu)
88 {
89 struct vcpu_register_vcpu_info info;
90 int err;
91 struct vcpu_info *vcpup;
92
93 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
94
95 if (!have_vcpu_info_placement)
96 return; /* already tested, not available */
97
98 vcpup = &per_cpu(xen_vcpu_info, cpu);
99
100 info.mfn = virt_to_mfn(vcpup);
101 info.offset = offset_in_page(vcpup);
102
103 printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %x, offset %d\n",
104 cpu, vcpup, info.mfn, info.offset);
105
106 /* Check to see if the hypervisor will put the vcpu_info
107 structure where we want it, which allows direct access via
108 a percpu-variable. */
109 err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
110
111 if (err) {
112 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
113 have_vcpu_info_placement = 0;
114 } else {
115 /* This cpu is using the registered vcpu info, even if
116 later ones fail to. */
117 per_cpu(xen_vcpu, cpu) = vcpup;
118 printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
119 cpu, vcpup);
120 }
121 }
122
123 static void __init xen_banner(void)
124 {
125 printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
126 paravirt_ops.name);
127 printk(KERN_INFO "Hypervisor signature: %s\n", xen_start_info->magic);
128 }
129
130 static void xen_cpuid(unsigned int *eax, unsigned int *ebx,
131 unsigned int *ecx, unsigned int *edx)
132 {
133 unsigned maskedx = ~0;
134
135 /*
136 * Mask out inconvenient features, to try and disable as many
137 * unsupported kernel subsystems as possible.
138 */
139 if (*eax == 1)
140 maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
141 (1 << X86_FEATURE_ACPI) | /* disable ACPI */
142 (1 << X86_FEATURE_ACC)); /* thermal monitoring */
143
144 asm(XEN_EMULATE_PREFIX "cpuid"
145 : "=a" (*eax),
146 "=b" (*ebx),
147 "=c" (*ecx),
148 "=d" (*edx)
149 : "0" (*eax), "2" (*ecx));
150 *edx &= maskedx;
151 }
152
153 static void xen_set_debugreg(int reg, unsigned long val)
154 {
155 HYPERVISOR_set_debugreg(reg, val);
156 }
157
158 static unsigned long xen_get_debugreg(int reg)
159 {
160 return HYPERVISOR_get_debugreg(reg);
161 }
162
163 static unsigned long xen_save_fl(void)
164 {
165 struct vcpu_info *vcpu;
166 unsigned long flags;
167
168 vcpu = x86_read_percpu(xen_vcpu);
169
170 /* flag has opposite sense of mask */
171 flags = !vcpu->evtchn_upcall_mask;
172
173 /* convert to IF type flag
174 -0 -> 0x00000000
175 -1 -> 0xffffffff
176 */
177 return (-flags) & X86_EFLAGS_IF;
178 }
179
180 static unsigned long xen_save_fl_direct(void)
181 {
182 unsigned long flags;
183
184 /* flag has opposite sense of mask */
185 flags = !x86_read_percpu(xen_vcpu_info.evtchn_upcall_mask);
186
187 /* convert to IF type flag
188 -0 -> 0x00000000
189 -1 -> 0xffffffff
190 */
191 return (-flags) & X86_EFLAGS_IF;
192 }
193
194 static void xen_restore_fl(unsigned long flags)
195 {
196 struct vcpu_info *vcpu;
197
198 /* convert from IF type flag */
199 flags = !(flags & X86_EFLAGS_IF);
200
201 /* There's a one instruction preempt window here. We need to
202 make sure we're don't switch CPUs between getting the vcpu
203 pointer and updating the mask. */
204 preempt_disable();
205 vcpu = x86_read_percpu(xen_vcpu);
206 vcpu->evtchn_upcall_mask = flags;
207 preempt_enable_no_resched();
208
209 /* Doesn't matter if we get preempted here, because any
210 pending event will get dealt with anyway. */
211
212 if (flags == 0) {
213 preempt_check_resched();
214 barrier(); /* unmask then check (avoid races) */
215 if (unlikely(vcpu->evtchn_upcall_pending))
216 force_evtchn_callback();
217 }
218 }
219
220 static void xen_restore_fl_direct(unsigned long flags)
221 {
222 /* convert from IF type flag */
223 flags = !(flags & X86_EFLAGS_IF);
224
225 /* This is an atomic update, so no need to worry about
226 preemption. */
