[IA64] remove remaining __FUNCTION__ occurrences
[deliverable/linux.git] / arch / ia64 / kernel / mca.c
1 /*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
4 *
5 * Copyright (C) 2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 *
8 * Copyright (C) 2002 Dell Inc.
9 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
10 *
11 * Copyright (C) 2002 Intel
12 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
13 *
14 * Copyright (C) 2001 Intel
15 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
16 *
17 * Copyright (C) 2000 Intel
18 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
19 *
20 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
21 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
22 *
23 * Copyright (C) 2006 FUJITSU LIMITED
24 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
25 *
26 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
27 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
28 * added min save state dump, added INIT handler.
29 *
30 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
31 * Added setup of CMCI and CPEI IRQs, logging of corrected platform
32 * errors, completed code for logging of corrected & uncorrected
33 * machine check errors, and updated for conformance with Nov. 2000
34 * revision of the SAL 3.0 spec.
35 *
36 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
37 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
38 * set SAL default return values, changed error record structure to
39 * linked list, added init call to sal_get_state_info_size().
40 *
41 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
42 * GUID cleanups.
43 *
44 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
45 * Added INIT backtrace support.
46 *
47 * 2003-12-08 Keith Owens <kaos@sgi.com>
48 * smp_call_function() must not be called from interrupt context
49 * (can deadlock on tasklist_lock).
50 * Use keventd to call smp_call_function().
51 *
52 * 2004-02-01 Keith Owens <kaos@sgi.com>
53 * Avoid deadlock when using printk() for MCA and INIT records.
54 * Delete all record printing code, moved to salinfo_decode in user
55 * space. Mark variables and functions static where possible.
56 * Delete dead variables and functions. Reorder to remove the need
57 * for forward declarations and to consolidate related code.
58 *
59 * 2005-08-12 Keith Owens <kaos@sgi.com>
60 * Convert MCA/INIT handlers to use per event stacks and SAL/OS
61 * state.
62 *
63 * 2005-10-07 Keith Owens <kaos@sgi.com>
64 * Add notify_die() hooks.
65 *
66 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
67 * Add printing support for MCA/INIT.
68 *
69 * 2007-04-27 Russ Anderson <rja@sgi.com>
70 * Support multiple cpus going through OS_MCA in the same event.
71 */
72 #include <linux/types.h>
73 #include <linux/init.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/irq.h>
77 #include <linux/bootmem.h>
78 #include <linux/acpi.h>
79 #include <linux/timer.h>
80 #include <linux/module.h>
81 #include <linux/kernel.h>
82 #include <linux/smp.h>
83 #include <linux/workqueue.h>
84 #include <linux/cpumask.h>
85 #include <linux/kdebug.h>
86 #include <linux/cpu.h>
87
88 #include <asm/delay.h>
89 #include <asm/machvec.h>
90 #include <asm/meminit.h>
91 #include <asm/page.h>
92 #include <asm/ptrace.h>
93 #include <asm/system.h>
94 #include <asm/sal.h>
95 #include <asm/mca.h>
96 #include <asm/kexec.h>
97
98 #include <asm/irq.h>
99 #include <asm/hw_irq.h>
100
101 #include "mca_drv.h"
102 #include "entry.h"
103
104 #if defined(IA64_MCA_DEBUG_INFO)
105 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
106 #else
107 # define IA64_MCA_DEBUG(fmt...)
108 #endif
109
110 /* Used by mca_asm.S */
111 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
112 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
113 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
114 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
115
116 unsigned long __per_cpu_mca[NR_CPUS];
117
118 /* In mca_asm.S */
119 extern void ia64_os_init_dispatch_monarch (void);
120 extern void ia64_os_init_dispatch_slave (void);
121
122 static int monarch_cpu = -1;
123
124 static ia64_mc_info_t ia64_mc_info;
125
126 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
127 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
128 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
129 #define CPE_HISTORY_LENGTH 5
130 #define CMC_HISTORY_LENGTH 5
131
132 #ifdef CONFIG_ACPI
133 static struct timer_list cpe_poll_timer;
134 #endif
135 static struct timer_list cmc_poll_timer;
136 /*
137 * This variable tells whether we are currently in polling mode.
138 * Start with this in the wrong state so we won't play w/ timers
139 * before the system is ready.
140 */
141 static int cmc_polling_enabled = 1;
142
143 /*
144 * Clearing this variable prevents CPE polling from getting activated
145 * in mca_late_init. Use it if your system doesn't provide a CPEI,
146 * but encounters problems retrieving CPE logs. This should only be
147 * necessary for debugging.
148 */
149 static int cpe_poll_enabled = 1;
150
151 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
152
153 static int mca_init __initdata;
154
155 /*
156 * limited & delayed printing support for MCA/INIT handler
157 */
158
159 #define mprintk(fmt...) ia64_mca_printk(fmt)
160
161 #define MLOGBUF_SIZE (512+256*NR_CPUS)
162 #define MLOGBUF_MSGMAX 256
163 static char mlogbuf[MLOGBUF_SIZE];
164 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
165 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
166 static unsigned long mlogbuf_start;
167 static unsigned long mlogbuf_end;
168 static unsigned int mlogbuf_finished = 0;
169 static unsigned long mlogbuf_timestamp = 0;
170
171 static int loglevel_save = -1;
172 #define BREAK_LOGLEVEL(__console_loglevel) \
173 oops_in_progress = 1; \
174 if (loglevel_save < 0) \
175 loglevel_save = __console_loglevel; \
176 __console_loglevel = 15;
177
178 #define RESTORE_LOGLEVEL(__console_loglevel) \
179 if (loglevel_save >= 0) { \
180 __console_loglevel = loglevel_save; \
181 loglevel_save = -1; \
182 } \
183 mlogbuf_finished = 0; \
184 oops_in_progress = 0;
185
186 /*
187 * Push messages into buffer, print them later if not urgent.
188 */
189 void ia64_mca_printk(const char *fmt, ...)
190 {
191 va_list args;
192 int printed_len;
193 char temp_buf[MLOGBUF_MSGMAX];
194 char *p;
195
196 va_start(args, fmt);
197 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
198 va_end(args);
199
200 /* Copy the output into mlogbuf */
201 if (oops_in_progress) {
202 /* mlogbuf was abandoned, use printk directly instead. */
203 printk(temp_buf);
204 } else {
205 spin_lock(&mlogbuf_wlock);
206 for (p = temp_buf; *p; p++) {
207 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
208 if (next != mlogbuf_start) {
209 mlogbuf[mlogbuf_end] = *p;
210 mlogbuf_end = next;
211 } else {
212 /* buffer full */
213 break;
214 }
215 }
216 mlogbuf[mlogbuf_end] = '\0';
217 spin_unlock(&mlogbuf_wlock);
218 }
219 }
220 EXPORT_SYMBOL(ia64_mca_printk);
221
222 /*
223 * Print buffered messages.
224 * NOTE: call this after returning normal context. (ex. from salinfod)
225 */
226 void ia64_mlogbuf_dump(void)
227 {
228 char temp_buf[MLOGBUF_MSGMAX];
229 char *p;
230 unsigned long index;
231 unsigned long flags;
232 unsigned int printed_len;
233
234 /* Get output from mlogbuf */
235 while (mlogbuf_start != mlogbuf_end) {
236 temp_buf[0] = '\0';
237 p = temp_buf;
238 printed_len = 0;
239
240 spin_lock_irqsave(&mlogbuf_rlock, flags);
241
242 index = mlogbuf_start;
243 while (index != mlogbuf_end) {
244 *p = mlogbuf[index];
245 index = (index + 1) % MLOGBUF_SIZE;
246 if (!*p)
247 break;
248 p++;
249 if (++printed_len >= MLOGBUF_MSGMAX - 1)
250 break;
251 }
252 *p = '\0';
253 if (temp_buf[0])
254 printk(temp_buf);
255 mlogbuf_start = index;
256
257 mlogbuf_timestamp = 0;
258 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
259 }
260 }
261 EXPORT_SYMBOL(ia64_mlogbuf_dump);
262
263 /*
264 * Call this if system is going to down or if immediate flushing messages to
265 * console is required. (ex. recovery was failed, crash dump is going to be
266 * invoked, long-wait rendezvous etc.)
