Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[deliverable/linux.git] / arch / ia64 / kernel / mca.c
1 /*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
4 *
5 * Updated for latest kernel
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 *
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
11 *
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
14 *
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
17 *
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
20 *
21 * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
23 *
24 * 03/04/15 D. Mosberger Added INIT backtrace support.
25 * 02/03/25 M. Domsch GUID cleanups
26 *
27 * 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU
28 * error flag, set SAL default return values, changed
29 * error record structure to linked list, added init call
30 * to sal_get_state_info_size().
31 *
32 * 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected
33 * platform errors, completed code for logging of
34 * corrected & uncorrected machine check errors, and
35 * updated for conformance with Nov. 2000 revision of the
36 * SAL 3.0 spec.
37 * 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38 * added min save state dump, added INIT handler.
39 *
40 * 2003-12-08 Keith Owens <kaos@sgi.com>
41 * smp_call_function() must not be called from interrupt context (can
42 * deadlock on tasklist_lock). Use keventd to call smp_call_function().
43 *
44 * 2004-02-01 Keith Owens <kaos@sgi.com>
45 * Avoid deadlock when using printk() for MCA and INIT records.
46 * Delete all record printing code, moved to salinfo_decode in user space.
47 * Mark variables and functions static where possible.
48 * Delete dead variables and functions.
49 * Reorder to remove the need for forward declarations and to consolidate
50 * related code.
51 *
52 * 2005-08-12 Keith Owens <kaos@sgi.com>
53 * Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
54 *
55 * 2005-10-07 Keith Owens <kaos@sgi.com>
56 * Add notify_die() hooks.
57 *
58 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
59 * Add printing support for MCA/INIT.
60 *
61 * 2007-04-27 Russ Anderson <rja@sgi.com>
62 * Support multiple cpus going through OS_MCA in the same event.
63 */
64 #include <linux/types.h>
65 #include <linux/init.h>
66 #include <linux/sched.h>
67 #include <linux/interrupt.h>
68 #include <linux/irq.h>
69 #include <linux/bootmem.h>
70 #include <linux/acpi.h>
71 #include <linux/timer.h>
72 #include <linux/module.h>
73 #include <linux/kernel.h>
74 #include <linux/smp.h>
75 #include <linux/workqueue.h>
76 #include <linux/cpumask.h>
77 #include <linux/kdebug.h>
78
79 #include <asm/delay.h>
80 #include <asm/machvec.h>
81 #include <asm/meminit.h>
82 #include <asm/page.h>
83 #include <asm/ptrace.h>
84 #include <asm/system.h>
85 #include <asm/sal.h>
86 #include <asm/mca.h>
87 #include <asm/kexec.h>
88
89 #include <asm/irq.h>
90 #include <asm/hw_irq.h>
91
92 #include "mca_drv.h"
93 #include "entry.h"
94
95 #if defined(IA64_MCA_DEBUG_INFO)
96 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
97 #else
98 # define IA64_MCA_DEBUG(fmt...)
99 #endif
100
101 /* Used by mca_asm.S */
102 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
103 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
104 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
105 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
106
107 unsigned long __per_cpu_mca[NR_CPUS];
108
109 /* In mca_asm.S */
110 extern void ia64_os_init_dispatch_monarch (void);
111 extern void ia64_os_init_dispatch_slave (void);
112
113 static int monarch_cpu = -1;
114
115 static ia64_mc_info_t ia64_mc_info;
116
117 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
118 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
119 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
120 #define CPE_HISTORY_LENGTH 5
121 #define CMC_HISTORY_LENGTH 5
122
123 #ifdef CONFIG_ACPI
124 static struct timer_list cpe_poll_timer;
125 #endif
126 static struct timer_list cmc_poll_timer;
127 /*
128 * This variable tells whether we are currently in polling mode.
129 * Start with this in the wrong state so we won't play w/ timers
130 * before the system is ready.
131 */
132 static int cmc_polling_enabled = 1;
133
134 /*
135 * Clearing this variable prevents CPE polling from getting activated
136 * in mca_late_init. Use it if your system doesn't provide a CPEI,
137 * but encounters problems retrieving CPE logs. This should only be
138 * necessary for debugging.
139 */
140 static int cpe_poll_enabled = 1;
141
142 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
143
144 static int mca_init __initdata;
145
146 /*
147 * limited & delayed printing support for MCA/INIT handler
148 */
149
150 #define mprintk(fmt...) ia64_mca_printk(fmt)
151
152 #define MLOGBUF_SIZE (512+256*NR_CPUS)
153 #define MLOGBUF_MSGMAX 256
154 static char mlogbuf[MLOGBUF_SIZE];
155 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
156 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
157 static unsigned long mlogbuf_start;
158 static unsigned long mlogbuf_end;
159 static unsigned int mlogbuf_finished = 0;
160 static unsigned long mlogbuf_timestamp = 0;
161
162 static int loglevel_save = -1;
163 #define BREAK_LOGLEVEL(__console_loglevel) \
164 oops_in_progress = 1; \
165 if (loglevel_save < 0) \
166 loglevel_save = __console_loglevel; \
167 __console_loglevel = 15;
168
169 #define RESTORE_LOGLEVEL(__console_loglevel) \
170 if (loglevel_save >= 0) { \
171 __console_loglevel = loglevel_save; \
172 loglevel_save = -1; \
173 } \
174 mlogbuf_finished = 0; \
175 oops_in_progress = 0;
176
177 /*
178 * Push messages into buffer, print them later if not urgent.
179 */
180 void ia64_mca_printk(const char *fmt, ...)
181 {
182 va_list args;
183 int printed_len;
184 char temp_buf[MLOGBUF_MSGMAX];
185 char *p;
186
187 va_start(args, fmt);
188 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
189 va_end(args);
190
191 /* Copy the output into mlogbuf */
192 if (oops_in_progress) {
193 /* mlogbuf was abandoned, use printk directly instead. */
194 printk(temp_buf);
195 } else {
196 spin_lock(&mlogbuf_wlock);
197 for (p = temp_buf; *p; p++) {
198 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
199 if (next != mlogbuf_start) {
200 mlogbuf[mlogbuf_end] = *p;
201 mlogbuf_end = next;
202 } else {
203 /* buffer full */
204 break;
205 }
206 }
207 mlogbuf[mlogbuf_end] = '\0';
208 spin_unlock(&mlogbuf_wlock);
209 }
210 }
211 EXPORT_SYMBOL(ia64_mca_printk);
212
213 /*
214 * Print buffered messages.
215 * NOTE: call this after returning normal context. (ex. from salinfod)
216 */
217 void ia64_mlogbuf_dump(void)
218 {
219 char temp_buf[MLOGBUF_MSGMAX];
220 char *p;
221 unsigned long index;
222 unsigned long flags;
223 unsigned int printed_len;
224
225 /* Get output from mlogbuf */
226 while (mlogbuf_start != mlogbuf_end) {
227 temp_buf[0] = '\0';
228 p = temp_buf;
229 printed_len = 0;
230
231 spin_lock_irqsave(&mlogbuf_rlock, flags);
232
233 index = mlogbuf_start;
234 while (index != mlogbuf_end) {
235 *p = mlogbuf[index];
236 index = (index + 1) % MLOGBUF_SIZE;
237 if (!*p)
238 break;
239 p++;
240 if (++printed_len >= MLOGBUF_MSGMAX - 1)
241 break;
242 }
243 *p = '\0';
244 if (temp_buf[0])
245 printk(temp_buf);
246 mlogbuf_start = index;
247
248 mlogbuf_timestamp = 0;
249 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
250 }
251 }
252 EXPORT_SYMBOL(ia64_mlogbuf_dump);
253
254 /*
255 * Call this if system is going to down or if immediate flushing messages to
256 * console is required. (ex. recovery was failed, crash dump is going to be
257 * invoked, long-wait rendezvous etc.)