227 x86_write_percpu(xen_vcpu_info.evtchn_upcall_mask, flags);
228
229 /* If we get preempted here, then any pending event will be
230 handled anyway. */
231
232 if (flags == 0) {
233 barrier(); /* unmask then check (avoid races) */
234 if (unlikely(x86_read_percpu(xen_vcpu_info.evtchn_upcall_pending)))
235 force_evtchn_callback();
236 }
237 }
238
239 static void xen_irq_disable(void)
240 {
241 /* There's a one instruction preempt window here. We need to
242 make sure we're don't switch CPUs between getting the vcpu
243 pointer and updating the mask. */
244 preempt_disable();
245 x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1;
246 preempt_enable_no_resched();
247 }
248
249 static void xen_irq_disable_direct(void)
250 {
251 /* Atomic update, so preemption not a concern. */
252 x86_write_percpu(xen_vcpu_info.evtchn_upcall_mask, 1);
253 }
254
255 static void xen_irq_enable(void)
256 {
257 struct vcpu_info *vcpu;
258
259 /* There's a one instruction preempt window here. We need to
260 make sure we're don't switch CPUs between getting the vcpu
261 pointer and updating the mask. */
262 preempt_disable();
263 vcpu = x86_read_percpu(xen_vcpu);
264 vcpu->evtchn_upcall_mask = 0;
265 preempt_enable_no_resched();
266
267 /* Doesn't matter if we get preempted here, because any
268 pending event will get dealt with anyway. */
269
270 barrier(); /* unmask then check (avoid races) */
271 if (unlikely(vcpu->evtchn_upcall_pending))
272 force_evtchn_callback();
273 }
274
275 static void xen_irq_enable_direct(void)
276 {
277 /* Atomic update, so preemption not a concern. */
278 x86_write_percpu(xen_vcpu_info.evtchn_upcall_mask, 0);
279
280 /* Doesn't matter if we get preempted here, because any
281 pending event will get dealt with anyway. */
282
283 barrier(); /* unmask then check (avoid races) */
284 if (unlikely(x86_read_percpu(xen_vcpu_info.evtchn_upcall_pending)))
285 force_evtchn_callback();
286 }
287
288 static void xen_safe_halt(void)
289 {
290 /* Blocking includes an implicit local_irq_enable(). */
291 if (HYPERVISOR_sched_op(SCHEDOP_block, 0) != 0)
292 BUG();
293 }
294
295 static void xen_halt(void)
296 {
297 if (irqs_disabled())
298 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
299 else
300 xen_safe_halt();
301 }
302
303 static void xen_set_lazy_mode(enum paravirt_lazy_mode mode)
304 {
305 BUG_ON(preemptible());
306
307 switch (mode) {
308 case PARAVIRT_LAZY_NONE:
309 BUG_ON(x86_read_percpu(xen_lazy_mode) == PARAVIRT_LAZY_NONE);
310 break;
311
312 case PARAVIRT_LAZY_MMU:
313 case PARAVIRT_LAZY_CPU:
314 BUG_ON(x86_read_percpu(xen_lazy_mode) != PARAVIRT_LAZY_NONE);
315 break;
316
317 case PARAVIRT_LAZY_FLUSH:
318 /* flush if necessary, but don't change state */
319 if (x86_read_percpu(xen_lazy_mode) != PARAVIRT_LAZY_NONE)
320 xen_mc_flush();
321 return;
322 }
323
324 xen_mc_flush();
325 x86_write_percpu(xen_lazy_mode, mode);
326 }
327
328 static unsigned long xen_store_tr(void)
329 {
330 return 0;
331 }
332
333 static void xen_set_ldt(const void *addr, unsigned entries)
334 {
335 unsigned long linear_addr = (unsigned long)addr;
336 struct mmuext_op *op;
337 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
338
339 op = mcs.args;
340 op->cmd = MMUEXT_SET_LDT;
341 if (linear_addr) {
342 /* ldt my be vmalloced, use arbitrary_virt_to_machine */
343 xmaddr_t maddr;
344 maddr = arbitrary_virt_to_machine((unsigned long)addr);
345 linear_addr = (unsigned long)maddr.maddr;
346 }
347 op->arg1.linear_addr = linear_addr;
348 op->arg2.nr_ents = entries;
349
350 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
351
352 xen_mc_issue(PARAVIRT_LAZY_CPU);
353 }
354
355 static void xen_load_gdt(const struct Xgt_desc_struct *dtr)
356 {
357 unsigned long *frames;
358 unsigned long va = dtr->address;
359 unsigned int size = dtr->size + 1;