267 * NOTE: this should be called from monarch.
268 */
269 static void ia64_mlogbuf_finish(int wait)
270 {
271 BREAK_LOGLEVEL(console_loglevel);
272
273 spin_lock_init(&mlogbuf_rlock);
274 ia64_mlogbuf_dump();
275 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
276 "MCA/INIT might be dodgy or fail.\n");
277
278 if (!wait)
279 return;
280
281 /* wait for console */
282 printk("Delaying for 5 seconds...\n");
283 udelay(5*1000000);
284
285 mlogbuf_finished = 1;
286 }
287
288 /*
289 * Print buffered messages from INIT context.
290 */
291 static void ia64_mlogbuf_dump_from_init(void)
292 {
293 if (mlogbuf_finished)
294 return;
295
296 if (mlogbuf_timestamp && (mlogbuf_timestamp + 30*HZ > jiffies)) {
297 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
298 " and the system seems to be messed up.\n");
299 ia64_mlogbuf_finish(0);
300 return;
301 }
302
303 if (!spin_trylock(&mlogbuf_rlock)) {
304 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
305 "Generated messages other than stack dump will be "
306 "buffered to mlogbuf and will be printed later.\n");
307 printk(KERN_ERR "INIT: If messages would not printed after "
308 "this INIT, wait 30sec and assert INIT again.\n");
309 if (!mlogbuf_timestamp)
310 mlogbuf_timestamp = jiffies;
311 return;
312 }
313 spin_unlock(&mlogbuf_rlock);
314 ia64_mlogbuf_dump();
315 }
316
317 static void inline
318 ia64_mca_spin(const char *func)
319 {
320 if (monarch_cpu == smp_processor_id())
321 ia64_mlogbuf_finish(0);
322 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
323 while (1)
324 cpu_relax();
325 }
326 /*
327 * IA64_MCA log support
328 */
329 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
330 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
331
332 typedef struct ia64_state_log_s
333 {
334 spinlock_t isl_lock;
335 int isl_index;
336 unsigned long isl_count;
337 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
338 } ia64_state_log_t;
339
340 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
341
342 #define IA64_LOG_ALLOCATE(it, size) \
343 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
344 (ia64_err_rec_t *)alloc_bootmem(size); \
345 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
346 (ia64_err_rec_t *)alloc_bootmem(size);}
347 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
348 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
349 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
350 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
351 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
352 #define IA64_LOG_INDEX_INC(it) \
353 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
354 ia64_state_log[it].isl_count++;}
355 #define IA64_LOG_INDEX_DEC(it) \
356 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
357 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
358 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
359 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
360
361 /*
362 * ia64_log_init
363 * Reset the OS ia64 log buffer
364 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
365 * Outputs : None
366 */
367 static void __init
368 ia64_log_init(int sal_info_type)
369 {
370 u64 max_size = 0;
371
372 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
373 IA64_LOG_LOCK_INIT(sal_info_type);
374
375 // SAL will tell us the maximum size of any error record of this type
376 max_size = ia64_sal_get_state_info_size(sal_info_type);
377 if (!max_size)
378 /* alloc_bootmem() doesn't like zero-sized allocations! */
379 return;
380
381 // set up OS data structures to hold error info
382 IA64_LOG_ALLOCATE(sal_info_type, max_size);
383 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
384 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
385 }
386
387 /*
388 * ia64_log_get
389 *
390 * Get the current MCA log from SAL and copy it into the OS log buffer.
391 *
392 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
393 * irq_safe whether you can use printk at this point
394 * Outputs : size (total record length)
395 * *buffer (ptr to error record)
396 *
397 */
398 static u64
399 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
400 {
401 sal_log_record_header_t *log_buffer;
402 u64 total_len = 0;
403 unsigned long s;
404
405 IA64_LOG_LOCK(sal_info_type);
406
407 /* Get the process state information */
408 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
409
410 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
411
412 if (total_len) {
413 IA64_LOG_INDEX_INC(sal_info_type);
414 IA64_LOG_UNLOCK(sal_info_type);
415 if (irq_safe) {
416 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
417 __func__, sal_info_type, total_len);
418 }
419 *buffer = (u8 *) log_buffer;
420 return total_len;
421 } else {
422 IA64_LOG_UNLOCK(sal_info_type);
423 return 0;
424 }
425 }
426
427 /*
428 * ia64_mca_log_sal_error_record
429 *
430 * This function retrieves a specified error record type from SAL
431 * and wakes up any processes waiting for error records.
432 *
433 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
434 * FIXME: remove MCA and irq_safe.
435 */
436 static void
437 ia64_mca_log_sal_error_record(int sal_info_type)
438 {
439 u8 *buffer;
440 sal_log_record_header_t *rh;
441 u64 size;
442 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
443 #ifdef IA64_MCA_DEBUG_INFO
444 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
445 #endif
446
447 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
448 if (!size)
449 return;
450
451 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
452
453 if (irq_safe)
454 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
455 smp_processor_id(),
456 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
457
458 /* Clear logs from corrected errors in case there's no user-level logger */
459 rh = (sal_log_record_header_t *)buffer;
460 if (rh->severity == sal_log_severity_corrected)
461 ia64_sal_clear_state_info(sal_info_type);
462 }
463
464 /*
465 * search_mca_table
466 * See if the MCA surfaced in an instruction range
467 * that has been tagged as recoverable.
468 *
469 * Inputs
470 * first First address range to check
471 * last Last address range to check
472 * ip Instruction pointer, address we are looking for
473 *
474 * Return value:
475 * 1 on Success (in the table)/ 0 on Failure (not in the table)
476 */
477 int
478 search_mca_table (const struct mca_table_entry *first,
479 const struct mca_table_entry *last,
480 unsigned long ip)
481 {
482 const struct mca_table_entry *curr;
483 u64 curr_start, curr_end;
484
485 curr = first;
486 while (curr <= last) {
487 curr_start = (u64) &curr->start_addr + curr->start_addr;
488 curr_end = (u64) &curr->end_addr + curr->end_addr;
489
490 if ((ip >= curr_start) && (ip <= curr_end)) {
491 return 1;
492 }
493 curr++;
494 }
495 return 0;
496 }
497
498 /* Given an address, look for it in the mca tables. */
499 int mca_recover_range(unsigned long addr)
500 {
501 extern struct mca_table_entry __start___mca_table[];
502 extern struct mca_table_entry __stop___mca_table[];
503
504 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
505 }
506 EXPORT_SYMBOL_GPL(mca_recover_range);
507
508 #ifdef CONFIG_ACPI
509
510 int cpe_vector = -1;
511 int ia64_cpe_irq = -1;
512
513 static irqreturn_t
514 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
515 {
516 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
517 static int index;
518 static DEFINE_SPINLOCK(cpe_history_lock);
519
520 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
521 __func__, cpe_irq, smp_processor_id());
522
523 /* SAL spec states this should run w/ interrupts enabled */
524 local_irq_enable();
525
526 spin_lock(&cpe_history_lock);
527 if (!cpe_poll_enabled && cpe_vector >= 0) {
528
529 int i, count = 1; /* we know 1 happened now */
530 unsigned long now = jiffies;
531
532 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
533 if (now - cpe_history[i] <= HZ)
534 count++;
535 }
536
537 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
538 if (count >= CPE_HISTORY_LENGTH) {
539
540 cpe_poll_enabled = 1;
541 spin_unlock(&cpe_history_lock);
542 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
543
544 /*
545 * Corrected errors will still be corrected, but
546 * make sure there's a log somewhere that indicates
547 * something is generating more than we can handle.