258 * NOTE: this should be called from monarch.
259 */
260 static void ia64_mlogbuf_finish(int wait)
261 {
262 BREAK_LOGLEVEL(console_loglevel);
263
264 spin_lock_init(&mlogbuf_rlock);
265 ia64_mlogbuf_dump();
266 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
267 "MCA/INIT might be dodgy or fail.\n");
268
269 if (!wait)
270 return;
271
272 /* wait for console */
273 printk("Delaying for 5 seconds...\n");
274 udelay(5*1000000);
275
276 mlogbuf_finished = 1;
277 }
278
279 /*
280 * Print buffered messages from INIT context.
281 */
282 static void ia64_mlogbuf_dump_from_init(void)
283 {
284 if (mlogbuf_finished)
285 return;
286
287 if (mlogbuf_timestamp && (mlogbuf_timestamp + 30*HZ > jiffies)) {
288 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
289 " and the system seems to be messed up.\n");
290 ia64_mlogbuf_finish(0);
291 return;
292 }
293
294 if (!spin_trylock(&mlogbuf_rlock)) {
295 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
296 "Generated messages other than stack dump will be "
297 "buffered to mlogbuf and will be printed later.\n");
298 printk(KERN_ERR "INIT: If messages would not printed after "
299 "this INIT, wait 30sec and assert INIT again.\n");
300 if (!mlogbuf_timestamp)
301 mlogbuf_timestamp = jiffies;
302 return;
303 }
304 spin_unlock(&mlogbuf_rlock);
305 ia64_mlogbuf_dump();
306 }
307
308 static void inline
309 ia64_mca_spin(const char *func)
310 {
311 if (monarch_cpu == smp_processor_id())
312 ia64_mlogbuf_finish(0);
313 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
314 while (1)
315 cpu_relax();
316 }
317 /*
318 * IA64_MCA log support
319 */
320 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
321 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
322
323 typedef struct ia64_state_log_s
324 {
325 spinlock_t isl_lock;
326 int isl_index;
327 unsigned long isl_count;
328 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
329 } ia64_state_log_t;
330
331 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
332
333 #define IA64_LOG_ALLOCATE(it, size) \
334 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
335 (ia64_err_rec_t *)alloc_bootmem(size); \
336 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
337 (ia64_err_rec_t *)alloc_bootmem(size);}
338 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
339 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
340 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
341 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
342 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
343 #define IA64_LOG_INDEX_INC(it) \
344 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
345 ia64_state_log[it].isl_count++;}
346 #define IA64_LOG_INDEX_DEC(it) \
347 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
348 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
349 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
350 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
351
352 /*
353 * ia64_log_init
354 * Reset the OS ia64 log buffer
355 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
356 * Outputs : None
357 */
358 static void __init
359 ia64_log_init(int sal_info_type)
360 {
361 u64 max_size = 0;
362
363 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
364 IA64_LOG_LOCK_INIT(sal_info_type);
365
366 // SAL will tell us the maximum size of any error record of this type
367 max_size = ia64_sal_get_state_info_size(sal_info_type);
368 if (!max_size)
369 /* alloc_bootmem() doesn't like zero-sized allocations! */
370 return;
371
372 // set up OS data structures to hold error info
373 IA64_LOG_ALLOCATE(sal_info_type, max_size);
374 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
375 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
376 }
377
378 /*
379 * ia64_log_get
380 *
381 * Get the current MCA log from SAL and copy it into the OS log buffer.
382 *
383 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
384 * irq_safe whether you can use printk at this point
385 * Outputs : size (total record length)
386 * *buffer (ptr to error record)
387 *
388 */
389 static u64
390 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
391 {
392 sal_log_record_header_t *log_buffer;
393 u64 total_len = 0;
394 unsigned long s;
395
396 IA64_LOG_LOCK(sal_info_type);
397
398 /* Get the process state information */
399 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
400
401 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
402
403 if (total_len) {
404 IA64_LOG_INDEX_INC(sal_info_type);
405 IA64_LOG_UNLOCK(sal_info_type);
406 if (irq_safe) {
407 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
408 "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
409 }
410 *buffer = (u8 *) log_buffer;
411 return total_len;
412 } else {
413 IA64_LOG_UNLOCK(sal_info_type);
414 return 0;
415 }
416 }
417
418 /*
419 * ia64_mca_log_sal_error_record
420 *
421 * This function retrieves a specified error record type from SAL
422 * and wakes up any processes waiting for error records.
423 *
424 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
425 * FIXME: remove MCA and irq_safe.
426 */
427 static void
428 ia64_mca_log_sal_error_record(int sal_info_type)
429 {
430 u8 *buffer;
431 sal_log_record_header_t *rh;
432 u64 size;
433 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
434 #ifdef IA64_MCA_DEBUG_INFO
435 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
436 #endif
437
438 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
439 if (!size)
440 return;
441
442 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
443
444 if (irq_safe)
445 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
446 smp_processor_id(),
447 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
448
449 /* Clear logs from corrected errors in case there's no user-level logger */
450 rh = (sal_log_record_header_t *)buffer;
451 if (rh->severity == sal_log_severity_corrected)
452 ia64_sal_clear_state_info(sal_info_type);
453 }
454
455 /*
456 * search_mca_table
457 * See if the MCA surfaced in an instruction range
458 * that has been tagged as recoverable.
459 *
460 * Inputs
461 * first First address range to check
462 * last Last address range to check
463 * ip Instruction pointer, address we are looking for
464 *
465 * Return value:
466 * 1 on Success (in the table)/ 0 on Failure (not in the table)
467 */
468 int
469 search_mca_table (const struct mca_table_entry *first,
470 const struct mca_table_entry *last,
471 unsigned long ip)
472 {
473 const struct mca_table_entry *curr;
474 u64 curr_start, curr_end;
475
476 curr = first;
477 while (curr <= last) {
478 curr_start = (u64) &curr->start_addr + curr->start_addr;
479 curr_end = (u64) &curr->end_addr + curr->end_addr;
480
481 if ((ip >= curr_start) && (ip <= curr_end)) {
482 return 1;
483 }
484 curr++;
485 }
486 return 0;
487 }
488
489 /* Given an address, look for it in the mca tables. */
490 int mca_recover_range(unsigned long addr)
491 {
492 extern struct mca_table_entry __start___mca_table[];
493 extern struct mca_table_entry __stop___mca_table[];
494
495 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
496 }
497 EXPORT_SYMBOL_GPL(mca_recover_range);
498
499 #ifdef CONFIG_ACPI
500
501 int cpe_vector = -1;
502 int ia64_cpe_irq = -1;
503
504 static irqreturn_t
505 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
506 {
507 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
508 static int index;
509 static DEFINE_SPINLOCK(cpe_history_lock);
510
511 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
512 __FUNCTION__, cpe_irq, smp_processor_id());
513
514 /* SAL spec states this should run w/ interrupts enabled */
515 local_irq_enable();
516
517 spin_lock(&cpe_history_lock);
518 if (!cpe_poll_enabled && cpe_vector >= 0) {
519
520 int i, count = 1; /* we know 1 happened now */
521 unsigned long now = jiffies;
522
523 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
524 if (now - cpe_history[i] <= HZ)
525 count++;
526 }
527
528 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
529 if (count >= CPE_HISTORY_LENGTH) {
530
531 cpe_poll_enabled = 1;
532 spin_unlock(&cpe_history_lock);
533 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
534
535 /*
536 * Corrected errors will still be corrected, but
537 * make sure there's a log somewhere that indicates
538 * something is generating more than we can handle.
