[PATCH] Kprobes: preempt_disable/enable() simplification
[deliverable/linux.git] / arch / ia64 / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * arch/ia64/kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 * Copyright (C) Intel Corporation, 2005
21 *
22 * 2005-Apr Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
23 * <anil.s.keshavamurthy@intel.com> adapted from i386
24 */
25
26 #include <linux/config.h>
27 #include <linux/kprobes.h>
28 #include <linux/ptrace.h>
29 #include <linux/string.h>
30 #include <linux/slab.h>
31 #include <linux/preempt.h>
32 #include <linux/moduleloader.h>
33
34 #include <asm/pgtable.h>
35 #include <asm/kdebug.h>
36 #include <asm/sections.h>
37
38 extern void jprobe_inst_return(void);
39
40 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
41 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
42
43 enum instruction_type {A, I, M, F, B, L, X, u};
44 static enum instruction_type bundle_encoding[32][3] = {
45 { M, I, I }, /* 00 */
46 { M, I, I }, /* 01 */
47 { M, I, I }, /* 02 */
48 { M, I, I }, /* 03 */
49 { M, L, X }, /* 04 */
50 { M, L, X }, /* 05 */
51 { u, u, u }, /* 06 */
52 { u, u, u }, /* 07 */
53 { M, M, I }, /* 08 */
54 { M, M, I }, /* 09 */
55 { M, M, I }, /* 0A */
56 { M, M, I }, /* 0B */
57 { M, F, I }, /* 0C */
58 { M, F, I }, /* 0D */
59 { M, M, F }, /* 0E */
60 { M, M, F }, /* 0F */
61 { M, I, B }, /* 10 */
62 { M, I, B }, /* 11 */
63 { M, B, B }, /* 12 */
64 { M, B, B }, /* 13 */
65 { u, u, u }, /* 14 */
66 { u, u, u }, /* 15 */
67 { B, B, B }, /* 16 */
68 { B, B, B }, /* 17 */
69 { M, M, B }, /* 18 */
70 { M, M, B }, /* 19 */
71 { u, u, u }, /* 1A */
72 { u, u, u }, /* 1B */
73 { M, F, B }, /* 1C */
74 { M, F, B }, /* 1D */
75 { u, u, u }, /* 1E */
76 { u, u, u }, /* 1F */
77 };
78
79 /*
80 * In this function we check to see if the instruction
81 * is IP relative instruction and update the kprobe
82 * inst flag accordingly
83 */
84 static void __kprobes update_kprobe_inst_flag(uint template, uint slot,
85 uint major_opcode,
86 unsigned long kprobe_inst,
87 struct kprobe *p)
88 {
89 p->ainsn.inst_flag = 0;
90 p->ainsn.target_br_reg = 0;
91
92 /* Check for Break instruction
93 * Bits 37:40 Major opcode to be zero
94 * Bits 27:32 X6 to be zero
95 * Bits 32:35 X3 to be zero
96 */
97 if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
98 /* is a break instruction */
99 p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
100 return;
101 }
102
103 if (bundle_encoding[template][slot] == B) {
104 switch (major_opcode) {
105 case INDIRECT_CALL_OPCODE:
106 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
107 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
108 break;
109 case IP_RELATIVE_PREDICT_OPCODE:
110 case IP_RELATIVE_BRANCH_OPCODE:
111 p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
112 break;
113 case IP_RELATIVE_CALL_OPCODE:
114 p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
115 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
116 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
117 break;
118 }
119 } else if (bundle_encoding[template][slot] == X) {
120 switch (major_opcode) {
121 case LONG_CALL_OPCODE:
122 p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
123 p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
124 break;
125 }
126 }
127 return;
128 }
129
130 /*
131 * In this function we check to see if the instruction
132 * on which we are inserting kprobe is supported.