548 */
549 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
550
551 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
552
553 /* lock already released, get out now */
554 goto out;
555 } else {
556 cpe_history[index++] = now;
557 if (index == CPE_HISTORY_LENGTH)
558 index = 0;
559 }
560 }
561 spin_unlock(&cpe_history_lock);
562 out:
563 /* Get the CPE error record and log it */
564 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
565
566 return IRQ_HANDLED;
567 }
568
569 #endif /* CONFIG_ACPI */
570
571 #ifdef CONFIG_ACPI
572 /*
573 * ia64_mca_register_cpev
574 *
575 * Register the corrected platform error vector with SAL.
576 *
577 * Inputs
578 * cpev Corrected Platform Error Vector number
579 *
580 * Outputs
581 * None
582 */
583 void
584 ia64_mca_register_cpev (int cpev)
585 {
586 /* Register the CPE interrupt vector with SAL */
587 struct ia64_sal_retval isrv;
588
589 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
590 if (isrv.status) {
591 printk(KERN_ERR "Failed to register Corrected Platform "
592 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
593 return;
594 }
595
596 IA64_MCA_DEBUG("%s: corrected platform error "
597 "vector %#x registered\n", __func__, cpev);
598 }
599 #endif /* CONFIG_ACPI */
600
601 /*
602 * ia64_mca_cmc_vector_setup
603 *
604 * Setup the corrected machine check vector register in the processor.
605 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
606 * This function is invoked on a per-processor basis.
607 *
608 * Inputs
609 * None
610 *
611 * Outputs
612 * None
613 */
614 void __cpuinit
615 ia64_mca_cmc_vector_setup (void)
616 {
617 cmcv_reg_t cmcv;
618
619 cmcv.cmcv_regval = 0;
620 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
621 cmcv.cmcv_vector = IA64_CMC_VECTOR;
622 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
623
624 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
625 __func__, smp_processor_id(), IA64_CMC_VECTOR);
626
627 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
628 __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
629 }
630
631 /*
632 * ia64_mca_cmc_vector_disable
633 *
634 * Mask the corrected machine check vector register in the processor.
635 * This function is invoked on a per-processor basis.
636 *
637 * Inputs
638 * dummy(unused)
639 *
640 * Outputs
641 * None
642 */
643 static void
644 ia64_mca_cmc_vector_disable (void *dummy)
645 {
646 cmcv_reg_t cmcv;
647
648 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
649
650 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
651 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
652
653 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
654 __func__, smp_processor_id(), cmcv.cmcv_vector);
655 }
656
657 /*
658 * ia64_mca_cmc_vector_enable
659 *
660 * Unmask the corrected machine check vector register in the processor.
661 * This function is invoked on a per-processor basis.
662 *
663 * Inputs
664 * dummy(unused)
665 *
666 * Outputs
667 * None
668 */
669 static void
670 ia64_mca_cmc_vector_enable (void *dummy)
671 {
672 cmcv_reg_t cmcv;
673
674 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
675
676 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
677 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
678
679 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
680 __func__, smp_processor_id(), cmcv.cmcv_vector);
681 }
682
683 /*
684 * ia64_mca_cmc_vector_disable_keventd
685 *
686 * Called via keventd (smp_call_function() is not safe in interrupt context) to
687 * disable the cmc interrupt vector.
688 */
689 static void
690 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
691 {
692 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
693 }
694
695 /*
696 * ia64_mca_cmc_vector_enable_keventd
697 *
698 * Called via keventd (smp_call_function() is not safe in interrupt context) to
699 * enable the cmc interrupt vector.
700 */
701 static void
702 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
703 {
704 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
705 }
706
707 /*
708 * ia64_mca_wakeup
709 *
710 * Send an inter-cpu interrupt to wake-up a particular cpu.
711 *
712 * Inputs : cpuid
713 * Outputs : None
714 */
715 static void
716 ia64_mca_wakeup(int cpu)
717 {
718 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
719 }
720
721 /*
722 * ia64_mca_wakeup_all
723 *
724 * Wakeup all the slave cpus which have rendez'ed previously.
725 *
726 * Inputs : None
727 * Outputs : None
728 */
729 static void
730 ia64_mca_wakeup_all(void)
731 {
732 int cpu;
733
734 /* Clear the Rendez checkin flag for all cpus */
735 for_each_online_cpu(cpu) {
736 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
737 ia64_mca_wakeup(cpu);
738 }
739
740 }
741
742 /*
743 * ia64_mca_rendez_interrupt_handler
744 *
745 * This is handler used to put slave processors into spinloop
746 * while the monarch processor does the mca handling and later
747 * wake each slave up once the monarch is done. The state
748 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
749 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
750 * the cpu has come out of OS rendezvous.
751 *
752 * Inputs : None
753 * Outputs : None
754 */
755 static irqreturn_t
756 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
757 {
758 unsigned long flags;
759 int cpu = smp_processor_id();
760 struct ia64_mca_notify_die nd =
761 { .sos = NULL, .monarch_cpu = &monarch_cpu };
762
763 /* Mask all interrupts */
764 local_irq_save(flags);
765 if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", get_irq_regs(),
766 (long)&nd, 0, 0) == NOTIFY_STOP)
767 ia64_mca_spin(__func__);
768
769 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
770 /* Register with the SAL monarch that the slave has
771 * reached SAL
772 */
773 ia64_sal_mc_rendez();
774
775 if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", get_irq_regs(),
776 (long)&nd, 0, 0) == NOTIFY_STOP)
777 ia64_mca_spin(__func__);
778
779 /* Wait for the monarch cpu to exit. */
780 while (monarch_cpu != -1)
781 cpu_relax(); /* spin until monarch leaves */
782
783 if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", get_irq_regs(),
784 (long)&nd, 0, 0) == NOTIFY_STOP)
785 ia64_mca_spin(__func__);
786
787 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
788 /* Enable all interrupts */
789 local_irq_restore(flags);
790 return IRQ_HANDLED;
791 }
792
793 /*
794 * ia64_mca_wakeup_int_handler
795 *
796 * The interrupt handler for processing the inter-cpu interrupt to the
797 * slave cpu which was spinning in the rendez loop.
798 * Since this spinning is done by turning off the interrupts and
799 * polling on the wakeup-interrupt bit in the IRR, there is
800 * nothing useful to be done in the handler.
801 *
802 * Inputs : wakeup_irq (Wakeup-interrupt bit)
803 * arg (Interrupt handler specific argument)
804 * Outputs : None
805 *
806 */
807 static irqreturn_t
808 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
809 {
810 return IRQ_HANDLED;
811 }
812
813 /* Function pointer for extra MCA recovery */
814 int (*ia64_mca_ucmc_extension)
815 (void*,struct ia64_sal_os_state*)
816 = NULL;
817
818 int
819 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
820 {
821 if (ia64_mca_ucmc_extension)
822 return 1;
823
824 ia64_mca_ucmc_extension = fn;
825 return 0;
826 }
827
828 void
829 ia64_unreg_MCA_extension(void)
830 {
831 if (ia64_mca_ucmc_extension)
832 ia64_mca_ucmc_extension = NULL;
833 }
834
835 EXPORT_SYMBOL(ia64_reg_MCA_extension);
836 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
837
838
839 static inline void
840 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
841 {
842 u64 fslot, tslot, nat;
843 *tr = *fr;
844 fslot = ((unsigned long)fr >> 3) & 63;
845 tslot = ((unsigned long)tr >> 3) & 63;
846 *tnat &= ~(1UL << tslot);
847 nat = (fnat >> fslot) & 1;
848 *tnat |= (nat << tslot);
849 }
850
851 /* Change the comm field on the MCA/INT task to include the pid that
852 * was interrupted, it makes for easier debugging. If that pid was 0
853 * (swapper or nested MCA/INIT) then use the start of the previous comm
854 * field suffixed with its cpu.