539 */
540 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
541
542 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
543
544 /* lock already released, get out now */
545 goto out;
546 } else {
547 cpe_history[index++] = now;
548 if (index == CPE_HISTORY_LENGTH)
549 index = 0;
550 }
551 }
552 spin_unlock(&cpe_history_lock);
553 out:
554 /* Get the CPE error record and log it */
555 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
556
557 return IRQ_HANDLED;
558 }
559
560 #endif /* CONFIG_ACPI */
561
562 #ifdef CONFIG_ACPI
563 /*
564 * ia64_mca_register_cpev
565 *
566 * Register the corrected platform error vector with SAL.
567 *
568 * Inputs
569 * cpev Corrected Platform Error Vector number
570 *
571 * Outputs
572 * None
573 */
574 static void __init
575 ia64_mca_register_cpev (int cpev)
576 {
577 /* Register the CPE interrupt vector with SAL */
578 struct ia64_sal_retval isrv;
579
580 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
581 if (isrv.status) {
582 printk(KERN_ERR "Failed to register Corrected Platform "
583 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
584 return;
585 }
586
587 IA64_MCA_DEBUG("%s: corrected platform error "
588 "vector %#x registered\n", __FUNCTION__, cpev);
589 }
590 #endif /* CONFIG_ACPI */
591
592 /*
593 * ia64_mca_cmc_vector_setup
594 *
595 * Setup the corrected machine check vector register in the processor.
596 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
597 * This function is invoked on a per-processor basis.
598 *
599 * Inputs
600 * None
601 *
602 * Outputs
603 * None
604 */
605 void __cpuinit
606 ia64_mca_cmc_vector_setup (void)
607 {
608 cmcv_reg_t cmcv;
609
610 cmcv.cmcv_regval = 0;
611 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
612 cmcv.cmcv_vector = IA64_CMC_VECTOR;
613 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
614
615 IA64_MCA_DEBUG("%s: CPU %d corrected "
616 "machine check vector %#x registered.\n",
617 __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
618
619 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
620 __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
621 }
622
623 /*
624 * ia64_mca_cmc_vector_disable
625 *
626 * Mask the corrected machine check vector register in the processor.
627 * This function is invoked on a per-processor basis.
628 *
629 * Inputs
630 * dummy(unused)
631 *
632 * Outputs
633 * None
634 */
635 static void
636 ia64_mca_cmc_vector_disable (void *dummy)
637 {
638 cmcv_reg_t cmcv;
639
640 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
641
642 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
643 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
644
645 IA64_MCA_DEBUG("%s: CPU %d corrected "
646 "machine check vector %#x disabled.\n",
647 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
648 }
649
650 /*
651 * ia64_mca_cmc_vector_enable
652 *
653 * Unmask the corrected machine check vector register in the processor.
654 * This function is invoked on a per-processor basis.
655 *
656 * Inputs
657 * dummy(unused)
658 *
659 * Outputs
660 * None
661 */
662 static void
663 ia64_mca_cmc_vector_enable (void *dummy)
664 {
665 cmcv_reg_t cmcv;
666
667 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
668
669 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
670 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
671
672 IA64_MCA_DEBUG("%s: CPU %d corrected "
673 "machine check vector %#x enabled.\n",
674 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
675 }
676
677 /*
678 * ia64_mca_cmc_vector_disable_keventd
679 *
680 * Called via keventd (smp_call_function() is not safe in interrupt context) to
681 * disable the cmc interrupt vector.
682 */
683 static void
684 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
685 {
686 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
687 }
688
689 /*
690 * ia64_mca_cmc_vector_enable_keventd
691 *
692 * Called via keventd (smp_call_function() is not safe in interrupt context) to
693 * enable the cmc interrupt vector.
694 */
695 static void
696 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
697 {
698 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
699 }
700
701 /*
702 * ia64_mca_wakeup
703 *
704 * Send an inter-cpu interrupt to wake-up a particular cpu.
705 *
706 * Inputs : cpuid
707 * Outputs : None
708 */
709 static void
710 ia64_mca_wakeup(int cpu)
711 {
712 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
713 }
714
715 /*
716 * ia64_mca_wakeup_all
717 *
718 * Wakeup all the slave cpus which have rendez'ed previously.
719 *
720 * Inputs : None
721 * Outputs : None
722 */
723 static void
724 ia64_mca_wakeup_all(void)
725 {
726 int cpu;
727
728 /* Clear the Rendez checkin flag for all cpus */
729 for_each_online_cpu(cpu) {
730 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
731 ia64_mca_wakeup(cpu);
732 }
733
734 }
735
736 /*
737 * ia64_mca_rendez_interrupt_handler
738 *
739 * This is handler used to put slave processors into spinloop
740 * while the monarch processor does the mca handling and later
741 * wake each slave up once the monarch is done. The state
742 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
743 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
744 * the cpu has come out of OS rendezvous.
745 *
746 * Inputs : None
747 * Outputs : None
748 */
749 static irqreturn_t
750 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
751 {
752 unsigned long flags;
753 int cpu = smp_processor_id();
754 struct ia64_mca_notify_die nd =
755 { .sos = NULL, .monarch_cpu = &monarch_cpu };
756
757 /* Mask all interrupts */
758 local_irq_save(flags);
759 if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", get_irq_regs(),
760 (long)&nd, 0, 0) == NOTIFY_STOP)
761 ia64_mca_spin(__FUNCTION__);
762
763 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
764 /* Register with the SAL monarch that the slave has
765 * reached SAL
766 */
767 ia64_sal_mc_rendez();
768
769 if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", get_irq_regs(),
770 (long)&nd, 0, 0) == NOTIFY_STOP)
771 ia64_mca_spin(__FUNCTION__);
772
773 /* Wait for the monarch cpu to exit. */
774 while (monarch_cpu != -1)
775 cpu_relax(); /* spin until monarch leaves */
776
777 if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", get_irq_regs(),
778 (long)&nd, 0, 0) == NOTIFY_STOP)
779 ia64_mca_spin(__FUNCTION__);
780
781 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
782 /* Enable all interrupts */
783 local_irq_restore(flags);
784 return IRQ_HANDLED;
785 }
786
787 /*
788 * ia64_mca_wakeup_int_handler
789 *
790 * The interrupt handler for processing the inter-cpu interrupt to the
791 * slave cpu which was spinning in the rendez loop.
792 * Since this spinning is done by turning off the interrupts and
793 * polling on the wakeup-interrupt bit in the IRR, there is
794 * nothing useful to be done in the handler.
795 *
796 * Inputs : wakeup_irq (Wakeup-interrupt bit)
797 * arg (Interrupt handler specific argument)
798 * Outputs : None
799 *
800 */
801 static irqreturn_t
802 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
803 {
804 return IRQ_HANDLED;
805 }
806
807 /* Function pointer for extra MCA recovery */
808 int (*ia64_mca_ucmc_extension)
809 (void*,struct ia64_sal_os_state*)
810 = NULL;
811
812 int
813 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
814 {
815 if (ia64_mca_ucmc_extension)
816 return 1;
817
818 ia64_mca_ucmc_extension = fn;
819 return 0;
820 }
821
822 void
823 ia64_unreg_MCA_extension(void)
824 {
825 if (ia64_mca_ucmc_extension)
826 ia64_mca_ucmc_extension = NULL;
827 }
828
829 EXPORT_SYMBOL(ia64_reg_MCA_extension);
830 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
831
832
833 static inline void
834 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
835 {
836 u64 fslot, tslot, nat;
837 *tr = *fr;
838 fslot = ((unsigned long)fr >> 3) & 63;
839 tslot = ((unsigned long)tr >> 3) & 63;
840 *tnat &= ~(1UL << tslot);
841 nat = (fnat >> fslot) & 1;
842 *tnat |= (nat << tslot);
843 }
844
845 /* Change the comm field on the MCA/INT task to include the pid that
846 * was interrupted, it makes for easier debugging. If that pid was 0
847 * (swapper or nested MCA/INIT) then use the start of the previous comm
848 * field suffixed with its cpu.