360 unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
361 int f;
362 struct multicall_space mcs;
363
364 /* A GDT can be up to 64k in size, which corresponds to 8192
365 8-byte entries, or 16 4k pages.. */
366
367 BUG_ON(size > 65536);
368 BUG_ON(va & ~PAGE_MASK);
369
370 mcs = xen_mc_entry(sizeof(*frames) * pages);
371 frames = mcs.args;
372
373 for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
374 frames[f] = virt_to_mfn(va);
375 make_lowmem_page_readonly((void *)va);
376 }
377
378 MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
379
380 xen_mc_issue(PARAVIRT_LAZY_CPU);
381 }
382
383 static void load_TLS_descriptor(struct thread_struct *t,
384 unsigned int cpu, unsigned int i)
385 {
386 struct desc_struct *gdt = get_cpu_gdt_table(cpu);
387 xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
388 struct multicall_space mc = __xen_mc_entry(0);
389
390 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
391 }
392
393 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
394 {
395 xen_mc_batch();
396
397 load_TLS_descriptor(t, cpu, 0);
398 load_TLS_descriptor(t, cpu, 1);
399 load_TLS_descriptor(t, cpu, 2);
400
401 xen_mc_issue(PARAVIRT_LAZY_CPU);
402
403 /*
404 * XXX sleazy hack: If we're being called in a lazy-cpu zone,
405 * it means we're in a context switch, and %gs has just been
406 * saved. This means we can zero it out to prevent faults on
407 * exit from the hypervisor if the next process has no %gs.
408 * Either way, it has been saved, and the new value will get
409 * loaded properly. This will go away as soon as Xen has been
410 * modified to not save/restore %gs for normal hypercalls.
411 */
412 if (xen_get_lazy_mode() == PARAVIRT_LAZY_CPU)
413 loadsegment(gs, 0);
414 }
415
416 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
417 u32 low, u32 high)
418 {
419 unsigned long lp = (unsigned long)&dt[entrynum];
420 xmaddr_t mach_lp = virt_to_machine(lp);
421 u64 entry = (u64)high << 32 | low;
422
423 preempt_disable();
424
425 xen_mc_flush();
426 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
427 BUG();
428
429 preempt_enable();
430 }
431
432 static int cvt_gate_to_trap(int vector, u32 low, u32 high,
433 struct trap_info *info)
434 {
435 u8 type, dpl;
436
437 type = (high >> 8) & 0x1f;
438 dpl = (high >> 13) & 3;
439
440 if (type != 0xf && type != 0xe)
441 return 0;
442
443 info->vector = vector;
444 info->address = (high & 0xffff0000) | (low & 0x0000ffff);
445 info->cs = low >> 16;
446 info->flags = dpl;
447 /* interrupt gates clear IF */
448 if (type == 0xe)
449 info->flags |= 4;
450
451 return 1;
452 }
453
454 /* Locations of each CPU's IDT */
455 static DEFINE_PER_CPU(struct Xgt_desc_struct, idt_desc);
456
457 /* Set an IDT entry. If the entry is part of the current IDT, then
458 also update Xen. */
459 static void xen_write_idt_entry(struct desc_struct *dt, int entrynum,
460 u32 low, u32 high)
461 {
462 unsigned long p = (unsigned long)&dt[entrynum];
463 unsigned long start, end;
464
465 preempt_disable();
466
467 start = __get_cpu_var(idt_desc).address;
468 end = start + __get_cpu_var(idt_desc).size + 1;
469
470 xen_mc_flush();
471
472 write_dt_entry(dt, entrynum, low, high);
473
474 if (p >= start && (p + 8) <= end) {
475 struct trap_info info[2];
476
477 info[1].address = 0;
478
479 if (cvt_gate_to_trap(entrynum, low, high, &info[0]))
480 if (HYPERVISOR_set_trap_table(info))
481 BUG();
482 }
483
484 preempt_enable();
485 }
486
487 static void xen_convert_trap_info(const struct Xgt_desc_struct *desc,
488 struct trap_info *traps)
489 {
490 unsigned in, out, count;
491
492 count = (desc->size+1) / 8;
493 BUG_ON(count > 256);
494
495 for (in = out = 0; in < count; in++) {
496 const u32 *entry = (u32 *)(desc->address + in * 8);
497
498 if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
499 out++;
500 }
501 traps[out].address = 0;