855 */
856
857 static void
858 ia64_mca_modify_comm(const struct task_struct *previous_current)
859 {
860 char *p, comm[sizeof(current->comm)];
861 if (previous_current->pid)
862 snprintf(comm, sizeof(comm), "%s %d",
863 current->comm, previous_current->pid);
864 else {
865 int l;
866 if ((p = strchr(previous_current->comm, ' ')))
867 l = p - previous_current->comm;
868 else
869 l = strlen(previous_current->comm);
870 snprintf(comm, sizeof(comm), "%s %*s %d",
871 current->comm, l, previous_current->comm,
872 task_thread_info(previous_current)->cpu);
873 }
874 memcpy(current->comm, comm, sizeof(current->comm));
875 }
876
877 /* On entry to this routine, we are running on the per cpu stack, see
878 * mca_asm.h. The original stack has not been touched by this event. Some of
879 * the original stack's registers will be in the RBS on this stack. This stack
880 * also contains a partial pt_regs and switch_stack, the rest of the data is in
881 * PAL minstate.
882 *
883 * The first thing to do is modify the original stack to look like a blocked
884 * task so we can run backtrace on the original task. Also mark the per cpu
885 * stack as current to ensure that we use the correct task state, it also means
886 * that we can do backtrace on the MCA/INIT handler code itself.
887 */
888
889 static struct task_struct *
890 ia64_mca_modify_original_stack(struct pt_regs *regs,
891 const struct switch_stack *sw,
892 struct ia64_sal_os_state *sos,
893 const char *type)
894 {
895 char *p;
896 ia64_va va;
897 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
898 const pal_min_state_area_t *ms = sos->pal_min_state;
899 struct task_struct *previous_current;
900 struct pt_regs *old_regs;
901 struct switch_stack *old_sw;
902 unsigned size = sizeof(struct pt_regs) +
903 sizeof(struct switch_stack) + 16;
904 u64 *old_bspstore, *old_bsp;
905 u64 *new_bspstore, *new_bsp;
906 u64 old_unat, old_rnat, new_rnat, nat;
907 u64 slots, loadrs = regs->loadrs;
908 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
909 u64 ar_bspstore = regs->ar_bspstore;
910 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
911 const u64 *bank;
912 const char *msg;
913 int cpu = smp_processor_id();
914
915 previous_current = curr_task(cpu);
916 set_curr_task(cpu, current);
917 if ((p = strchr(current->comm, ' ')))
918 *p = '\0';
919
920 /* Best effort attempt to cope with MCA/INIT delivered while in
921 * physical mode.
922 */
923 regs->cr_ipsr = ms->pmsa_ipsr;
924 if (ia64_psr(regs)->dt == 0) {
925 va.l = r12;
926 if (va.f.reg == 0) {
927 va.f.reg = 7;
928 r12 = va.l;
929 }
930 va.l = r13;
931 if (va.f.reg == 0) {
932 va.f.reg = 7;
933 r13 = va.l;
934 }
935 }
936 if (ia64_psr(regs)->rt == 0) {
937 va.l = ar_bspstore;
938 if (va.f.reg == 0) {
939 va.f.reg = 7;
940 ar_bspstore = va.l;
941 }
942 va.l = ar_bsp;
943 if (va.f.reg == 0) {
944 va.f.reg = 7;
945 ar_bsp = va.l;
946 }
947 }
948
949 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
950 * have been copied to the old stack, the old stack may fail the
951 * validation tests below. So ia64_old_stack() must restore the dirty
952 * registers from the new stack. The old and new bspstore probably
953 * have different alignments, so loadrs calculated on the old bsp
954 * cannot be used to restore from the new bsp. Calculate a suitable
955 * loadrs for the new stack and save it in the new pt_regs, where
956 * ia64_old_stack() can get it.
957 */
958 old_bspstore = (u64 *)ar_bspstore;
959 old_bsp = (u64 *)ar_bsp;
960 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
961 new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
962 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
963 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
964
965 /* Verify the previous stack state before we change it */
966 if (user_mode(regs)) {
967 msg = "occurred in user space";
968 /* previous_current is guaranteed to be valid when the task was
969 * in user space, so ...
970 */
971 ia64_mca_modify_comm(previous_current);
972 goto no_mod;
973 }
974
975 if (r13 != sos->prev_IA64_KR_CURRENT) {
976 msg = "inconsistent previous current and r13";
977 goto no_mod;
978 }
979
980 if (!mca_recover_range(ms->pmsa_iip)) {
981 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
982 msg = "inconsistent r12 and r13";
983 goto no_mod;
984 }
985 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
986 msg = "inconsistent ar.bspstore and r13";
987 goto no_mod;
988 }
989 va.p = old_bspstore;
990 if (va.f.reg < 5) {
991 msg = "old_bspstore is in the wrong region";
992 goto no_mod;
993 }
994 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
995 msg = "inconsistent ar.bsp and r13";
996 goto no_mod;
997 }
998 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
999 if (ar_bspstore + size > r12) {
1000 msg = "no room for blocked state";
1001 goto no_mod;
1002 }
1003 }
1004
1005 ia64_mca_modify_comm(previous_current);
1006
1007 /* Make the original task look blocked. First stack a struct pt_regs,
1008 * describing the state at the time of interrupt. mca_asm.S built a
1009 * partial pt_regs, copy it and fill in the blanks using minstate.
1010 */
1011 p = (char *)r12 - sizeof(*regs);
1012 old_regs = (struct pt_regs *)p;
1013 memcpy(old_regs, regs, sizeof(*regs));
1014 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1015 * pmsa_{xip,xpsr,xfs}
1016 */
1017 if (ia64_psr(regs)->ic) {
1018 old_regs->cr_iip = ms->pmsa_iip;
1019 old_regs->cr_ipsr = ms->pmsa_ipsr;
1020 old_regs->cr_ifs = ms->pmsa_ifs;
1021 } else {
1022 old_regs->cr_iip = ms->pmsa_xip;
1023 old_regs->cr_ipsr = ms->pmsa_xpsr;
1024 old_regs->cr_ifs = ms->pmsa_xfs;
1025 }
1026 old_regs->pr = ms->pmsa_pr;
1027 old_regs->b0 = ms->pmsa_br0;
1028 old_regs->loadrs = loadrs;
1029 old_regs->ar_rsc = ms->pmsa_rsc;
1030 old_unat = old_regs->ar_unat;
1031 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
1032 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
1033 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
1034 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
1035 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
1036 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
1037 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
1038 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
1039 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
1040 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
1041 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
1042 if (ia64_psr(old_regs)->bn)
1043 bank = ms->pmsa_bank1_gr;
1044 else
1045 bank = ms->pmsa_bank0_gr;
1046 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
1047 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
1048 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
1049 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
1050 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
1051 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
1052 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
1053 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
1054 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
1055 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
1056 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
1057 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
1058 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
1059 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
1060 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
1061 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
1062
1063 /* Next stack a struct switch_stack. mca_asm.S built a partial
1064 * switch_stack, copy it and fill in the blanks using pt_regs and
1065 * minstate.
1066 *
1067 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1068 * ar.pfs is set to 0.
1069 *
1070 * unwind.c::unw_unwind() does special processing for interrupt frames.
1071 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1072 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1073 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1074 * switch_stack on the original stack so it will unwind correctly when
1075 * unwind.c reads pt_regs.
1076 *
1077 * thread.ksp is updated to point to the synthesized switch_stack.