133 * Returns 0 if supported
134 * Returns -EINVAL if unsupported
135 */
136 static int __kprobes unsupported_inst(uint template, uint slot,
137 uint major_opcode,
138 unsigned long kprobe_inst,
139 struct kprobe *p)
140 {
141 unsigned long addr = (unsigned long)p->addr;
142
143 if (bundle_encoding[template][slot] == I) {
144 switch (major_opcode) {
145 case 0x0: //I_UNIT_MISC_OPCODE:
146 /*
147 * Check for Integer speculation instruction
148 * - Bit 33-35 to be equal to 0x1
149 */
150 if (((kprobe_inst >> 33) & 0x7) == 1) {
151 printk(KERN_WARNING
152 "Kprobes on speculation inst at <0x%lx> not supported\n",
153 addr);
154 return -EINVAL;
155 }
156
157 /*
158 * IP relative mov instruction
159 * - Bit 27-35 to be equal to 0x30
160 */
161 if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
162 printk(KERN_WARNING
163 "Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
164 addr);
165 return -EINVAL;
166
167 }
168 }
169 }
170 return 0;
171 }
172
173
174 /*
175 * In this function we check to see if the instruction
176 * (qp) cmpx.crel.ctype p1,p2=r2,r3
177 * on which we are inserting kprobe is cmp instruction
178 * with ctype as unc.
179 */
180 static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
181 uint major_opcode,
182 unsigned long kprobe_inst)
183 {
184 cmp_inst_t cmp_inst;
185 uint ctype_unc = 0;
186
187 if (!((bundle_encoding[template][slot] == I) ||
188 (bundle_encoding[template][slot] == M)))
189 goto out;
190
191 if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
192 (major_opcode == 0xE)))
193 goto out;
194
195 cmp_inst.l = kprobe_inst;
196 if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
197 /* Integere compare - Register Register (A6 type)*/
198 if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
199 &&(cmp_inst.f.c == 1))
200 ctype_unc = 1;
201 } else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
202 /* Integere compare - Immediate Register (A8 type)*/
203 if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
204 ctype_unc = 1;
205 }
206 out:
207 return ctype_unc;
208 }
209
210 /*
211 * In this function we override the bundle with
212 * the break instruction at the given slot.
213 */
214 static void __kprobes prepare_break_inst(uint template, uint slot,
215 uint major_opcode,
216 unsigned long kprobe_inst,
217 struct kprobe *p)
218 {
219 unsigned long break_inst = BREAK_INST;
220 bundle_t *bundle = &p->ainsn.insn.bundle;
221
222 /*
223 * Copy the original kprobe_inst qualifying predicate(qp)
224 * to the break instruction iff !is_cmp_ctype_unc_inst
225 * because for cmp instruction with ctype equal to unc,
226 * which is a special instruction always needs to be
227 * executed regradless of qp
228 */
229 if (!is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst))
230 break_inst |= (0x3f & kprobe_inst);
231
232 switch (slot) {
233 case 0:
234 bundle->quad0.slot0 = break_inst;
235 break;
236 case 1:
237 bundle->quad0.slot1_p0 = break_inst;
238 bundle->quad1.slot1_p1 = break_inst >> (64-46);
239 break;
240 case 2:
241 bundle->quad1.slot2 = break_inst;
242 break;
243 }
244
245 /*
246 * Update the instruction flag, so that we can
247 * emulate the instruction properly after we
248 * single step on original instruction
249 */
250 update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
251 }
252
253 static inline void get_kprobe_inst(bundle_t *bundle, uint slot,
254 unsigned long *kprobe_inst, uint *major_opcode)
255 {
256 unsigned long kprobe_inst_p0, kprobe_inst_p1;
257 unsigned int template;
258
259 template = bundle->quad0.template;
260
261 switch (slot) {
262 case 0:
263 *major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
264 *kprobe_inst = bundle->quad0.slot0;
265 break;
266 case 1:
267 *major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
268 kprobe_inst_p0 = bundle->quad0.slot1_p0;
269 kprobe_inst_p1 = bundle->quad1.slot1_p1;