849 */
850
851 static void
852 ia64_mca_modify_comm(const struct task_struct *previous_current)
853 {
854 char *p, comm[sizeof(current->comm)];
855 if (previous_current->pid)
856 snprintf(comm, sizeof(comm), "%s %d",
857 current->comm, previous_current->pid);
858 else {
859 int l;
860 if ((p = strchr(previous_current->comm, ' ')))
861 l = p - previous_current->comm;
862 else
863 l = strlen(previous_current->comm);
864 snprintf(comm, sizeof(comm), "%s %*s %d",
865 current->comm, l, previous_current->comm,
866 task_thread_info(previous_current)->cpu);
867 }
868 memcpy(current->comm, comm, sizeof(current->comm));
869 }
870
871 /* On entry to this routine, we are running on the per cpu stack, see
872 * mca_asm.h. The original stack has not been touched by this event. Some of
873 * the original stack's registers will be in the RBS on this stack. This stack
874 * also contains a partial pt_regs and switch_stack, the rest of the data is in
875 * PAL minstate.
876 *
877 * The first thing to do is modify the original stack to look like a blocked
878 * task so we can run backtrace on the original task. Also mark the per cpu
879 * stack as current to ensure that we use the correct task state, it also means
880 * that we can do backtrace on the MCA/INIT handler code itself.
881 */
882
883 static struct task_struct *
884 ia64_mca_modify_original_stack(struct pt_regs *regs,
885 const struct switch_stack *sw,
886 struct ia64_sal_os_state *sos,
887 const char *type)
888 {
889 char *p;
890 ia64_va va;
891 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
892 const pal_min_state_area_t *ms = sos->pal_min_state;
893 struct task_struct *previous_current;
894 struct pt_regs *old_regs;
895 struct switch_stack *old_sw;
896 unsigned size = sizeof(struct pt_regs) +
897 sizeof(struct switch_stack) + 16;
898 u64 *old_bspstore, *old_bsp;
899 u64 *new_bspstore, *new_bsp;
900 u64 old_unat, old_rnat, new_rnat, nat;
901 u64 slots, loadrs = regs->loadrs;
902 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
903 u64 ar_bspstore = regs->ar_bspstore;
904 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
905 const u64 *bank;
906 const char *msg;
907 int cpu = smp_processor_id();
908
909 previous_current = curr_task(cpu);
910 set_curr_task(cpu, current);
911 if ((p = strchr(current->comm, ' ')))
912 *p = '\0';
913
914 /* Best effort attempt to cope with MCA/INIT delivered while in
915 * physical mode.
916 */
917 regs->cr_ipsr = ms->pmsa_ipsr;
918 if (ia64_psr(regs)->dt == 0) {
919 va.l = r12;
920 if (va.f.reg == 0) {
921 va.f.reg = 7;
922 r12 = va.l;
923 }
924 va.l = r13;
925 if (va.f.reg == 0) {
926 va.f.reg = 7;
927 r13 = va.l;
928 }
929 }
930 if (ia64_psr(regs)->rt == 0) {
931 va.l = ar_bspstore;
932 if (va.f.reg == 0) {
933 va.f.reg = 7;
934 ar_bspstore = va.l;
935 }
936 va.l = ar_bsp;
937 if (va.f.reg == 0) {
938 va.f.reg = 7;
939 ar_bsp = va.l;
940 }
941 }
942
943 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
944 * have been copied to the old stack, the old stack may fail the
945 * validation tests below. So ia64_old_stack() must restore the dirty
946 * registers from the new stack. The old and new bspstore probably
947 * have different alignments, so loadrs calculated on the old bsp
948 * cannot be used to restore from the new bsp. Calculate a suitable
949 * loadrs for the new stack and save it in the new pt_regs, where
950 * ia64_old_stack() can get it.
951 */
952 old_bspstore = (u64 *)ar_bspstore;
953 old_bsp = (u64 *)ar_bsp;
954 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
955 new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
956 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
957 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
958
959 /* Verify the previous stack state before we change it */
960 if (user_mode(regs)) {
961 msg = "occurred in user space";
962 /* previous_current is guaranteed to be valid when the task was
963 * in user space, so ...
964 */
965 ia64_mca_modify_comm(previous_current);
966 goto no_mod;
967 }
968
969 if (r13 != sos->prev_IA64_KR_CURRENT) {
970 msg = "inconsistent previous current and r13";
971 goto no_mod;
972 }
973
974 if (!mca_recover_range(ms->pmsa_iip)) {
975 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
976 msg = "inconsistent r12 and r13";
977 goto no_mod;
978 }
979 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
980 msg = "inconsistent ar.bspstore and r13";
981 goto no_mod;
982 }
983 va.p = old_bspstore;
984 if (va.f.reg < 5) {
985 msg = "old_bspstore is in the wrong region";
986 goto no_mod;
987 }
988 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
989 msg = "inconsistent ar.bsp and r13";
990 goto no_mod;
991 }
992 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
993 if (ar_bspstore + size > r12) {
994 msg = "no room for blocked state";
995 goto no_mod;
996 }
997 }
998
999 ia64_mca_modify_comm(previous_current);
1000
1001 /* Make the original task look blocked. First stack a struct pt_regs,
1002 * describing the state at the time of interrupt. mca_asm.S built a
1003 * partial pt_regs, copy it and fill in the blanks using minstate.
1004 */
1005 p = (char *)r12 - sizeof(*regs);
1006 old_regs = (struct pt_regs *)p;
1007 memcpy(old_regs, regs, sizeof(*regs));
1008 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1009 * pmsa_{xip,xpsr,xfs}
1010 */
1011 if (ia64_psr(regs)->ic) {
1012 old_regs->cr_iip = ms->pmsa_iip;
1013 old_regs->cr_ipsr = ms->pmsa_ipsr;
1014 old_regs->cr_ifs = ms->pmsa_ifs;
1015 } else {
1016 old_regs->cr_iip = ms->pmsa_xip;
1017 old_regs->cr_ipsr = ms->pmsa_xpsr;
1018 old_regs->cr_ifs = ms->pmsa_xfs;
1019 }
1020 old_regs->pr = ms->pmsa_pr;
1021 old_regs->b0 = ms->pmsa_br0;
1022 old_regs->loadrs = loadrs;
1023 old_regs->ar_rsc = ms->pmsa_rsc;
1024 old_unat = old_regs->ar_unat;
1025 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
1026 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
1027 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
1028 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
1029 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
1030 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
1031 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
1032 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
1033 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
1034 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
1035 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
1036 if (ia64_psr(old_regs)->bn)
1037 bank = ms->pmsa_bank1_gr;
1038 else
1039 bank = ms->pmsa_bank0_gr;
1040 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
1041 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
1042 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
1043 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
1044 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
1045 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
1046 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
1047 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
1048 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
1049 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
1050 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
1051 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
1052 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
1053 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
1054 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
1055 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
1056
1057 /* Next stack a struct switch_stack. mca_asm.S built a partial
1058 * switch_stack, copy it and fill in the blanks using pt_regs and
1059 * minstate.
1060 *
1061 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1062 * ar.pfs is set to 0.
1063 *
1064 * unwind.c::unw_unwind() does special processing for interrupt frames.
1065 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1066 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1067 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1068 * switch_stack on the original stack so it will unwind correctly when
1069 * unwind.c reads pt_regs.