1078 */
1079 p -= sizeof(struct switch_stack);
1080 old_sw = (struct switch_stack *)p;
1081 memcpy(old_sw, sw, sizeof(*sw));
1082 old_sw->caller_unat = old_unat;
1083 old_sw->ar_fpsr = old_regs->ar_fpsr;
1084 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1085 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1086 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1087 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1088 old_sw->b0 = (u64)ia64_leave_kernel;
1089 old_sw->b1 = ms->pmsa_br1;
1090 old_sw->ar_pfs = 0;
1091 old_sw->ar_unat = old_unat;
1092 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1093 previous_current->thread.ksp = (u64)p - 16;
1094
1095 /* Finally copy the original stack's registers back to its RBS.
1096 * Registers from ar.bspstore through ar.bsp at the time of the event
1097 * are in the current RBS, copy them back to the original stack. The
1098 * copy must be done register by register because the original bspstore
1099 * and the current one have different alignments, so the saved RNAT
1100 * data occurs at different places.
1101 *
1102 * mca_asm does cover, so the old_bsp already includes all registers at
1103 * the time of MCA/INIT. It also does flushrs, so all registers before
1104 * this function have been written to backing store on the MCA/INIT
1105 * stack.
1106 */
1107 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1108 old_rnat = regs->ar_rnat;
1109 while (slots--) {
1110 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1111 new_rnat = ia64_get_rnat(new_bspstore++);
1112 }
1113 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1114 *old_bspstore++ = old_rnat;
1115 old_rnat = 0;
1116 }
1117 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1118 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1119 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1120 *old_bspstore++ = *new_bspstore++;
1121 }
1122 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1123 old_sw->ar_rnat = old_rnat;
1124
1125 sos->prev_task = previous_current;
1126 return previous_current;
1127
1128 no_mod:
1129 printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1130 smp_processor_id(), type, msg);
1131 return previous_current;
1132 }
1133
1134 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1135 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1136 * not entered rendezvous yet then wait a bit. The assumption is that any
1137 * slave that has not rendezvoused after a reasonable time is never going to do
1138 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1139 * interrupt, as well as cpus that receive the INIT slave event.
1140 */
1141
1142 static void
1143 ia64_wait_for_slaves(int monarch, const char *type)
1144 {
1145 int c, i , wait;
1146
1147 /*
1148 * wait 5 seconds total for slaves (arbitrary)
1149 */
1150 for (i = 0; i < 5000; i++) {
1151 wait = 0;
1152 for_each_online_cpu(c) {
1153 if (c == monarch)
1154 continue;
1155 if (ia64_mc_info.imi_rendez_checkin[c]
1156 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1157 udelay(1000); /* short wait */
1158 wait = 1;
1159 break;
1160 }
1161 }
1162 if (!wait)
1163 goto all_in;
1164 }
1165
1166 /*
1167 * Maybe slave(s) dead. Print buffered messages immediately.
1168 */
1169 ia64_mlogbuf_finish(0);
1170 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1171 for_each_online_cpu(c) {
1172 if (c == monarch)
1173 continue;
1174 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1175 mprintk(" %d", c);
1176 }
1177 mprintk("\n");
1178 return;
1179
1180 all_in:
1181 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1182 return;
1183 }
1184
1185 /*
1186 * ia64_mca_handler
1187 *
1188 * This is uncorrectable machine check handler called from OS_MCA
1189 * dispatch code which is in turn called from SAL_CHECK().
1190 * This is the place where the core of OS MCA handling is done.
1191 * Right now the logs are extracted and displayed in a well-defined
1192 * format. This handler code is supposed to be run only on the
1193 * monarch processor. Once the monarch is done with MCA handling
1194 * further MCA logging is enabled by clearing logs.
1195 * Monarch also has the duty of sending wakeup-IPIs to pull the
1196 * slave processors out of rendezvous spinloop.
1197 *
1198 * If multiple processors call into OS_MCA, the first will become
1199 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1200 * bitmask. After the first monarch has processed its MCA, it
1201 * will wake up the next cpu in the mca_cpu bitmask and then go
1202 * into the rendezvous loop. When all processors have serviced
1203 * their MCA, the last monarch frees up the rest of the processors.
1204 */
1205 void
1206 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1207 struct ia64_sal_os_state *sos)
1208 {
1209 int recover, cpu = smp_processor_id();
1210 struct task_struct *previous_current;
1211 struct ia64_mca_notify_die nd =
1212 { .sos = sos, .monarch_cpu = &monarch_cpu };
1213 static atomic_t mca_count;
1214 static cpumask_t mca_cpu;
1215
1216 if (atomic_add_return(1, &mca_count) == 1) {
1217 monarch_cpu = cpu;
1218 sos->monarch = 1;
1219 } else {
1220 cpu_set(cpu, mca_cpu);
1221 sos->monarch = 0;
1222 }
1223 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1224 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1225
1226 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1227
1228 if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, (long)&nd, 0, 0)
1229 == NOTIFY_STOP)
1230 ia64_mca_spin(__func__);
1231
1232 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1233 if (sos->monarch) {
1234 ia64_wait_for_slaves(cpu, "MCA");
1235
1236 /* Wakeup all the processors which are spinning in the
1237 * rendezvous loop. They will leave SAL, then spin in the OS
1238 * with interrupts disabled until this monarch cpu leaves the
1239 * MCA handler. That gets control back to the OS so we can
1240 * backtrace the other cpus, backtrace when spinning in SAL
1241 * does not work.
1242 */
1243 ia64_mca_wakeup_all();
1244 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, (long)&nd, 0, 0)
1245 == NOTIFY_STOP)
1246 ia64_mca_spin(__func__);
1247 } else {
1248 while (cpu_isset(cpu, mca_cpu))
1249 cpu_relax(); /* spin until monarch wakes us */
1250 }
1251
1252 /* Get the MCA error record and log it */
1253 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1254
1255 /* MCA error recovery */
1256 recover = (ia64_mca_ucmc_extension
1257 && ia64_mca_ucmc_extension(
1258 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1259 sos));
1260
1261 if (recover) {
1262 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1263 rh->severity = sal_log_severity_corrected;
1264 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1265 sos->os_status = IA64_MCA_CORRECTED;
1266 } else {
1267 /* Dump buffered message to console */
1268 ia64_mlogbuf_finish(1);
1269 #ifdef CONFIG_KEXEC
1270 atomic_set(&kdump_in_progress, 1);
1271 monarch_cpu = -1;
1272 #endif
1273 }
1274 if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, (long)&nd, 0, recover)
1275 == NOTIFY_STOP)
1276 ia64_mca_spin(__func__);
1277
1278
1279 if (atomic_dec_return(&mca_count) > 0) {
1280 int i;
1281
1282 /* wake up the next monarch cpu,
1283 * and put this cpu in the rendez loop.
1284 */
1285 for_each_online_cpu(i) {
1286 if (cpu_isset(i, mca_cpu)) {
1287 monarch_cpu = i;
1288 cpu_clear(i, mca_cpu); /* wake next cpu */
1289 while (monarch_cpu != -1)
1290 cpu_relax(); /* spin until last cpu leaves */
1291 set_curr_task(cpu, previous_current);
1292 ia64_mc_info.imi_rendez_checkin[cpu]
1293 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1294 return;
1295 }
1296 }
1297 }
1298 set_curr_task(cpu, previous_current);
1299 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1300 monarch_cpu = -1; /* This frees the slaves and previous monarchs */
1301 }
1302
1303 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1304 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1305
1306 /*
1307 * ia64_mca_cmc_int_handler
1308 *
1309 * This is corrected machine check interrupt handler.
1310 * Right now the logs are extracted and displayed in a well-defined
1311 * format.