502 }
503
504 void xen_copy_trap_info(struct trap_info *traps)
505 {
506 const struct Xgt_desc_struct *desc = &__get_cpu_var(idt_desc);
507
508 xen_convert_trap_info(desc, traps);
509 }
510
511 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
512 hold a spinlock to protect the static traps[] array (static because
513 it avoids allocation, and saves stack space). */
514 static void xen_load_idt(const struct Xgt_desc_struct *desc)
515 {
516 static DEFINE_SPINLOCK(lock);
517 static struct trap_info traps[257];
518
519 spin_lock(&lock);
520
521 __get_cpu_var(idt_desc) = *desc;
522
523 xen_convert_trap_info(desc, traps);
524
525 xen_mc_flush();
526 if (HYPERVISOR_set_trap_table(traps))
527 BUG();
528
529 spin_unlock(&lock);
530 }
531
532 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
533 they're handled differently. */
534 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
535 u32 low, u32 high)
536 {
537 preempt_disable();
538
539 switch ((high >> 8) & 0xff) {
540 case DESCTYPE_LDT:
541 case DESCTYPE_TSS:
542 /* ignore */
543 break;
544
545 default: {
546 xmaddr_t maddr = virt_to_machine(&dt[entry]);
547 u64 desc = (u64)high << 32 | low;
548
549 xen_mc_flush();
550 if (HYPERVISOR_update_descriptor(maddr.maddr, desc))
551 BUG();
552 }
553
554 }
555
556 preempt_enable();
557 }
558
559 static void xen_load_esp0(struct tss_struct *tss,
560 struct thread_struct *thread)
561 {
562 struct multicall_space mcs = xen_mc_entry(0);
563 MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->esp0);
564 xen_mc_issue(PARAVIRT_LAZY_CPU);
565 }
566
567 static void xen_set_iopl_mask(unsigned mask)
568 {
569 struct physdev_set_iopl set_iopl;
570
571 /* Force the change at ring 0. */
572 set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
573 HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
574 }
575
576 static void xen_io_delay(void)
577 {
578 }
579
580 #ifdef CONFIG_X86_LOCAL_APIC
581 static unsigned long xen_apic_read(unsigned long reg)
582 {
583 return 0;
584 }
585
586 static void xen_apic_write(unsigned long reg, unsigned long val)
587 {
588 /* Warn to see if there's any stray references */
589 WARN_ON(1);
590 }
591 #endif
592
593 static void xen_flush_tlb(void)
594 {
595 struct mmuext_op *op;
596 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
597
598 op = mcs.args;
599 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
600 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
601
602 xen_mc_issue(PARAVIRT_LAZY_MMU);
603 }
604
605 static void xen_flush_tlb_single(unsigned long addr)
606 {
607 struct mmuext_op *op;
608 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
609
610 op = mcs.args;
611 op->cmd = MMUEXT_INVLPG_LOCAL;
612 op->arg1.linear_addr = addr & PAGE_MASK;
613 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
614
615 xen_mc_issue(PARAVIRT_LAZY_MMU);
616 }
617
618 static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm,
619 unsigned long va)
620 {
621 struct {
622 struct mmuext_op op;
623 cpumask_t mask;
624 } *args;
625 cpumask_t cpumask = *cpus;
626 struct multicall_space mcs;
627
628 /*
629 * A couple of (to be removed) sanity checks:
630 *
631 * - current CPU must not be in mask
632 * - mask must exist :)
633 */
634 BUG_ON(cpus_empty(cpumask));
635 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
636 BUG_ON(!mm);
637
638 /* If a CPU which we ran on has gone down, OK. */
639 cpus_and(cpumask, cpumask, cpu_online_map);
640 if (cpus_empty(cpumask))
641 return;
642
643 mcs = xen_mc_entry(sizeof(*args));
644 args = mcs.args;
645 args->mask = cpumask;
646 args->op.arg2.vcpumask = &args->mask;
647
648 if (va == TLB_FLUSH_ALL) {
649 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
650 } else {
651 args->op.cmd = MMUEXT_INVLPG_MULTI;
652 args->op.arg1.linear_addr = va;
653 }
654