1070 *
1071 * thread.ksp is updated to point to the synthesized switch_stack.
1072 */
1073 p -= sizeof(struct switch_stack);
1074 old_sw = (struct switch_stack *)p;
1075 memcpy(old_sw, sw, sizeof(*sw));
1076 old_sw->caller_unat = old_unat;
1077 old_sw->ar_fpsr = old_regs->ar_fpsr;
1078 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1079 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1080 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1081 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1082 old_sw->b0 = (u64)ia64_leave_kernel;
1083 old_sw->b1 = ms->pmsa_br1;
1084 old_sw->ar_pfs = 0;
1085 old_sw->ar_unat = old_unat;
1086 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1087 previous_current->thread.ksp = (u64)p - 16;
1088
1089 /* Finally copy the original stack's registers back to its RBS.
1090 * Registers from ar.bspstore through ar.bsp at the time of the event
1091 * are in the current RBS, copy them back to the original stack. The
1092 * copy must be done register by register because the original bspstore
1093 * and the current one have different alignments, so the saved RNAT
1094 * data occurs at different places.
1095 *
1096 * mca_asm does cover, so the old_bsp already includes all registers at
1097 * the time of MCA/INIT. It also does flushrs, so all registers before
1098 * this function have been written to backing store on the MCA/INIT
1099 * stack.
1100 */
1101 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1102 old_rnat = regs->ar_rnat;
1103 while (slots--) {
1104 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1105 new_rnat = ia64_get_rnat(new_bspstore++);
1106 }
1107 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1108 *old_bspstore++ = old_rnat;
1109 old_rnat = 0;
1110 }
1111 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1112 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1113 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1114 *old_bspstore++ = *new_bspstore++;
1115 }
1116 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1117 old_sw->ar_rnat = old_rnat;
1118
1119 sos->prev_task = previous_current;
1120 return previous_current;
1121
1122 no_mod:
1123 printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1124 smp_processor_id(), type, msg);
1125 return previous_current;
1126 }
1127
1128 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1129 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1130 * not entered rendezvous yet then wait a bit. The assumption is that any
1131 * slave that has not rendezvoused after a reasonable time is never going to do
1132 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1133 * interrupt, as well as cpus that receive the INIT slave event.
1134 */
1135
1136 static void
1137 ia64_wait_for_slaves(int monarch, const char *type)
1138 {
1139 int c, i , wait;
1140
1141 /*
1142 * wait 5 seconds total for slaves (arbitrary)
1143 */
1144 for (i = 0; i < 5000; i++) {
1145 wait = 0;
1146 for_each_online_cpu(c) {
1147 if (c == monarch)
1148 continue;
1149 if (ia64_mc_info.imi_rendez_checkin[c]
1150 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1151 udelay(1000); /* short wait */
1152 wait = 1;
1153 break;
1154 }
1155 }
1156 if (!wait)
1157 goto all_in;
1158 }
1159
1160 /*
1161 * Maybe slave(s) dead. Print buffered messages immediately.
1162 */
1163 ia64_mlogbuf_finish(0);
1164 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1165 for_each_online_cpu(c) {
1166 if (c == monarch)
1167 continue;
1168 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1169 mprintk(" %d", c);
1170 }
1171 mprintk("\n");
1172 return;
1173
1174 all_in:
1175 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1176 return;
1177 }
1178
1179 /*
1180 * ia64_mca_handler
1181 *
1182 * This is uncorrectable machine check handler called from OS_MCA
1183 * dispatch code which is in turn called from SAL_CHECK().
1184 * This is the place where the core of OS MCA handling is done.
1185 * Right now the logs are extracted and displayed in a well-defined
1186 * format. This handler code is supposed to be run only on the
1187 * monarch processor. Once the monarch is done with MCA handling
1188 * further MCA logging is enabled by clearing logs.
1189 * Monarch also has the duty of sending wakeup-IPIs to pull the
1190 * slave processors out of rendezvous spinloop.
1191 *
1192 * If multiple processors call into OS_MCA, the first will become
1193 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1194 * bitmask. After the first monarch has processed its MCA, it
1195 * will wake up the next cpu in the mca_cpu bitmask and then go
1196 * into the rendezvous loop. When all processors have serviced
1197 * their MCA, the last monarch frees up the rest of the processors.
1198 */
1199 void
1200 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1201 struct ia64_sal_os_state *sos)
1202 {
1203 int recover, cpu = smp_processor_id();
1204 struct task_struct *previous_current;
1205 struct ia64_mca_notify_die nd =
1206 { .sos = sos, .monarch_cpu = &monarch_cpu };
1207 static atomic_t mca_count;
1208 static cpumask_t mca_cpu;
1209
1210 if (atomic_add_return(1, &mca_count) == 1) {
1211 monarch_cpu = cpu;
1212 sos->monarch = 1;
1213 } else {
1214 cpu_set(cpu, mca_cpu);
1215 sos->monarch = 0;
1216 }
1217 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1218 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1219
1220 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1221
1222 if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, (long)&nd, 0, 0)
1223 == NOTIFY_STOP)
1224 ia64_mca_spin(__FUNCTION__);
1225
1226 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1227 if (sos->monarch) {
1228 ia64_wait_for_slaves(cpu, "MCA");
1229
1230 /* Wakeup all the processors which are spinning in the
1231 * rendezvous loop. They will leave SAL, then spin in the OS
1232 * with interrupts disabled until this monarch cpu leaves the
1233 * MCA handler. That gets control back to the OS so we can
1234 * backtrace the other cpus, backtrace when spinning in SAL
1235 * does not work.
1236 */
1237 ia64_mca_wakeup_all();
1238 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, (long)&nd, 0, 0)
1239 == NOTIFY_STOP)
1240 ia64_mca_spin(__FUNCTION__);
1241 } else {
1242 while (cpu_isset(cpu, mca_cpu))
1243 cpu_relax(); /* spin until monarch wakes us */
1244 }
1245
1246 /* Get the MCA error record and log it */
1247 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1248
1249 /* MCA error recovery */
1250 recover = (ia64_mca_ucmc_extension
1251 && ia64_mca_ucmc_extension(
1252 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1253 sos));
1254
1255 if (recover) {
1256 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1257 rh->severity = sal_log_severity_corrected;
1258 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1259 sos->os_status = IA64_MCA_CORRECTED;
1260 } else {
1261 /* Dump buffered message to console */
1262 ia64_mlogbuf_finish(1);
1263 #ifdef CONFIG_KEXEC
1264 atomic_set(&kdump_in_progress, 1);
1265 monarch_cpu = -1;
1266 #endif
1267 }
1268 if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, (long)&nd, 0, recover)
1269 == NOTIFY_STOP)
1270 ia64_mca_spin(__FUNCTION__);
1271
1272
1273 if (atomic_dec_return(&mca_count) > 0) {
1274 int i;
1275
1276 /* wake up the next monarch cpu,
1277 * and put this cpu in the rendez loop.
1278 */
1279 for_each_online_cpu(i) {
1280 if (cpu_isset(i, mca_cpu)) {
1281 monarch_cpu = i;
1282 cpu_clear(i, mca_cpu); /* wake next cpu */
1283 while (monarch_cpu != -1)
1284 cpu_relax(); /* spin until last cpu leaves */
1285 set_curr_task(cpu, previous_current);
1286 ia64_mc_info.imi_rendez_checkin[cpu]
1287 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1288 return;
1289 }
1290 }
1291 }
1292 set_curr_task(cpu, previous_current);
1293 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1294 monarch_cpu = -1; /* This frees the slaves and previous monarchs */
1295 }
1296
1297 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1298 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1299
1300 /*
1301 * ia64_mca_cmc_int_handler
1302 *
1303 * This is corrected machine check interrupt handler.