1312 *
1313 * Inputs
1314 * interrupt number
1315 * client data arg ptr
1316 *
1317 * Outputs
1318 * None
1319 */
1320 static irqreturn_t
1321 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1322 {
1323 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1324 static int index;
1325 static DEFINE_SPINLOCK(cmc_history_lock);
1326
1327 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1328 __func__, cmc_irq, smp_processor_id());
1329
1330 /* SAL spec states this should run w/ interrupts enabled */
1331 local_irq_enable();
1332
1333 spin_lock(&cmc_history_lock);
1334 if (!cmc_polling_enabled) {
1335 int i, count = 1; /* we know 1 happened now */
1336 unsigned long now = jiffies;
1337
1338 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1339 if (now - cmc_history[i] <= HZ)
1340 count++;
1341 }
1342
1343 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1344 if (count >= CMC_HISTORY_LENGTH) {
1345
1346 cmc_polling_enabled = 1;
1347 spin_unlock(&cmc_history_lock);
1348 /* If we're being hit with CMC interrupts, we won't
1349 * ever execute the schedule_work() below. Need to
1350 * disable CMC interrupts on this processor now.
1351 */
1352 ia64_mca_cmc_vector_disable(NULL);
1353 schedule_work(&cmc_disable_work);
1354
1355 /*
1356 * Corrected errors will still be corrected, but
1357 * make sure there's a log somewhere that indicates
1358 * something is generating more than we can handle.
1359 */
1360 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1361
1362 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1363
1364 /* lock already released, get out now */
1365 goto out;
1366 } else {
1367 cmc_history[index++] = now;
1368 if (index == CMC_HISTORY_LENGTH)
1369 index = 0;
1370 }
1371 }
1372 spin_unlock(&cmc_history_lock);
1373 out:
1374 /* Get the CMC error record and log it */
1375 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1376
1377 return IRQ_HANDLED;
1378 }
1379
1380 /*
1381 * ia64_mca_cmc_int_caller
1382 *
1383 * Triggered by sw interrupt from CMC polling routine. Calls
1384 * real interrupt handler and either triggers a sw interrupt
1385 * on the next cpu or does cleanup at the end.
1386 *
1387 * Inputs
1388 * interrupt number
1389 * client data arg ptr
1390 * Outputs
1391 * handled
1392 */
1393 static irqreturn_t
1394 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1395 {
1396 static int start_count = -1;
1397 unsigned int cpuid;
1398
1399 cpuid = smp_processor_id();
1400
1401 /* If first cpu, update count */
1402 if (start_count == -1)
1403 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1404
1405 ia64_mca_cmc_int_handler(cmc_irq, arg);
1406
1407 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1408
1409 if (cpuid < NR_CPUS) {
1410 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1411 } else {
1412 /* If no log record, switch out of polling mode */
1413 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1414
1415 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1416 schedule_work(&cmc_enable_work);
1417 cmc_polling_enabled = 0;
1418
1419 } else {
1420
1421 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1422 }
1423
1424 start_count = -1;
1425 }
1426
1427 return IRQ_HANDLED;
1428 }
1429
1430 /*
1431 * ia64_mca_cmc_poll
1432 *
1433 * Poll for Corrected Machine Checks (CMCs)
1434 *
1435 * Inputs : dummy(unused)
1436 * Outputs : None
1437 *
1438 */
1439 static void
1440 ia64_mca_cmc_poll (unsigned long dummy)
1441 {
1442 /* Trigger a CMC interrupt cascade */
1443 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1444 }
1445
1446 /*
1447 * ia64_mca_cpe_int_caller
1448 *
1449 * Triggered by sw interrupt from CPE polling routine. Calls
1450 * real interrupt handler and either triggers a sw interrupt
1451 * on the next cpu or does cleanup at the end.
1452 *
1453 * Inputs
1454 * interrupt number
1455 * client data arg ptr
1456 * Outputs
1457 * handled
1458 */
1459 #ifdef CONFIG_ACPI
1460
1461 static irqreturn_t
1462 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1463 {
1464 static int start_count = -1;
1465 static int poll_time = MIN_CPE_POLL_INTERVAL;
1466 unsigned int cpuid;
1467
1468 cpuid = smp_processor_id();
1469
1470 /* If first cpu, update count */
1471 if (start_count == -1)
1472 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1473
1474 ia64_mca_cpe_int_handler(cpe_irq, arg);
1475
1476 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1477
1478 if (cpuid < NR_CPUS) {
1479 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1480 } else {
1481 /*
1482 * If a log was recorded, increase our polling frequency,
1483 * otherwise, backoff or return to interrupt mode.
1484 */
1485 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1486 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1487 } else if (cpe_vector < 0) {
1488 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1489 } else {
1490 poll_time = MIN_CPE_POLL_INTERVAL;
1491
1492 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1493 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1494 cpe_poll_enabled = 0;
1495 }
1496
1497 if (cpe_poll_enabled)
1498 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1499 start_count = -1;
1500 }
1501
1502 return IRQ_HANDLED;
1503 }
1504
1505 /*
1506 * ia64_mca_cpe_poll
1507 *
1508 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1509 * on first cpu, from there it will trickle through all the cpus.
1510 *
1511 * Inputs : dummy(unused)
1512 * Outputs : None
1513 *
1514 */
1515 static void
1516 ia64_mca_cpe_poll (unsigned long dummy)
1517 {
1518 /* Trigger a CPE interrupt cascade */
1519 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1520 }
1521
1522 #endif /* CONFIG_ACPI */
1523
1524 static int
1525 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1526 {
1527 int c;
1528 struct task_struct *g, *t;
1529 if (val != DIE_INIT_MONARCH_PROCESS)
1530 return NOTIFY_DONE;
1531 #ifdef CONFIG_KEXEC
1532 if (atomic_read(&kdump_in_progress))
1533 return NOTIFY_DONE;
1534 #endif
1535
1536 /*
1537 * FIXME: mlogbuf will brim over with INIT stack dumps.
1538 * To enable show_stack from INIT, we use oops_in_progress which should
1539 * be used in real oops. This would cause something wrong after INIT.
1540 */
1541 BREAK_LOGLEVEL(console_loglevel);
1542 ia64_mlogbuf_dump_from_init();
1543
1544 printk(KERN_ERR "Processes interrupted by INIT -");
1545 for_each_online_cpu(c) {
1546 struct ia64_sal_os_state *s;
1547 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1548 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1549 g = s->prev_task;
1550 if (g) {
1551 if (g->pid)
1552 printk(" %d", g->pid);
1553 else
1554 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1555 }
1556 }
1557 printk("\n\n");
1558 if (read_trylock(&tasklist_lock)) {
1559 do_each_thread (g, t) {
1560 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1561 show_stack(t, NULL);
1562 } while_each_thread (g, t);
1563 read_unlock(&tasklist_lock);
1564 }
1565 /* FIXME: This will not restore zapped printk locks. */
1566 RESTORE_LOGLEVEL(console_loglevel);
1567 return NOTIFY_DONE;
1568 }
1569
1570 /*
1571 * C portion of the OS INIT handler
1572 *
1573 * Called from ia64_os_init_dispatch
1574 *
1575 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1576 * this event. This code is used for both monarch and slave INIT events, see
1577 * sos->monarch.
1578 *
1579 * All INIT events switch to the INIT stack and change the previous process to
1580 * blocked status. If one of the INIT events is the monarch then we are
1581 * probably processing the nmi button/command. Use the monarch cpu to dump all
1582 * the processes. The slave INIT events all spin until the monarch cpu
1583 * returns. We can also get INIT slave events for MCA, in which case the MCA
1584 * process is the monarch.
1585 */
1586
1587 void
1588 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1589 struct ia64_sal_os_state *sos)
1590 {
1591 static atomic_t slaves;
1592 static atomic_t monarchs;
1593 struct task_struct *previous_current;
1594 int cpu = smp_processor_id();
1595 struct ia64_mca_notify_die nd =
1596 { .sos = sos, .monarch_cpu = &monarch_cpu };
1597
1598 (void) notify_die(DIE_INIT_ENTER, "INIT", regs, (long)&nd, 0, 0);
1599
1600 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1601 sos->proc_state_param, cpu, sos->monarch);
1602 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1603
1604 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1605 sos->os_status = IA64_INIT_RESUME;
1606
1607 /* FIXME: Workaround for broken proms that drive all INIT events as
1608 * slaves. The last slave that enters is promoted to be a monarch.