270 *kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
271 break;
272 case 2:
273 *major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
274 *kprobe_inst = bundle->quad1.slot2;
275 break;
276 }
277 }
278
279 /* Returns non-zero if the addr is in the Interrupt Vector Table */
280 static inline int in_ivt_functions(unsigned long addr)
281 {
282 return (addr >= (unsigned long)__start_ivt_text
283 && addr < (unsigned long)__end_ivt_text);
284 }
285
286 static int __kprobes valid_kprobe_addr(int template, int slot,
287 unsigned long addr)
288 {
289 if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
290 printk(KERN_WARNING "Attempting to insert unaligned kprobe "
291 "at 0x%lx\n", addr);
292 return -EINVAL;
293 }
294
295 if (in_ivt_functions(addr)) {
296 printk(KERN_WARNING "Kprobes can't be inserted inside "
297 "IVT functions at 0x%lx\n", addr);
298 return -EINVAL;
299 }
300
301 if (slot == 1 && bundle_encoding[template][1] != L) {
302 printk(KERN_WARNING "Inserting kprobes on slot #1 "
303 "is not supported\n");
304 return -EINVAL;
305 }
306
307 return 0;
308 }
309
310 static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
311 {
312 kcb->prev_kprobe.kp = kprobe_running();
313 kcb->prev_kprobe.status = kcb->kprobe_status;
314 }
315
316 static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
317 {
318 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
319 kcb->kprobe_status = kcb->prev_kprobe.status;
320 }
321
322 static inline void set_current_kprobe(struct kprobe *p,
323 struct kprobe_ctlblk *kcb)
324 {
325 __get_cpu_var(current_kprobe) = p;
326 }
327
328 static void kretprobe_trampoline(void)
329 {
330 }
331
332 /*
333 * At this point the target function has been tricked into
334 * returning into our trampoline. Lookup the associated instance
335 * and then:
336 * - call the handler function
337 * - cleanup by marking the instance as unused
338 * - long jump back to the original return address
339 */
340 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
341 {
342 struct kretprobe_instance *ri = NULL;
343 struct hlist_head *head;
344 struct hlist_node *node, *tmp;
345 unsigned long flags, orig_ret_address = 0;
346 unsigned long trampoline_address =
347 ((struct fnptr *)kretprobe_trampoline)->ip;
348
349 spin_lock_irqsave(&kretprobe_lock, flags);
350 head = kretprobe_inst_table_head(current);
351
352 /*
353 * It is possible to have multiple instances associated with a given
354 * task either because an multiple functions in the call path
355 * have a return probe installed on them, and/or more then one return
356 * return probe was registered for a target function.
357 *
358 * We can handle this because:
359 * - instances are always inserted at the head of the list
360 * - when multiple return probes are registered for the same
361 * function, the first instance's ret_addr will point to the
362 * real return address, and all the rest will point to
363 * kretprobe_trampoline
364 */
365 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
366 if (ri->task != current)
367 /* another task is sharing our hash bucket */
368 continue;
369
370 if (ri->rp && ri->rp->handler)
371 ri->rp->handler(ri, regs);
372
373 orig_ret_address = (unsigned long)ri->ret_addr;
374 recycle_rp_inst(ri);
375
376 if (orig_ret_address != trampoline_address)
377 /*
378 * This is the real return address. Any other
379 * instances associated with this task are for
380 * other calls deeper on the call stack
381 */
382 break;
383 }
384
385 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
386 regs->cr_iip = orig_ret_address;
387
388 reset_current_kprobe();
389 spin_unlock_irqrestore(&kretprobe_lock, flags);
390 preempt_enable_no_resched();
391
392 /*
393 * By returning a non-zero value, we are telling
394 * kprobe_handler() that we don't want the post_handler
395 * to run (and have re-enabled preemption)