1304 * Right now the logs are extracted and displayed in a well-defined
1305 * format.
1306 *
1307 * Inputs
1308 * interrupt number
1309 * client data arg ptr
1310 *
1311 * Outputs
1312 * None
1313 */
1314 static irqreturn_t
1315 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1316 {
1317 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1318 static int index;
1319 static DEFINE_SPINLOCK(cmc_history_lock);
1320
1321 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1322 __FUNCTION__, cmc_irq, smp_processor_id());
1323
1324 /* SAL spec states this should run w/ interrupts enabled */
1325 local_irq_enable();
1326
1327 spin_lock(&cmc_history_lock);
1328 if (!cmc_polling_enabled) {
1329 int i, count = 1; /* we know 1 happened now */
1330 unsigned long now = jiffies;
1331
1332 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1333 if (now - cmc_history[i] <= HZ)
1334 count++;
1335 }
1336
1337 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1338 if (count >= CMC_HISTORY_LENGTH) {
1339
1340 cmc_polling_enabled = 1;
1341 spin_unlock(&cmc_history_lock);
1342 /* If we're being hit with CMC interrupts, we won't
1343 * ever execute the schedule_work() below. Need to
1344 * disable CMC interrupts on this processor now.
1345 */
1346 ia64_mca_cmc_vector_disable(NULL);
1347 schedule_work(&cmc_disable_work);
1348
1349 /*
1350 * Corrected errors will still be corrected, but
1351 * make sure there's a log somewhere that indicates
1352 * something is generating more than we can handle.
1353 */
1354 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1355
1356 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1357
1358 /* lock already released, get out now */
1359 goto out;
1360 } else {
1361 cmc_history[index++] = now;
1362 if (index == CMC_HISTORY_LENGTH)
1363 index = 0;
1364 }
1365 }
1366 spin_unlock(&cmc_history_lock);
1367 out:
1368 /* Get the CMC error record and log it */
1369 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1370
1371 return IRQ_HANDLED;
1372 }
1373
1374 /*
1375 * ia64_mca_cmc_int_caller
1376 *
1377 * Triggered by sw interrupt from CMC polling routine. Calls
1378 * real interrupt handler and either triggers a sw interrupt
1379 * on the next cpu or does cleanup at the end.
1380 *
1381 * Inputs
1382 * interrupt number
1383 * client data arg ptr
1384 * Outputs
1385 * handled
1386 */
1387 static irqreturn_t
1388 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1389 {
1390 static int start_count = -1;
1391 unsigned int cpuid;
1392
1393 cpuid = smp_processor_id();
1394
1395 /* If first cpu, update count */
1396 if (start_count == -1)
1397 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1398
1399 ia64_mca_cmc_int_handler(cmc_irq, arg);
1400
1401 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1402
1403 if (cpuid < NR_CPUS) {
1404 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1405 } else {
1406 /* If no log record, switch out of polling mode */
1407 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1408
1409 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1410 schedule_work(&cmc_enable_work);
1411 cmc_polling_enabled = 0;
1412
1413 } else {
1414
1415 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1416 }
1417
1418 start_count = -1;
1419 }
1420
1421 return IRQ_HANDLED;
1422 }
1423
1424 /*
1425 * ia64_mca_cmc_poll
1426 *
1427 * Poll for Corrected Machine Checks (CMCs)
1428 *
1429 * Inputs : dummy(unused)
1430 * Outputs : None
1431 *
1432 */
1433 static void
1434 ia64_mca_cmc_poll (unsigned long dummy)
1435 {
1436 /* Trigger a CMC interrupt cascade */
1437 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1438 }
1439
1440 /*
1441 * ia64_mca_cpe_int_caller
1442 *
1443 * Triggered by sw interrupt from CPE polling routine. Calls
1444 * real interrupt handler and either triggers a sw interrupt
1445 * on the next cpu or does cleanup at the end.
1446 *
1447 * Inputs
1448 * interrupt number
1449 * client data arg ptr
1450 * Outputs
1451 * handled
1452 */
1453 #ifdef CONFIG_ACPI
1454
1455 static irqreturn_t
1456 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1457 {
1458 static int start_count = -1;
1459 static int poll_time = MIN_CPE_POLL_INTERVAL;
1460 unsigned int cpuid;
1461
1462 cpuid = smp_processor_id();
1463
1464 /* If first cpu, update count */
1465 if (start_count == -1)
1466 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1467
1468 ia64_mca_cpe_int_handler(cpe_irq, arg);
1469
1470 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1471
1472 if (cpuid < NR_CPUS) {
1473 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1474 } else {
1475 /*
1476 * If a log was recorded, increase our polling frequency,
1477 * otherwise, backoff or return to interrupt mode.
1478 */
1479 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1480 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1481 } else if (cpe_vector < 0) {
1482 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1483 } else {
1484 poll_time = MIN_CPE_POLL_INTERVAL;
1485
1486 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1487 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1488 cpe_poll_enabled = 0;
1489 }
1490
1491 if (cpe_poll_enabled)
1492 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1493 start_count = -1;
1494 }
1495
1496 return IRQ_HANDLED;
1497 }
1498
1499 /*
1500 * ia64_mca_cpe_poll
1501 *
1502 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1503 * on first cpu, from there it will trickle through all the cpus.
1504 *
1505 * Inputs : dummy(unused)
1506 * Outputs : None
1507 *
1508 */
1509 static void
1510 ia64_mca_cpe_poll (unsigned long dummy)
1511 {
1512 /* Trigger a CPE interrupt cascade */
1513 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1514 }
1515
1516 #endif /* CONFIG_ACPI */
1517
1518 static int
1519 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1520 {
1521 int c;
1522 struct task_struct *g, *t;
1523 if (val != DIE_INIT_MONARCH_PROCESS)
1524 return NOTIFY_DONE;
1525 #ifdef CONFIG_KEXEC
1526 if (atomic_read(&kdump_in_progress))
1527 return NOTIFY_DONE;
1528 #endif
1529
1530 /*
1531 * FIXME: mlogbuf will brim over with INIT stack dumps.
1532 * To enable show_stack from INIT, we use oops_in_progress which should
1533 * be used in real oops. This would cause something wrong after INIT.
1534 */
1535 BREAK_LOGLEVEL(console_loglevel);
1536 ia64_mlogbuf_dump_from_init();
1537
1538 printk(KERN_ERR "Processes interrupted by INIT -");
1539 for_each_online_cpu(c) {
1540 struct ia64_sal_os_state *s;
1541 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1542 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1543 g = s->prev_task;
1544 if (g) {
1545 if (g->pid)
1546 printk(" %d", g->pid);
1547 else
1548 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1549 }
1550 }
1551 printk("\n\n");
1552 if (read_trylock(&tasklist_lock)) {
1553 do_each_thread (g, t) {
1554 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1555 show_stack(t, NULL);
1556 } while_each_thread (g, t);
1557 read_unlock(&tasklist_lock);
1558 }
1559 /* FIXME: This will not restore zapped printk locks. */
1560 RESTORE_LOGLEVEL(console_loglevel);
1561 return NOTIFY_DONE;
1562 }
1563
1564 /*
1565 * C portion of the OS INIT handler
1566 *
1567 * Called from ia64_os_init_dispatch
1568 *
1569 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1570 * this event. This code is used for both monarch and slave INIT events, see
1571 * sos->monarch.
1572 *
1573 * All INIT events switch to the INIT stack and change the previous process to
1574 * blocked status. If one of the INIT events is the monarch then we are
1575 * probably processing the nmi button/command. Use the monarch cpu to dump all
1576 * the processes. The slave INIT events all spin until the monarch cpu
1577 * returns. We can also get INIT slave events for MCA, in which case the MCA
1578 * process is the monarch.