1609 * Remove this code in September 2006, that gives platforms a year to
1610 * fix their proms and get their customers updated.
1611 */
1612 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1613 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1614 __func__, cpu);
1615 atomic_dec(&slaves);
1616 sos->monarch = 1;
1617 }
1618
1619 /* FIXME: Workaround for broken proms that drive all INIT events as
1620 * monarchs. Second and subsequent monarchs are demoted to slaves.
1621 * Remove this code in September 2006, that gives platforms a year to
1622 * fix their proms and get their customers updated.
1623 */
1624 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1625 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1626 __func__, cpu);
1627 atomic_dec(&monarchs);
1628 sos->monarch = 0;
1629 }
1630
1631 if (!sos->monarch) {
1632 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1633 while (monarch_cpu == -1)
1634 cpu_relax(); /* spin until monarch enters */
1635 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, (long)&nd, 0, 0)
1636 == NOTIFY_STOP)
1637 ia64_mca_spin(__func__);
1638 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1639 == NOTIFY_STOP)
1640 ia64_mca_spin(__func__);
1641 while (monarch_cpu != -1)
1642 cpu_relax(); /* spin until monarch leaves */
1643 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1644 == NOTIFY_STOP)
1645 ia64_mca_spin(__func__);
1646 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1647 set_curr_task(cpu, previous_current);
1648 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1649 atomic_dec(&slaves);
1650 return;
1651 }
1652
1653 monarch_cpu = cpu;
1654 if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, (long)&nd, 0, 0)
1655 == NOTIFY_STOP)
1656 ia64_mca_spin(__func__);
1657
1658 /*
1659 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1660 * generated via the BMC's command-line interface, but since the console is on the
1661 * same serial line, the user will need some time to switch out of the BMC before
1662 * the dump begins.
1663 */
1664 mprintk("Delaying for 5 seconds...\n");
1665 udelay(5*1000000);
1666 ia64_wait_for_slaves(cpu, "INIT");
1667 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1668 * to default_monarch_init_process() above and just print all the
1669 * tasks.
1670 */
1671 if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1672 == NOTIFY_STOP)
1673 ia64_mca_spin(__func__);
1674 if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1675 == NOTIFY_STOP)
1676 ia64_mca_spin(__func__);
1677 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1678 atomic_dec(&monarchs);
1679 set_curr_task(cpu, previous_current);
1680 monarch_cpu = -1;
1681 return;
1682 }
1683
1684 static int __init
1685 ia64_mca_disable_cpe_polling(char *str)
1686 {
1687 cpe_poll_enabled = 0;
1688 return 1;
1689 }
1690
1691 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1692
1693 static struct irqaction cmci_irqaction = {
1694 .handler = ia64_mca_cmc_int_handler,
1695 .flags = IRQF_DISABLED,
1696 .name = "cmc_hndlr"
1697 };
1698
1699 static struct irqaction cmcp_irqaction = {
1700 .handler = ia64_mca_cmc_int_caller,
1701 .flags = IRQF_DISABLED,
1702 .name = "cmc_poll"
1703 };
1704
1705 static struct irqaction mca_rdzv_irqaction = {
1706 .handler = ia64_mca_rendez_int_handler,
1707 .flags = IRQF_DISABLED,
1708 .name = "mca_rdzv"
1709 };
1710
1711 static struct irqaction mca_wkup_irqaction = {
1712 .handler = ia64_mca_wakeup_int_handler,
1713 .flags = IRQF_DISABLED,
1714 .name = "mca_wkup"
1715 };
1716
1717 #ifdef CONFIG_ACPI
1718 static struct irqaction mca_cpe_irqaction = {
1719 .handler = ia64_mca_cpe_int_handler,
1720 .flags = IRQF_DISABLED,
1721 .name = "cpe_hndlr"
1722 };
1723
1724 static struct irqaction mca_cpep_irqaction = {
1725 .handler = ia64_mca_cpe_int_caller,
1726 .flags = IRQF_DISABLED,
1727 .name = "cpe_poll"
1728 };
1729 #endif /* CONFIG_ACPI */
1730
1731 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1732 * these stacks can never sleep, they cannot return from the kernel to user
1733 * space, they do not appear in a normal ps listing. So there is no need to
1734 * format most of the fields.
1735 */
1736
1737 static void __cpuinit
1738 format_mca_init_stack(void *mca_data, unsigned long offset,
1739 const char *type, int cpu)
1740 {
1741 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1742 struct thread_info *ti;
1743 memset(p, 0, KERNEL_STACK_SIZE);
1744 ti = task_thread_info(p);
1745 ti->flags = _TIF_MCA_INIT;
1746 ti->preempt_count = 1;
1747 ti->task = p;
1748 ti->cpu = cpu;
1749 p->stack = ti;
1750 p->state = TASK_UNINTERRUPTIBLE;
1751 cpu_set(cpu, p->cpus_allowed);
1752 INIT_LIST_HEAD(&p->tasks);
1753 p->parent = p->real_parent = p->group_leader = p;
1754 INIT_LIST_HEAD(&p->children);
1755 INIT_LIST_HEAD(&p->sibling);
1756 strncpy(p->comm, type, sizeof(p->comm)-1);
1757 }
1758
1759 /* Caller prevents this from being called after init */
1760 static void * __init_refok mca_bootmem(void)
1761 {
1762 return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
1763 KERNEL_STACK_SIZE, 0);
1764 }
1765
1766 /* Do per-CPU MCA-related initialization. */
1767 void __cpuinit
1768 ia64_mca_cpu_init(void *cpu_data)
1769 {
1770 void *pal_vaddr;
1771 void *data;
1772 long sz = sizeof(struct ia64_mca_cpu);
1773 int cpu = smp_processor_id();
1774 static int first_time = 1;
1775
1776 /*
1777 * Structure will already be allocated if cpu has been online,
1778 * then offlined.
1779 */
1780 if (__per_cpu_mca[cpu]) {
1781 data = __va(__per_cpu_mca[cpu]);
1782 } else {
1783 if (first_time) {
1784 data = mca_bootmem();
1785 first_time = 0;
1786 } else
1787 data = page_address(alloc_pages_node(numa_node_id(),
1788 GFP_KERNEL, get_order(sz)));
1789 if (!data)
1790 panic("Could not allocate MCA memory for cpu %d\n",
1791 cpu);
1792 }
1793 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1794 "MCA", cpu);
1795 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1796 "INIT", cpu);
1797 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[cpu] = __pa(data);
1798
1799 /*
1800 * Stash away a copy of the PTE needed to map the per-CPU page.
1801 * We may need it during MCA recovery.
1802 */
1803 __get_cpu_var(ia64_mca_per_cpu_pte) =
1804 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1805
1806 /*
1807 * Also, stash away a copy of the PAL address and the PTE
1808 * needed to map it.
1809 */
1810 pal_vaddr = efi_get_pal_addr();
1811 if (!pal_vaddr)
1812 return;
1813 __get_cpu_var(ia64_mca_pal_base) =
1814 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1815 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1816 PAGE_KERNEL));
1817 }
1818
1819 static void __cpuinit ia64_mca_cmc_vector_adjust(void *dummy)
1820 {
1821 unsigned long flags;
1822
1823 local_irq_save(flags);
1824 if (!cmc_polling_enabled)
1825 ia64_mca_cmc_vector_enable(NULL);
1826 local_irq_restore(flags);
1827 }
1828
1829 static int __cpuinit mca_cpu_callback(struct notifier_block *nfb,
1830 unsigned long action,
1831 void *hcpu)
1832 {
1833 int hotcpu = (unsigned long) hcpu;
1834
1835 switch (action) {
1836 case CPU_ONLINE:
1837 case CPU_ONLINE_FROZEN:
1838 smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
1839 NULL, 1, 0);
1840 break;
1841 }
1842 return NOTIFY_OK;
1843 }
1844
1845 static struct notifier_block mca_cpu_notifier __cpuinitdata = {
1846 .notifier_call = mca_cpu_callback
1847 };
1848
1849 /*
1850 * ia64_mca_init
1851 *
1852 * Do all the system level mca specific initialization.
