Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[deliverable/linux.git] / arch / ia64 / include / asm / uv / uv_hub.h
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
8 * Copyright (C) 2008 Silicon Graphics, Inc. All rights reserved.
9 */
10
11 #ifndef __ASM_IA64_UV_HUB_H__
12 #define __ASM_IA64_UV_HUB_H__
13
14 #include <linux/numa.h>
15 #include <linux/percpu.h>
16 #include <asm/types.h>
17 #include <asm/percpu.h>
18
19
20 /*
21 * Addressing Terminology
22 *
23 * M - The low M bits of a physical address represent the offset
24 * into the blade local memory. RAM memory on a blade is physically
25 * contiguous (although various IO spaces may punch holes in
26 * it)..
27 *
28 * N - Number of bits in the node portion of a socket physical
29 * address.
30 *
31 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
32 * routers always have low bit of 1, C/MBricks have low bit
33 * equal to 0. Most addressing macros that target UV hub chips
34 * right shift the NASID by 1 to exclude the always-zero bit.
35 * NASIDs contain up to 15 bits.
36 *
37 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
38 * of nasids.
39 *
40 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
41 * of the nasid for socket usage.
42 *
43 *
44 * NumaLink Global Physical Address Format:
45 * +--------------------------------+---------------------+
46 * |00..000| GNODE | NodeOffset |
47 * +--------------------------------+---------------------+
48 * |<-------53 - M bits --->|<--------M bits ----->
49 *
50 * M - number of node offset bits (35 .. 40)
51 *
52 *
53 * Memory/UV-HUB Processor Socket Address Format:
54 * +----------------+---------------+---------------------+
55 * |00..000000000000| PNODE | NodeOffset |
56 * +----------------+---------------+---------------------+
57 * <--- N bits --->|<--------M bits ----->
58 *
59 * M - number of node offset bits (35 .. 40)
60 * N - number of PNODE bits (0 .. 10)
61 *
62 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
63 * The actual values are configuration dependent and are set at
64 * boot time. M & N values are set by the hardware/BIOS at boot.
65 */
66
67
68 /*
69 * Maximum number of bricks in all partitions and in all coherency domains.
70 * This is the total number of bricks accessible in the numalink fabric. It
71 * includes all C & M bricks. Routers are NOT included.
72 *
73 * This value is also the value of the maximum number of non-router NASIDs
74 * in the numalink fabric.
75 *
76 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
77 */
78 #define UV_MAX_NUMALINK_BLADES 16384
79
80 /*
81 * Maximum number of C/Mbricks within a software SSI (hardware may support
82 * more).
83 */
84 #define UV_MAX_SSI_BLADES 1
85
86 /*
87 * The largest possible NASID of a C or M brick (+ 2)
88 */
89 #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_NODES * 2)
90
91 /*
92 * The following defines attributes of the HUB chip. These attributes are
93 * frequently referenced and are kept in the per-cpu data areas of each cpu.
94 * They are kept together in a struct to minimize cache misses.
95 */
96 struct uv_hub_info_s {
97 unsigned long global_mmr_base;
98 unsigned long gpa_mask;
99 unsigned long gnode_upper;
100 unsigned long lowmem_remap_top;
101 unsigned long lowmem_remap_base;
102 unsigned short pnode;
103 unsigned short pnode_mask;
104 unsigned short coherency_domain_number;
105 unsigned short numa_blade_id;
106 unsigned char blade_processor_id;
107 unsigned char m_val;
108 unsigned char n_val;
109 };
110 DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
111 #define uv_hub_info (&__get_cpu_var(__uv_hub_info))
112 #define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
113
114 /*
115 * Local & Global MMR space macros.
116 * Note: macros are intended to be used ONLY by inline functions
117 * in this file - not by other kernel code.
118 * n - NASID (full 15-bit global nasid)
119 * g - GNODE (full 15-bit global nasid, right shifted 1)
120 * p - PNODE (local part of nsids, right shifted 1)
121 */
122 #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
123 #define UV_PNODE_TO_NASID(p) (((p) << 1) | uv_hub_info->gnode_upper)
124
125 #define UV_LOCAL_MMR_BASE 0xf4000000UL
126 #define UV_GLOBAL_MMR32_BASE 0xf8000000UL
127 #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
128
129 #define UV_GLOBAL_MMR32_PNODE_SHIFT 15
130 #define UV_GLOBAL_MMR64_PNODE_SHIFT 26
131
132 #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
133
134 #define UV_GLOBAL_MMR64_PNODE_BITS(p) \
135 ((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)
136
137 /*
138 * Macros for converting between kernel virtual addresses, socket local physical
139 * addresses, and UV global physical addresses.