1579 */
1580
1581 void
1582 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1583 struct ia64_sal_os_state *sos)
1584 {
1585 static atomic_t slaves;
1586 static atomic_t monarchs;
1587 struct task_struct *previous_current;
1588 int cpu = smp_processor_id();
1589 struct ia64_mca_notify_die nd =
1590 { .sos = sos, .monarch_cpu = &monarch_cpu };
1591
1592 (void) notify_die(DIE_INIT_ENTER, "INIT", regs, (long)&nd, 0, 0);
1593
1594 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1595 sos->proc_state_param, cpu, sos->monarch);
1596 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1597
1598 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1599 sos->os_status = IA64_INIT_RESUME;
1600
1601 /* FIXME: Workaround for broken proms that drive all INIT events as
1602 * slaves. The last slave that enters is promoted to be a monarch.
1603 * Remove this code in September 2006, that gives platforms a year to
1604 * fix their proms and get their customers updated.
1605 */
1606 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1607 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1608 __FUNCTION__, cpu);
1609 atomic_dec(&slaves);
1610 sos->monarch = 1;
1611 }
1612
1613 /* FIXME: Workaround for broken proms that drive all INIT events as
1614 * monarchs. Second and subsequent monarchs are demoted to slaves.
1615 * Remove this code in September 2006, that gives platforms a year to
1616 * fix their proms and get their customers updated.
1617 */
1618 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1619 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1620 __FUNCTION__, cpu);
1621 atomic_dec(&monarchs);
1622 sos->monarch = 0;
1623 }
1624
1625 if (!sos->monarch) {
1626 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1627 while (monarch_cpu == -1)
1628 cpu_relax(); /* spin until monarch enters */
1629 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, (long)&nd, 0, 0)
1630 == NOTIFY_STOP)
1631 ia64_mca_spin(__FUNCTION__);
1632 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1633 == NOTIFY_STOP)
1634 ia64_mca_spin(__FUNCTION__);
1635 while (monarch_cpu != -1)
1636 cpu_relax(); /* spin until monarch leaves */
1637 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1638 == NOTIFY_STOP)
1639 ia64_mca_spin(__FUNCTION__);
1640 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1641 set_curr_task(cpu, previous_current);
1642 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1643 atomic_dec(&slaves);
1644 return;
1645 }
1646
1647 monarch_cpu = cpu;
1648 if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, (long)&nd, 0, 0)
1649 == NOTIFY_STOP)
1650 ia64_mca_spin(__FUNCTION__);
1651
1652 /*
1653 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1654 * generated via the BMC's command-line interface, but since the console is on the
1655 * same serial line, the user will need some time to switch out of the BMC before
1656 * the dump begins.
1657 */
1658 mprintk("Delaying for 5 seconds...\n");
1659 udelay(5*1000000);
1660 ia64_wait_for_slaves(cpu, "INIT");
1661 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1662 * to default_monarch_init_process() above and just print all the
1663 * tasks.
1664 */
1665 if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1666 == NOTIFY_STOP)
1667 ia64_mca_spin(__FUNCTION__);
1668 if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1669 == NOTIFY_STOP)
1670 ia64_mca_spin(__FUNCTION__);
1671 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1672 atomic_dec(&monarchs);
1673 set_curr_task(cpu, previous_current);
1674 monarch_cpu = -1;
1675 return;
1676 }
1677
1678 static int __init
1679 ia64_mca_disable_cpe_polling(char *str)
1680 {
1681 cpe_poll_enabled = 0;
1682 return 1;
1683 }
1684
1685 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1686
1687 static struct irqaction cmci_irqaction = {
1688 .handler = ia64_mca_cmc_int_handler,
1689 .flags = IRQF_DISABLED,
1690 .name = "cmc_hndlr"
1691 };
1692
1693 static struct irqaction cmcp_irqaction = {
1694 .handler = ia64_mca_cmc_int_caller,
1695 .flags = IRQF_DISABLED,
1696 .name = "cmc_poll"
1697 };
1698
1699 static struct irqaction mca_rdzv_irqaction = {
1700 .handler = ia64_mca_rendez_int_handler,
1701 .flags = IRQF_DISABLED,
1702 .name = "mca_rdzv"
1703 };
1704
1705 static struct irqaction mca_wkup_irqaction = {
1706 .handler = ia64_mca_wakeup_int_handler,
1707 .flags = IRQF_DISABLED,
1708 .name = "mca_wkup"
1709 };
1710
1711 #ifdef CONFIG_ACPI
1712 static struct irqaction mca_cpe_irqaction = {
1713 .handler = ia64_mca_cpe_int_handler,
1714 .flags = IRQF_DISABLED,
1715 .name = "cpe_hndlr"
1716 };
1717
1718 static struct irqaction mca_cpep_irqaction = {
1719 .handler = ia64_mca_cpe_int_caller,
1720 .flags = IRQF_DISABLED,
1721 .name = "cpe_poll"
1722 };
1723 #endif /* CONFIG_ACPI */
1724
1725 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1726 * these stacks can never sleep, they cannot return from the kernel to user
1727 * space, they do not appear in a normal ps listing. So there is no need to
1728 * format most of the fields.
1729 */
1730
1731 static void __cpuinit
1732 format_mca_init_stack(void *mca_data, unsigned long offset,
1733 const char *type, int cpu)
1734 {
1735 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1736 struct thread_info *ti;
1737 memset(p, 0, KERNEL_STACK_SIZE);
1738 ti = task_thread_info(p);
1739 ti->flags = _TIF_MCA_INIT;
1740 ti->preempt_count = 1;
1741 ti->task = p;
1742 ti->cpu = cpu;
1743 p->stack = ti;
1744 p->state = TASK_UNINTERRUPTIBLE;
1745 cpu_set(cpu, p->cpus_allowed);
1746 INIT_LIST_HEAD(&p->tasks);
1747 p->parent = p->real_parent = p->group_leader = p;
1748 INIT_LIST_HEAD(&p->children);
1749 INIT_LIST_HEAD(&p->sibling);
1750 strncpy(p->comm, type, sizeof(p->comm)-1);
1751 }
1752
1753 /* Caller prevents this from being called after init */
1754 static void * __init_refok mca_bootmem(void)
1755 {
1756 void *p;
1757
1758 p = alloc_bootmem(sizeof(struct ia64_mca_cpu) * NR_CPUS +
1759 KERNEL_STACK_SIZE);
1760 return (void *)ALIGN((unsigned long)p, KERNEL_STACK_SIZE);
1761 }
1762
1763 /* Do per-CPU MCA-related initialization. */
1764 void __cpuinit
1765 ia64_mca_cpu_init(void *cpu_data)
1766 {
1767 void *pal_vaddr;
1768 static int first_time = 1;
1769
1770 if (first_time) {
1771 void *mca_data;
1772 int cpu;
1773
1774 first_time = 0;
1775 mca_data = mca_bootmem();
1776 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1777 format_mca_init_stack(mca_data,
1778 offsetof(struct ia64_mca_cpu, mca_stack),
1779 "MCA", cpu);
1780 format_mca_init_stack(mca_data,
1781 offsetof(struct ia64_mca_cpu, init_stack),
1782 "INIT", cpu);
1783 __per_cpu_mca[cpu] = __pa(mca_data);
1784 mca_data += sizeof(struct ia64_mca_cpu);
1785 }
1786 }
1787
1788 /*
1789 * The MCA info structure was allocated earlier and its
1790 * physical address saved in __per_cpu_mca[cpu]. Copy that
1791 * address * to ia64_mca_data so we can access it as a per-CPU
1792 * variable.
1793 */
1794 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1795
1796 /*
1797 * Stash away a copy of the PTE needed to map the per-CPU page.