1853 *
1854 * 1. Register spinloop and wakeup request interrupt vectors
1855 *
1856 * 2. Register OS_MCA handler entry point
1857 *
1858 * 3. Register OS_INIT handler entry point
1859 *
1860 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1861 *
1862 * Note that this initialization is done very early before some kernel
1863 * services are available.
1864 *
1865 * Inputs : None
1866 *
1867 * Outputs : None
1868 */
1869 void __init
1870 ia64_mca_init(void)
1871 {
1872 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1873 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1874 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1875 int i;
1876 s64 rc;
1877 struct ia64_sal_retval isrv;
1878 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1879 static struct notifier_block default_init_monarch_nb = {
1880 .notifier_call = default_monarch_init_process,
1881 .priority = 0/* we need to notified last */
1882 };
1883
1884 IA64_MCA_DEBUG("%s: begin\n", __func__);
1885
1886 /* Clear the Rendez checkin flag for all cpus */
1887 for(i = 0 ; i < NR_CPUS; i++)
1888 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1889
1890 /*
1891 * Register the rendezvous spinloop and wakeup mechanism with SAL
1892 */
1893
1894 /* Register the rendezvous interrupt vector with SAL */
1895 while (1) {
1896 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1897 SAL_MC_PARAM_MECHANISM_INT,
1898 IA64_MCA_RENDEZ_VECTOR,
1899 timeout,
1900 SAL_MC_PARAM_RZ_ALWAYS);
1901 rc = isrv.status;
1902 if (rc == 0)
1903 break;
1904 if (rc == -2) {
1905 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1906 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1907 timeout = isrv.v0;
1908 (void) notify_die(DIE_MCA_NEW_TIMEOUT, "MCA", NULL, timeout, 0, 0);
1909 continue;
1910 }
1911 printk(KERN_ERR "Failed to register rendezvous interrupt "
1912 "with SAL (status %ld)\n", rc);
1913 return;
1914 }
1915
1916 /* Register the wakeup interrupt vector with SAL */
1917 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1918 SAL_MC_PARAM_MECHANISM_INT,
1919 IA64_MCA_WAKEUP_VECTOR,
1920 0, 0);
1921 rc = isrv.status;
1922 if (rc) {
1923 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1924 "(status %ld)\n", rc);
1925 return;
1926 }
1927
1928 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1929
1930 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1931 /*
1932 * XXX - disable SAL checksum by setting size to 0; should be
1933 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1934 */
1935 ia64_mc_info.imi_mca_handler_size = 0;
1936
1937 /* Register the os mca handler with SAL */
1938 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1939 ia64_mc_info.imi_mca_handler,
1940 ia64_tpa(mca_hldlr_ptr->gp),
1941 ia64_mc_info.imi_mca_handler_size,
1942 0, 0, 0)))
1943 {
1944 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1945 "(status %ld)\n", rc);
1946 return;
1947 }
1948
1949 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
1950 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1951
1952 /*
1953 * XXX - disable SAL checksum by setting size to 0, should be
1954 * size of the actual init handler in mca_asm.S.
1955 */
1956 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1957 ia64_mc_info.imi_monarch_init_handler_size = 0;
1958 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
1959 ia64_mc_info.imi_slave_init_handler_size = 0;
1960
1961 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
1962 ia64_mc_info.imi_monarch_init_handler);
1963
1964 /* Register the os init handler with SAL */
1965 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1966 ia64_mc_info.imi_monarch_init_handler,
1967 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1968 ia64_mc_info.imi_monarch_init_handler_size,
1969 ia64_mc_info.imi_slave_init_handler,
1970 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1971 ia64_mc_info.imi_slave_init_handler_size)))
1972 {
1973 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1974 "(status %ld)\n", rc);
1975 return;
1976 }
1977 if (register_die_notifier(&default_init_monarch_nb)) {
1978 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1979 return;
1980 }
1981
1982 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
1983
1984 /*
1985 * Configure the CMCI/P vector and handler. Interrupts for CMC are
1986 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1987 */
1988 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1989 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1990 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
1991
1992 /* Setup the MCA rendezvous interrupt vector */
1993 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1994
1995 /* Setup the MCA wakeup interrupt vector */
1996 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1997
1998 #ifdef CONFIG_ACPI
1999 /* Setup the CPEI/P handler */
2000 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2001 #endif
2002
2003 /* Initialize the areas set aside by the OS to buffer the
2004 * platform/processor error states for MCA/INIT/CMC
2005 * handling.
2006 */
2007 ia64_log_init(SAL_INFO_TYPE_MCA);
2008 ia64_log_init(SAL_INFO_TYPE_INIT);
2009 ia64_log_init(SAL_INFO_TYPE_CMC);
2010 ia64_log_init(SAL_INFO_TYPE_CPE);
2011
2012 mca_init = 1;
2013 printk(KERN_INFO "MCA related initialization done\n");
2014 }
2015
2016 /*
2017 * ia64_mca_late_init
2018 *
2019 * Opportunity to setup things that require initialization later
2020 * than ia64_mca_init. Setup a timer to poll for CPEs if the
2021 * platform doesn't support an interrupt driven mechanism.
2022 *
2023 * Inputs : None
2024 * Outputs : Status
2025 */
2026 static int __init
2027 ia64_mca_late_init(void)
2028 {
2029 if (!mca_init)
2030 return 0;
2031
2032 register_hotcpu_notifier(&mca_cpu_notifier);
2033
2034 /* Setup the CMCI/P vector and handler */
2035 init_timer(&cmc_poll_timer);
2036 cmc_poll_timer.function = ia64_mca_cmc_poll;
2037
2038 /* Unmask/enable the vector */
2039 cmc_polling_enabled = 0;
2040 schedule_work(&cmc_enable_work);
2041
2042 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2043
2044 #ifdef CONFIG_ACPI
2045 /* Setup the CPEI/P vector and handler */
2046 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2047 init_timer(&cpe_poll_timer);
2048 cpe_poll_timer.function = ia64_mca_cpe_poll;
2049
2050 {
2051 irq_desc_t *desc;
2052 unsigned int irq;
2053
2054 if (cpe_vector >= 0) {
2055 /* If platform supports CPEI, enable the irq. */
2056 irq = local_vector_to_irq(cpe_vector);
2057 if (irq > 0) {
2058 cpe_poll_enabled = 0;
2059 desc = irq_desc + irq;
2060 desc->status |= IRQ_PER_CPU;
2061 setup_irq(irq, &mca_cpe_irqaction);
2062 ia64_cpe_irq = irq;
2063 ia64_mca_register_cpev(cpe_vector);
2064 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2065 __func__);
2066 return 0;
2067 }
2068 printk(KERN_ERR "%s: Failed to find irq for CPE "
2069 "interrupt handler, vector %d\n",
2070 __func__, cpe_vector);
2071 }
2072 /* If platform doesn't support CPEI, get the timer going. */
2073 if (cpe_poll_enabled) {
2074 ia64_mca_cpe_poll(0UL);
2075 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2076 }
2077 }
2078 #endif
2079
2080 return 0;
2081 }
2082
2083 device_initcall(ia64_mca_late_init);
This page took 0.076079 seconds and 5 git commands to generate.