396 */
397 return 1;
398 }
399
400 /* Called with kretprobe_lock held */
401 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
402 struct pt_regs *regs)
403 {
404 struct kretprobe_instance *ri;
405
406 if ((ri = get_free_rp_inst(rp)) != NULL) {
407 ri->rp = rp;
408 ri->task = current;
409 ri->ret_addr = (kprobe_opcode_t *)regs->b0;
410
411 /* Replace the return addr with trampoline addr */
412 regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
413
414 add_rp_inst(ri);
415 } else {
416 rp->nmissed++;
417 }
418 }
419
420 int __kprobes arch_prepare_kprobe(struct kprobe *p)
421 {
422 unsigned long addr = (unsigned long) p->addr;
423 unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
424 unsigned long kprobe_inst=0;
425 unsigned int slot = addr & 0xf, template, major_opcode = 0;
426 bundle_t *bundle = &p->ainsn.insn.bundle;
427
428 memcpy(&p->opcode.bundle, kprobe_addr, sizeof(bundle_t));
429 memcpy(&p->ainsn.insn.bundle, kprobe_addr, sizeof(bundle_t));
430
431 template = bundle->quad0.template;
432
433 if(valid_kprobe_addr(template, slot, addr))
434 return -EINVAL;
435
436 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
437 if (slot == 1 && bundle_encoding[template][1] == L)
438 slot++;
439
440 /* Get kprobe_inst and major_opcode from the bundle */
441 get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
442
443 if (unsupported_inst(template, slot, major_opcode, kprobe_inst, p))
444 return -EINVAL;
445
446 prepare_break_inst(template, slot, major_opcode, kprobe_inst, p);
447
448 return 0;
449 }
450
451 void __kprobes arch_arm_kprobe(struct kprobe *p)
452 {
453 unsigned long addr = (unsigned long)p->addr;
454 unsigned long arm_addr = addr & ~0xFULL;
455
456 memcpy((char *)arm_addr, &p->ainsn.insn.bundle, sizeof(bundle_t));
457 flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
458 }
459
460 void __kprobes arch_disarm_kprobe(struct kprobe *p)
461 {
462 unsigned long addr = (unsigned long)p->addr;
463 unsigned long arm_addr = addr & ~0xFULL;
464
465 /* p->opcode contains the original unaltered bundle */
466 memcpy((char *) arm_addr, (char *) &p->opcode.bundle, sizeof(bundle_t));
467 flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
468 }
469
470 void __kprobes arch_remove_kprobe(struct kprobe *p)
471 {
472 }
473
474 /*
475 * We are resuming execution after a single step fault, so the pt_regs
476 * structure reflects the register state after we executed the instruction
477 * located in the kprobe (p->ainsn.insn.bundle). We still need to adjust
478 * the ip to point back to the original stack address. To set the IP address
479 * to original stack address, handle the case where we need to fixup the
480 * relative IP address and/or fixup branch register.
481 */
482 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
483 {
484 unsigned long bundle_addr = ((unsigned long) (&p->opcode.bundle)) & ~0xFULL;
485 unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
486 unsigned long template;
487 int slot = ((unsigned long)p->addr & 0xf);
488
489 template = p->opcode.bundle.quad0.template;
490
491 if (slot == 1 && bundle_encoding[template][1] == L)
492 slot = 2;
493
494 if (p->ainsn.inst_flag) {
495
496 if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
497 /* Fix relative IP address */
498 regs->cr_iip = (regs->cr_iip - bundle_addr) + resume_addr;
499 }
500
501 if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
502 /*
503 * Fix target branch register, software convention is
504 * to use either b0 or b6 or b7, so just checking
505 * only those registers
506 */
507 switch (p->ainsn.target_br_reg) {
508 case 0:
509 if ((regs->b0 == bundle_addr) ||
510 (regs->b0 == bundle_addr + 0x10)) {
511 regs->b0 = (regs->b0 - bundle_addr) +
512 resume_addr;
513 }
514 break;
515 case 6:
516 if ((regs->b6 == bundle_addr) ||
517 (regs->b6 == bundle_addr + 0x10)) {