655 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
656
657 xen_mc_issue(PARAVIRT_LAZY_MMU);
658 }
659
660 static void xen_write_cr2(unsigned long cr2)
661 {
662 x86_read_percpu(xen_vcpu)->arch.cr2 = cr2;
663 }
664
665 static unsigned long xen_read_cr2(void)
666 {
667 return x86_read_percpu(xen_vcpu)->arch.cr2;
668 }
669
670 static unsigned long xen_read_cr2_direct(void)
671 {
672 return x86_read_percpu(xen_vcpu_info.arch.cr2);
673 }
674
675 static void xen_write_cr4(unsigned long cr4)
676 {
677 /* never allow TSC to be disabled */
678 native_write_cr4(cr4 & ~X86_CR4_TSD);
679 }
680
681 static unsigned long xen_read_cr3(void)
682 {
683 return x86_read_percpu(xen_cr3);
684 }
685
686 static void xen_write_cr3(unsigned long cr3)
687 {
688 BUG_ON(preemptible());
689
690 if (cr3 == x86_read_percpu(xen_cr3)) {
691 /* just a simple tlb flush */
692 xen_flush_tlb();
693 return;
694 }
695
696 x86_write_percpu(xen_cr3, cr3);
697
698
699 {
700 struct mmuext_op *op;
701 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
702 unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));
703
704 op = mcs.args;
705 op->cmd = MMUEXT_NEW_BASEPTR;
706 op->arg1.mfn = mfn;
707
708 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
709
710 xen_mc_issue(PARAVIRT_LAZY_CPU);
711 }
712 }
713
714 /* Early in boot, while setting up the initial pagetable, assume
715 everything is pinned. */
716 static __init void xen_alloc_pt_init(struct mm_struct *mm, u32 pfn)
717 {
718 BUG_ON(mem_map); /* should only be used early */
719 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
720 }
721
722 /* This needs to make sure the new pte page is pinned iff its being
723 attached to a pinned pagetable. */
724 static void xen_alloc_pt(struct mm_struct *mm, u32 pfn)
725 {
726 struct page *page = pfn_to_page(pfn);
727
728 if (PagePinned(virt_to_page(mm->pgd))) {
729 SetPagePinned(page);
730
731 if (!PageHighMem(page))
732 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
733 else
734 /* make sure there are no stray mappings of
735 this page */
736 kmap_flush_unused();
737 }
738 }
739
740 /* This should never happen until we're OK to use struct page */
741 static void xen_release_pt(u32 pfn)
742 {
743 struct page *page = pfn_to_page(pfn);
744
745 if (PagePinned(page)) {
746 if (!PageHighMem(page))
747 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
748 }
749 }
750
751 #ifdef CONFIG_HIGHPTE
752 static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
753 {
754 pgprot_t prot = PAGE_KERNEL;
755
756 if (PagePinned(page))
757 prot = PAGE_KERNEL_RO;
758
759 if (0 && PageHighMem(page))
760 printk("mapping highpte %lx type %d prot %s\n",
761 page_to_pfn(page), type,
762 (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
763
764 return kmap_atomic_prot(page, type, prot);
765 }
766 #endif
767
768 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
769 {
770 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
771 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
772 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
773 pte_val_ma(pte));
774
775 return pte;
776 }
777
778 /* Init-time set_pte while constructing initial pagetables, which
779 doesn't allow RO pagetable pages to be remapped RW */
780 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
781 {
782 pte = mask_rw_pte(ptep, pte);
783
784 xen_set_pte(ptep, pte);
785 }
786
787 static __init void xen_pagetable_setup_start(pgd_t *base)
788 {
789 pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base;
790
791 /* special set_pte for pagetable initialization */
792 paravirt_ops.set_pte = xen_set_pte_init;
793
794 init_mm.pgd = base;
795 /*
796 * copy top-level of Xen-supplied pagetable into place. For
797 * !PAE we can use this as-is, but for PAE it is a stand-in
798 * while we copy the pmd pages.