140 * Note: use the standard __pa() & __va() macros for converting
141 * between socket virtual and socket physical addresses.
142 */
143
144 /* socket phys RAM --> UV global physical address */
145 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
146 {
147 if (paddr < uv_hub_info->lowmem_remap_top)
148 paddr += uv_hub_info->lowmem_remap_base;
149 return paddr | uv_hub_info->gnode_upper;
150 }
151
152
153 /* socket virtual --> UV global physical address */
154 static inline unsigned long uv_gpa(void *v)
155 {
156 return __pa(v) | uv_hub_info->gnode_upper;
157 }
158
159 /* socket virtual --> UV global physical address */
160 static inline void *uv_vgpa(void *v)
161 {
162 return (void *)uv_gpa(v);
163 }
164
165 /* UV global physical address --> socket virtual */
166 static inline void *uv_va(unsigned long gpa)
167 {
168 return __va(gpa & uv_hub_info->gpa_mask);
169 }
170
171 /* pnode, offset --> socket virtual */
172 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
173 {
174 return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
175 }
176
177
178 /*
179 * Access global MMRs using the low memory MMR32 space. This region supports
180 * faster MMR access but not all MMRs are accessible in this space.
181 */
182 static inline unsigned long *uv_global_mmr32_address(int pnode,
183 unsigned long offset)
184 {
185 return __va(UV_GLOBAL_MMR32_BASE |
186 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
187 }
188
189 static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
190 unsigned long val)
191 {
192 *uv_global_mmr32_address(pnode, offset) = val;
193 }
194
195 static inline unsigned long uv_read_global_mmr32(int pnode,
196 unsigned long offset)
197 {
198 return *uv_global_mmr32_address(pnode, offset);
199 }
200
201 /*
202 * Access Global MMR space using the MMR space located at the top of physical
203 * memory.
204 */
205 static inline unsigned long *uv_global_mmr64_address(int pnode,
206 unsigned long offset)
207 {
208 return __va(UV_GLOBAL_MMR64_BASE |
209 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
210 }
211
212 static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
213 unsigned long val)
214 {
215 *uv_global_mmr64_address(pnode, offset) = val;
216 }
217
218 static inline unsigned long uv_read_global_mmr64(int pnode,
219 unsigned long offset)
220 {
221 return *uv_global_mmr64_address(pnode, offset);
222 }
223
224 /*
225 * Access hub local MMRs. Faster than using global space but only local MMRs
226 * are accessible.
227 */
228 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
229 {
230 return __va(UV_LOCAL_MMR_BASE | offset);
231 }
232
233 static inline unsigned long uv_read_local_mmr(unsigned long offset)
234 {
235 return *uv_local_mmr_address(offset);
236 }
237
238 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
239 {
240 *uv_local_mmr_address(offset) = val;
241 }
242
243 /*
244 * Structures and definitions for converting between cpu, node, pnode, and blade
245 * numbers.
246 */
247
248 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
249 static inline int uv_blade_processor_id(void)
250 {
251 return smp_processor_id();
252 }
253
254 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
255 static inline int uv_numa_blade_id(void)
256 {
257 return 0;
258 }
259
260 /* Convert a cpu number to the the UV blade number */
261 static inline int uv_cpu_to_blade_id(int cpu)
262 {
263 return 0;
264 }
265
266 /* Convert linux node number to the UV blade number */
267 static inline int uv_node_to_blade_id(int nid)
268 {
269 return 0;
270 }
271
272 /* Convert a blade id to the PNODE of the blade */
273 static inline int uv_blade_to_pnode(int bid)
274 {
275 return 0;
276 }
277
278 /* Determine the number of possible cpus on a blade */
279 static inline int uv_blade_nr_possible_cpus(int bid)
280 {
281 return num_possible_cpus();
282 }
283
284 /* Determine the number of online cpus on a blade */
285 static inline int uv_blade_nr_online_cpus(int bid)
286 {
287 return num_online_cpus();
288 }
289
290 /* Convert a cpu id to the PNODE of the blade containing the cpu */
291 static inline int uv_cpu_to_pnode(int cpu)
292 {
293 return 0;
294 }
295
296 /* Convert a linux node number to the PNODE of the blade */
297 static inline int uv_node_to_pnode(int nid)
298 {
299 return 0;
300 }
301
302 /* Maximum possible number of blades */
303 static inline int uv_num_possible_blades(void)
304 {
305 return 1;
306 }
307
308 static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
309 {
310 /* not currently needed on ia64 */
311 }
312
313
314 #endif /* __ASM_IA64_UV_HUB__ */
315
This page took 0.053905 seconds and 5 git commands to generate.