518 regs->b6 = (regs->b6 - bundle_addr) +
519 resume_addr;
520 }
521 break;
522 case 7:
523 if ((regs->b7 == bundle_addr) ||
524 (regs->b7 == bundle_addr + 0x10)) {
525 regs->b7 = (regs->b7 - bundle_addr) +
526 resume_addr;
527 }
528 break;
529 } /* end switch */
530 }
531 goto turn_ss_off;
532 }
533
534 if (slot == 2) {
535 if (regs->cr_iip == bundle_addr + 0x10) {
536 regs->cr_iip = resume_addr + 0x10;
537 }
538 } else {
539 if (regs->cr_iip == bundle_addr) {
540 regs->cr_iip = resume_addr;
541 }
542 }
543
544 turn_ss_off:
545 /* Turn off Single Step bit */
546 ia64_psr(regs)->ss = 0;
547 }
548
549 static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
550 {
551 unsigned long bundle_addr = (unsigned long) &p->opcode.bundle;
552 unsigned long slot = (unsigned long)p->addr & 0xf;
553
554 /* single step inline if break instruction */
555 if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
556 regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
557 else
558 regs->cr_iip = bundle_addr & ~0xFULL;
559
560 if (slot > 2)
561 slot = 0;
562
563 ia64_psr(regs)->ri = slot;
564
565 /* turn on single stepping */
566 ia64_psr(regs)->ss = 1;
567 }
568
569 static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
570 {
571 unsigned int slot = ia64_psr(regs)->ri;
572 unsigned int template, major_opcode;
573 unsigned long kprobe_inst;
574 unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
575 bundle_t bundle;
576
577 memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
578 template = bundle.quad0.template;
579
580 /* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
581 if (slot == 1 && bundle_encoding[template][1] == L)
582 slot++;
583
584 /* Get Kprobe probe instruction at given slot*/
585 get_kprobe_inst(&bundle, slot, &kprobe_inst, &major_opcode);
586
587 /* For break instruction,
588 * Bits 37:40 Major opcode to be zero
589 * Bits 27:32 X6 to be zero
590 * Bits 32:35 X3 to be zero
591 */
592 if (major_opcode || ((kprobe_inst >> 27) & 0x1FF) ) {
593 /* Not a break instruction */
594 return 0;
595 }
596
597 /* Is a break instruction */
598 return 1;
599 }
600
601 static int __kprobes pre_kprobes_handler(struct die_args *args)
602 {
603 struct kprobe *p;
604 int ret = 0;
605 struct pt_regs *regs = args->regs;
606 kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
607 struct kprobe_ctlblk *kcb;
608
609 /*
610 * We don't want to be preempted for the entire
611 * duration of kprobe processing
612 */
613 preempt_disable();
614 kcb = get_kprobe_ctlblk();
615
616 /* Handle recursion cases */
617 if (kprobe_running()) {
618 p = get_kprobe(addr);
619 if (p) {
620 if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
621 (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
622 ia64_psr(regs)->ss = 0;
623 goto no_kprobe;
624 }
625 /* We have reentered the pre_kprobe_handler(), since
626 * another probe was hit while within the handler.
627 * We here save the original kprobes variables and
628 * just single step on the instruction of the new probe
629 * without calling any user handlers.
630 */
631 save_previous_kprobe(kcb);
632 set_current_kprobe(p, kcb);
633 p->nmissed++;
634 prepare_ss(p, regs);
635 kcb->kprobe_status = KPROBE_REENTER;
636 return 1;
637 } else if (args->err == __IA64_BREAK_JPROBE) {
638 /*
639 * jprobe instrumented function just completed
640 */
641 p = __get_cpu_var(current_kprobe);
642 if (p->break_handler && p->break_handler(p, regs)) {
643 goto ss_probe;
644 }
645 } else {
646 /* Not our break */
647 goto no_kprobe;
648 }
649 }
650
651 p = get_kprobe(addr);
652 if (!p) {
653 if (!is_ia64_break_inst(regs)) {
654 /*
655 * The breakpoint instruction was removed right
656 * after we hit it. Another cpu has removed
657 * either a probepoint or a debugger breakpoint
658 * at this address. In either case, no further
659 * handling of this interrupt is appropriate.