799 */
800 memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t));
801
802 if (PTRS_PER_PMD > 1) {
803 int i;
804 /*
805 * For PAE, need to allocate new pmds, rather than
806 * share Xen's, since Xen doesn't like pmd's being
807 * shared between address spaces.
808 */
809 for (i = 0; i < PTRS_PER_PGD; i++) {
810 if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) {
811 pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);
812
813 memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
814 PAGE_SIZE);
815
816 make_lowmem_page_readonly(pmd);
817
818 set_pgd(&base[i], __pgd(1 + __pa(pmd)));
819 } else
820 pgd_clear(&base[i]);
821 }
822 }
823
824 /* make sure zero_page is mapped RO so we can use it in pagetables */
825 make_lowmem_page_readonly(empty_zero_page);
826 make_lowmem_page_readonly(base);
827 /*
828 * Switch to new pagetable. This is done before
829 * pagetable_init has done anything so that the new pages
830 * added to the table can be prepared properly for Xen.
831 */
832 xen_write_cr3(__pa(base));
833 }
834
835 static __init void xen_pagetable_setup_done(pgd_t *base)
836 {
837 /* This will work as long as patching hasn't happened yet
838 (which it hasn't) */
839 paravirt_ops.alloc_pt = xen_alloc_pt;
840 paravirt_ops.set_pte = xen_set_pte;
841
842 if (!xen_feature(XENFEAT_auto_translated_physmap)) {
843 /*
844 * Create a mapping for the shared info page.
845 * Should be set_fixmap(), but shared_info is a machine
846 * address with no corresponding pseudo-phys address.
847 */
848 set_pte_mfn(fix_to_virt(FIX_PARAVIRT_BOOTMAP),
849 PFN_DOWN(xen_start_info->shared_info),
850 PAGE_KERNEL);
851
852 HYPERVISOR_shared_info =
853 (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
854
855 } else
856 HYPERVISOR_shared_info =
857 (struct shared_info *)__va(xen_start_info->shared_info);
858
859 /* Actually pin the pagetable down, but we can't set PG_pinned
860 yet because the page structures don't exist yet. */
861 {
862 struct mmuext_op op;
863 #ifdef CONFIG_X86_PAE
864 op.cmd = MMUEXT_PIN_L3_TABLE;
865 #else
866 op.cmd = MMUEXT_PIN_L3_TABLE;
867 #endif
868 op.arg1.mfn = pfn_to_mfn(PFN_DOWN(__pa(base)));
869 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
870 BUG();
871 }
872 }
873
874 /* This is called once we have the cpu_possible_map */
875 void __init xen_setup_vcpu_info_placement(void)
876 {
877 int cpu;
878
879 for_each_possible_cpu(cpu)
880 xen_vcpu_setup(cpu);
881
882 /* xen_vcpu_setup managed to place the vcpu_info within the
883 percpu area for all cpus, so make use of it */
884 if (have_vcpu_info_placement) {
885 printk(KERN_INFO "Xen: using vcpu_info placement\n");
886
887 paravirt_ops.save_fl = xen_save_fl_direct;
888 paravirt_ops.restore_fl = xen_restore_fl_direct;
889 paravirt_ops.irq_disable = xen_irq_disable_direct;
890 paravirt_ops.irq_enable = xen_irq_enable_direct;
891 paravirt_ops.read_cr2 = xen_read_cr2_direct;
892 }
893 }
894
895 static const struct paravirt_ops xen_paravirt_ops __initdata = {
896 .paravirt_enabled = 1,
897 .shared_kernel_pmd = 0,
898
899 .name = "Xen",
900 .banner = xen_banner,
901
902 .patch = paravirt_patch_default,
903
904 .memory_setup = xen_memory_setup,
905 .arch_setup = xen_arch_setup,
906 .init_IRQ = xen_init_IRQ,
907 .post_allocator_init = xen_mark_init_mm_pinned,