1798 * We may need it during MCA recovery.
1799 */
1800 __get_cpu_var(ia64_mca_per_cpu_pte) =
1801 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1802
1803 /*
1804 * Also, stash away a copy of the PAL address and the PTE
1805 * needed to map it.
1806 */
1807 pal_vaddr = efi_get_pal_addr();
1808 if (!pal_vaddr)
1809 return;
1810 __get_cpu_var(ia64_mca_pal_base) =
1811 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1812 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1813 PAGE_KERNEL));
1814 }
1815
1816 /*
1817 * ia64_mca_init
1818 *
1819 * Do all the system level mca specific initialization.
1820 *
1821 * 1. Register spinloop and wakeup request interrupt vectors
1822 *
1823 * 2. Register OS_MCA handler entry point
1824 *
1825 * 3. Register OS_INIT handler entry point
1826 *
1827 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1828 *
1829 * Note that this initialization is done very early before some kernel
1830 * services are available.
1831 *
1832 * Inputs : None
1833 *
1834 * Outputs : None
1835 */
1836 void __init
1837 ia64_mca_init(void)
1838 {
1839 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1840 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1841 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1842 int i;
1843 s64 rc;
1844 struct ia64_sal_retval isrv;
1845 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1846 static struct notifier_block default_init_monarch_nb = {
1847 .notifier_call = default_monarch_init_process,
1848 .priority = 0/* we need to notified last */
1849 };
1850
1851 IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1852
1853 /* Clear the Rendez checkin flag for all cpus */
1854 for(i = 0 ; i < NR_CPUS; i++)
1855 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1856
1857 /*
1858 * Register the rendezvous spinloop and wakeup mechanism with SAL
1859 */
1860
1861 /* Register the rendezvous interrupt vector with SAL */
1862 while (1) {
1863 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1864 SAL_MC_PARAM_MECHANISM_INT,
1865 IA64_MCA_RENDEZ_VECTOR,
1866 timeout,
1867 SAL_MC_PARAM_RZ_ALWAYS);
1868 rc = isrv.status;
1869 if (rc == 0)
1870 break;
1871 if (rc == -2) {
1872 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1873 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1874 timeout = isrv.v0;
1875 (void) notify_die(DIE_MCA_NEW_TIMEOUT, "MCA", NULL, timeout, 0, 0);
1876 continue;
1877 }
1878 printk(KERN_ERR "Failed to register rendezvous interrupt "
1879 "with SAL (status %ld)\n", rc);
1880 return;
1881 }
1882
1883 /* Register the wakeup interrupt vector with SAL */
1884 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1885 SAL_MC_PARAM_MECHANISM_INT,
1886 IA64_MCA_WAKEUP_VECTOR,
1887 0, 0);
1888 rc = isrv.status;
1889 if (rc) {
1890 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1891 "(status %ld)\n", rc);
1892 return;
1893 }
1894
1895 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1896
1897 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1898 /*
1899 * XXX - disable SAL checksum by setting size to 0; should be
1900 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1901 */
1902 ia64_mc_info.imi_mca_handler_size = 0;
1903
1904 /* Register the os mca handler with SAL */
1905 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1906 ia64_mc_info.imi_mca_handler,
1907 ia64_tpa(mca_hldlr_ptr->gp),
1908 ia64_mc_info.imi_mca_handler_size,
1909 0, 0, 0)))
1910 {
1911 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1912 "(status %ld)\n", rc);
1913 return;
1914 }
1915
1916 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1917 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1918
1919 /*
1920 * XXX - disable SAL checksum by setting size to 0, should be
1921 * size of the actual init handler in mca_asm.S.
1922 */
1923 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1924 ia64_mc_info.imi_monarch_init_handler_size = 0;
1925 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
1926 ia64_mc_info.imi_slave_init_handler_size = 0;
1927
1928 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1929 ia64_mc_info.imi_monarch_init_handler);
1930
1931 /* Register the os init handler with SAL */
1932 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1933 ia64_mc_info.imi_monarch_init_handler,
1934 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1935 ia64_mc_info.imi_monarch_init_handler_size,
1936 ia64_mc_info.imi_slave_init_handler,
1937 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1938 ia64_mc_info.imi_slave_init_handler_size)))
1939 {
1940 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1941 "(status %ld)\n", rc);
1942 return;
1943 }
1944 if (register_die_notifier(&default_init_monarch_nb)) {
1945 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1946 return;
1947 }
1948
1949 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1950
1951 /*
1952 * Configure the CMCI/P vector and handler. Interrupts for CMC are
1953 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1954 */
1955 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1956 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1957 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
1958
1959 /* Setup the MCA rendezvous interrupt vector */
1960 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1961
1962 /* Setup the MCA wakeup interrupt vector */
1963 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1964
1965 #ifdef CONFIG_ACPI
1966 /* Setup the CPEI/P handler */
1967 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1968 #endif
1969
1970 /* Initialize the areas set aside by the OS to buffer the
1971 * platform/processor error states for MCA/INIT/CMC
1972 * handling.
1973 */
1974 ia64_log_init(SAL_INFO_TYPE_MCA);
1975 ia64_log_init(SAL_INFO_TYPE_INIT);
1976 ia64_log_init(SAL_INFO_TYPE_CMC);
1977 ia64_log_init(SAL_INFO_TYPE_CPE);
1978
1979 mca_init = 1;
1980 printk(KERN_INFO "MCA related initialization done\n");
1981 }
1982
1983 /*
1984 * ia64_mca_late_init
1985 *
1986 * Opportunity to setup things that require initialization later
1987 * than ia64_mca_init. Setup a timer to poll for CPEs if the
1988 * platform doesn't support an interrupt driven mechanism.
1989 *
1990 * Inputs : None
1991 * Outputs : Status
1992 */
1993 static int __init
1994 ia64_mca_late_init(void)
1995 {
1996 if (!mca_init)
1997 return 0;
1998
1999 /* Setup the CMCI/P vector and handler */
2000 init_timer(&cmc_poll_timer);
2001 cmc_poll_timer.function = ia64_mca_cmc_poll;
2002
2003 /* Unmask/enable the vector */
2004 cmc_polling_enabled = 0;
2005 schedule_work(&cmc_enable_work);
2006
2007 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
2008
2009 #ifdef CONFIG_ACPI
2010 /* Setup the CPEI/P vector and handler */
2011 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2012 init_timer(&cpe_poll_timer);
2013 cpe_poll_timer.function = ia64_mca_cpe_poll;
2014
2015 {
2016 irq_desc_t *desc;
2017 unsigned int irq;
2018
2019 if (cpe_vector >= 0) {
2020 /* If platform supports CPEI, enable the irq. */
2021 irq = local_vector_to_irq(cpe_vector);
2022 if (irq > 0) {
2023 cpe_poll_enabled = 0;
2024 desc = irq_desc + irq;
2025 desc->status |= IRQ_PER_CPU;
2026 setup_irq(irq, &mca_cpe_irqaction);
2027 ia64_cpe_irq = irq;
2028 ia64_mca_register_cpev(cpe_vector);
2029 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2030 __FUNCTION__);
2031 return 0;
2032 }
2033 printk(KERN_ERR "%s: Failed to find irq for CPE "
2034 "interrupt handler, vector %d\n",
2035 __FUNCTION__, cpe_vector);
2036 }
2037 /* If platform doesn't support CPEI, get the timer going. */
2038 if (cpe_poll_enabled) {
2039 ia64_mca_cpe_poll(0UL);
2040 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
2041 }
2042 }
2043 #endif
2044
2045 return 0;
2046 }
2047
2048 device_initcall(ia64_mca_late_init);
This page took 0.157363 seconds and 5 git commands to generate.