660 */
661 ret = 1;
662
663 }
664
665 /* Not one of our break, let kernel handle it */
666 goto no_kprobe;
667 }
668
669 set_current_kprobe(p, kcb);
670 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
671
672 if (p->pre_handler && p->pre_handler(p, regs))
673 /*
674 * Our pre-handler is specifically requesting that we just
675 * do a return. This is used for both the jprobe pre-handler
676 * and the kretprobe trampoline
677 */
678 return 1;
679
680 ss_probe:
681 prepare_ss(p, regs);
682 kcb->kprobe_status = KPROBE_HIT_SS;
683 return 1;
684
685 no_kprobe:
686 preempt_enable_no_resched();
687 return ret;
688 }
689
690 static int __kprobes post_kprobes_handler(struct pt_regs *regs)
691 {
692 struct kprobe *cur = kprobe_running();
693 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
694
695 if (!cur)
696 return 0;
697
698 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
699 kcb->kprobe_status = KPROBE_HIT_SSDONE;
700 cur->post_handler(cur, regs, 0);
701 }
702
703 resume_execution(cur, regs);
704
705 /*Restore back the original saved kprobes variables and continue. */
706 if (kcb->kprobe_status == KPROBE_REENTER) {
707 restore_previous_kprobe(kcb);
708 goto out;
709 }
710 reset_current_kprobe();
711
712 out:
713 preempt_enable_no_resched();
714 return 1;
715 }
716
717 static int __kprobes kprobes_fault_handler(struct pt_regs *regs, int trapnr)
718 {
719 struct kprobe *cur = kprobe_running();
720 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
721
722 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
723 return 1;
724
725 if (kcb->kprobe_status & KPROBE_HIT_SS) {
726 resume_execution(cur, regs);
727 reset_current_kprobe();
728 preempt_enable_no_resched();
729 }
730
731 return 0;
732 }
733
734 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
735 unsigned long val, void *data)
736 {
737 struct die_args *args = (struct die_args *)data;
738 int ret = NOTIFY_DONE;
739
740 switch(val) {
741 case DIE_BREAK:
742 if (pre_kprobes_handler(args))
743 ret = NOTIFY_STOP;
744 break;
745 case DIE_SS:
746 if (post_kprobes_handler(args->regs))
747 ret = NOTIFY_STOP;
748 break;
749 case DIE_PAGE_FAULT:
750 /* kprobe_running() needs smp_processor_id() */
751 preempt_disable();
752 if (kprobe_running() &&
753 kprobes_fault_handler(args->regs, args->trapnr))
754 ret = NOTIFY_STOP;
755 preempt_enable();
756 default:
757 break;
758 }
759 return ret;
760 }
761
762 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
763 {
764 struct jprobe *jp = container_of(p, struct jprobe, kp);
765 unsigned long addr = ((struct fnptr *)(jp->entry))->ip;
766 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
767
768 /* save architectural state */
769 kcb->jprobe_saved_regs = *regs;
770
771 /* after rfi, execute the jprobe instrumented function */
772 regs->cr_iip = addr & ~0xFULL;
773 ia64_psr(regs)->ri = addr & 0xf;
774 regs->r1 = ((struct fnptr *)(jp->entry))->gp;
775
776 /*
777 * fix the return address to our jprobe_inst_return() function
778 * in the jprobes.S file
779 */
780 regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;
781
782 return 1;
783 }
784
785 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
786 {
787 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
788
789 *regs = kcb->jprobe_saved_regs;
790 preempt_enable_no_resched();
791 return 1;
792 }
793
794 static struct kprobe trampoline_p = {
795 .pre_handler = trampoline_probe_handler
796 };
797
798 int __init arch_init_kprobes(void)
799 {
800 trampoline_p.addr =
801 (kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
802 return register_kprobe(&trampoline_p);
803 }
This page took 0.057038 seconds and 5 git commands to generate.