908
909 .time_init = xen_time_init,
910 .set_wallclock = xen_set_wallclock,
911 .get_wallclock = xen_get_wallclock,
912 .get_cpu_khz = xen_cpu_khz,
913 .sched_clock = xen_sched_clock,
914
915 .cpuid = xen_cpuid,
916
917 .set_debugreg = xen_set_debugreg,
918 .get_debugreg = xen_get_debugreg,
919
920 .clts = native_clts,
921
922 .read_cr0 = native_read_cr0,
923 .write_cr0 = native_write_cr0,
924
925 .read_cr2 = xen_read_cr2,
926 .write_cr2 = xen_write_cr2,
927
928 .read_cr3 = xen_read_cr3,
929 .write_cr3 = xen_write_cr3,
930
931 .read_cr4 = native_read_cr4,
932 .read_cr4_safe = native_read_cr4_safe,
933 .write_cr4 = xen_write_cr4,
934
935 .save_fl = xen_save_fl,
936 .restore_fl = xen_restore_fl,
937 .irq_disable = xen_irq_disable,
938 .irq_enable = xen_irq_enable,
939 .safe_halt = xen_safe_halt,
940 .halt = xen_halt,
941 .wbinvd = native_wbinvd,
942
943 .read_msr = native_read_msr_safe,
944 .write_msr = native_write_msr_safe,
945 .read_tsc = native_read_tsc,
946 .read_pmc = native_read_pmc,
947
948 .iret = (void *)&hypercall_page[__HYPERVISOR_iret],
949 .irq_enable_sysexit = NULL, /* never called */
950
951 .load_tr_desc = paravirt_nop,
952 .set_ldt = xen_set_ldt,
953 .load_gdt = xen_load_gdt,
954 .load_idt = xen_load_idt,
955 .load_tls = xen_load_tls,
956
957 .store_gdt = native_store_gdt,
958 .store_idt = native_store_idt,
959 .store_tr = xen_store_tr,
960
961 .write_ldt_entry = xen_write_ldt_entry,
962 .write_gdt_entry = xen_write_gdt_entry,
963 .write_idt_entry = xen_write_idt_entry,
964 .load_esp0 = xen_load_esp0,
965
966 .set_iopl_mask = xen_set_iopl_mask,
967 .io_delay = xen_io_delay,
968
969 #ifdef CONFIG_X86_LOCAL_APIC
970 .apic_write = xen_apic_write,
971 .apic_write_atomic = xen_apic_write,
972 .apic_read = xen_apic_read,
973 .setup_boot_clock = paravirt_nop,
974 .setup_secondary_clock = paravirt_nop,
975 .startup_ipi_hook = paravirt_nop,
976 #endif
977
978 .flush_tlb_user = xen_flush_tlb,
979 .flush_tlb_kernel = xen_flush_tlb,
980 .flush_tlb_single = xen_flush_tlb_single,
981 .flush_tlb_others = xen_flush_tlb_others,
982
983 .pte_update = paravirt_nop,
984 .pte_update_defer = paravirt_nop,
985
986 .pagetable_setup_start = xen_pagetable_setup_start,
987 .pagetable_setup_done = xen_pagetable_setup_done,
988
989 .alloc_pt = xen_alloc_pt_init,
990 .release_pt = xen_release_pt,
991 .alloc_pd = paravirt_nop,
992 .alloc_pd_clone = paravirt_nop,
993 .release_pd = paravirt_nop,
994
995 #ifdef CONFIG_HIGHPTE
996 .kmap_atomic_pte = xen_kmap_atomic_pte,
997 #endif
998
999 .set_pte = NULL, /* see xen_pagetable_setup_* */
1000 .set_pte_at = xen_set_pte_at,
1001 .set_pmd = xen_set_pmd,
1002
1003 .pte_val = xen_pte_val,
1004 .pgd_val = xen_pgd_val,
1005
1006 .make_pte = xen_make_pte,
1007 .make_pgd = xen_make_pgd,
1008
1009 #ifdef CONFIG_X86_PAE
1010 .set_pte_atomic = xen_set_pte_atomic,
1011 .set_pte_present = xen_set_pte_at,
1012 .set_pud = xen_set_pud,
1013 .pte_clear = xen_pte_clear,
1014 .pmd_clear = xen_pmd_clear,
1015
1016 .make_pmd = xen_make_pmd,
1017 .pmd_val = xen_pmd_val,
1018 #endif /* PAE */
1019
1020 .activate_mm = xen_activate_mm,
1021 .dup_mmap = xen_dup_mmap,
1022 .exit_mmap = xen_exit_mmap,
1023
1024 .set_lazy_mode = xen_set_lazy_mode,
1025 };
1026
1027 #ifdef CONFIG_SMP
1028 static const struct smp_ops xen_smp_ops __initdata = {
1029 .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
1030 .smp_prepare_cpus = xen_smp_prepare_cpus,
1031 .cpu_up = xen_cpu_up,
1032 .smp_cpus_done = xen_smp_cpus_done,
1033
1034 .smp_send_stop = xen_smp_send_stop,
1035 .smp_send_reschedule = xen_smp_send_reschedule,
1036 .smp_call_function_mask = xen_smp_call_function_mask,
1037 };
1038 #endif /* CONFIG_SMP */
1039
1040 static void xen_reboot(int reason)
1041 {
1042 #ifdef CONFIG_SMP
1043 smp_send_stop();
1044 #endif
1045
1046 if (HYPERVISOR_sched_op(SCHEDOP_shutdown, reason))
1047 BUG();
1048 }
1049
1050 static void xen_restart(char *msg)
1051 {
1052 xen_reboot(SHUTDOWN_reboot);
1053 }
1054
1055 static void xen_emergency_restart(void)
1056 {
1057 xen_reboot(SHUTDOWN_reboot);
1058 }
1059
1060 static void xen_machine_halt(void)
1061 {
1062 xen_reboot(SHUTDOWN_poweroff);
1063 }
1064
1065 static void xen_crash_shutdown(struct pt_regs *regs)
1066 {
1067 xen_reboot(SHUTDOWN_crash);
1068 }
1069
1070 static const struct machine_ops __initdata xen_machine_ops = {
1071 .restart = xen_restart,
1072 .halt = xen_machine_halt,
1073 .power_off = xen_machine_halt,
1074 .shutdown = xen_machine_halt,
1075 .crash_shutdown = xen_crash_shutdown,
1076 .emergency_restart = xen_emergency_restart,
1077 };
1078
1079 /* First C function to be called on Xen boot */
1080 asmlinkage void __init xen_start_kernel(void)
1081 {
1082 pgd_t *pgd;
1083
1084 if (!xen_start_info)
1085 return;
1086
1087 BUG_ON(memcmp(xen_start_info->magic, "xen-3.0", 7) != 0);
1088
1089 /* Install Xen paravirt ops */
1090 paravirt_ops = xen_paravirt_ops;
1091 machine_ops = xen_machine_ops;
1092
1093 #ifdef CONFIG_SMP
1094 smp_ops = xen_smp_ops;
1095 #endif
1096
1097 xen_setup_features();
1098
1099 /* Get mfn list */
1100 if (!xen_feature(XENFEAT_auto_translated_physmap))
1101 phys_to_machine_mapping = (unsigned long *)xen_start_info->mfn_list;
1102
1103 pgd = (pgd_t *)xen_start_info->pt_base;
1104
1105 init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
1106
1107 init_mm.pgd = pgd; /* use the Xen pagetables to start */
1108
1109 /* keep using Xen gdt for now; no urgent need to change it */
1110
1111 x86_write_percpu(xen_cr3, __pa(pgd));
1112
1113 #ifdef CONFIG_SMP
1114 /* Don't do the full vcpu_info placement stuff until we have a
1115 possible map. */
1116 per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1117 #else
1118 /* May as well do it now, since there's no good time to call
1119 it later on UP. */
1120 xen_setup_vcpu_info_placement();
1121 #endif
1122
1123 paravirt_ops.kernel_rpl = 1;
1124 if (xen_feature(XENFEAT_supervisor_mode_kernel))
1125 paravirt_ops.kernel_rpl = 0;
1126
1127 /* set the limit of our address space */
1128 reserve_top_address(-HYPERVISOR_VIRT_START + 2 * PAGE_SIZE);
1129
1130 /* set up basic CPUID stuff */
1131 cpu_detect(&new_cpu_data);
1132 new_cpu_data.hard_math = 1;
1133 new_cpu_data.x86_capability[0] = cpuid_edx(1);
1134
1135 /* Poke various useful things into boot_params */
1136 LOADER_TYPE = (9 << 4) | 0;
1137 INITRD_START = xen_start_info->mod_start ? __pa(xen_start_info->mod_start) : 0;
1138 INITRD_SIZE = xen_start_info->mod_len;
1139
1140 /* Start the world */
1141 start_kernel();
1142 }
This page took 0.07034 seconds and 5 git commands to generate.