[PATCH] ia64: task_thread_info()
[deliverable/linux.git] / arch / ia64 / kernel / mca.c
1 /*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
4 *
5 * Updated for latest kernel
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 *
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
11 *
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
14 *
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
17 *
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
20 *
21 * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
23 *
24 * 03/04/15 D. Mosberger Added INIT backtrace support.
25 * 02/03/25 M. Domsch GUID cleanups
26 *
27 * 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU
28 * error flag, set SAL default return values, changed
29 * error record structure to linked list, added init call
30 * to sal_get_state_info_size().
31 *
32 * 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected
33 * platform errors, completed code for logging of
34 * corrected & uncorrected machine check errors, and
35 * updated for conformance with Nov. 2000 revision of the
36 * SAL 3.0 spec.
37 * 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38 * added min save state dump, added INIT handler.
39 *
40 * 2003-12-08 Keith Owens <kaos@sgi.com>
41 * smp_call_function() must not be called from interrupt context (can
42 * deadlock on tasklist_lock). Use keventd to call smp_call_function().
43 *
44 * 2004-02-01 Keith Owens <kaos@sgi.com>
45 * Avoid deadlock when using printk() for MCA and INIT records.
46 * Delete all record printing code, moved to salinfo_decode in user space.
47 * Mark variables and functions static where possible.
48 * Delete dead variables and functions.
49 * Reorder to remove the need for forward declarations and to consolidate
50 * related code.
51 *
52 * 2005-08-12 Keith Owens <kaos@sgi.com>
53 * Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
54 *
55 * 2005-10-07 Keith Owens <kaos@sgi.com>
56 * Add notify_die() hooks.
57 */
58 #include <linux/config.h>
59 #include <linux/types.h>
60 #include <linux/init.h>
61 #include <linux/sched.h>
62 #include <linux/interrupt.h>
63 #include <linux/irq.h>
64 #include <linux/smp_lock.h>
65 #include <linux/bootmem.h>
66 #include <linux/acpi.h>
67 #include <linux/timer.h>
68 #include <linux/module.h>
69 #include <linux/kernel.h>
70 #include <linux/smp.h>
71 #include <linux/workqueue.h>
72
73 #include <asm/delay.h>
74 #include <asm/kdebug.h>
75 #include <asm/machvec.h>
76 #include <asm/meminit.h>
77 #include <asm/page.h>
78 #include <asm/ptrace.h>
79 #include <asm/system.h>
80 #include <asm/sal.h>
81 #include <asm/mca.h>
82
83 #include <asm/irq.h>
84 #include <asm/hw_irq.h>
85
86 #include "entry.h"
87
88 #if defined(IA64_MCA_DEBUG_INFO)
89 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
90 #else
91 # define IA64_MCA_DEBUG(fmt...)
92 #endif
93
94 /* Used by mca_asm.S */
95 u32 ia64_mca_serialize;
96 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
97 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
98 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
99 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
100
101 unsigned long __per_cpu_mca[NR_CPUS];
102
103 /* In mca_asm.S */
104 extern void ia64_os_init_dispatch_monarch (void);
105 extern void ia64_os_init_dispatch_slave (void);
106
107 static int monarch_cpu = -1;
108
109 static ia64_mc_info_t ia64_mc_info;
110
111 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
112 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
113 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
114 #define CPE_HISTORY_LENGTH 5
115 #define CMC_HISTORY_LENGTH 5
116
117 static struct timer_list cpe_poll_timer;
118 static struct timer_list cmc_poll_timer;
119 /*
120 * This variable tells whether we are currently in polling mode.
121 * Start with this in the wrong state so we won't play w/ timers
122 * before the system is ready.
123 */
124 static int cmc_polling_enabled = 1;
125
126 /*
127 * Clearing this variable prevents CPE polling from getting activated
128 * in mca_late_init. Use it if your system doesn't provide a CPEI,
129 * but encounters problems retrieving CPE logs. This should only be
130 * necessary for debugging.
131 */
132 static int cpe_poll_enabled = 1;
133
134 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
135
136 static int mca_init;
137
138
139 static void inline
140 ia64_mca_spin(const char *func)
141 {
142 printk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
143 while (1)
144 cpu_relax();
145 }
146 /*
147 * IA64_MCA log support
148 */
149 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
150 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
151
152 typedef struct ia64_state_log_s
153 {
154 spinlock_t isl_lock;
155 int isl_index;
156 unsigned long isl_count;
157 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
158 } ia64_state_log_t;
159
160 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
161
162 #define IA64_LOG_ALLOCATE(it, size) \
163 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
164 (ia64_err_rec_t *)alloc_bootmem(size); \
165 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
166 (ia64_err_rec_t *)alloc_bootmem(size);}
167 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
168 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
169 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
170 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
171 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
172 #define IA64_LOG_INDEX_INC(it) \
173 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
174 ia64_state_log[it].isl_count++;}
175 #define IA64_LOG_INDEX_DEC(it) \
176 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
177 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
178 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
179 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
180
181 /*
182 * ia64_log_init
183 * Reset the OS ia64 log buffer
184 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
185 * Outputs : None
186 */
187 static void
188 ia64_log_init(int sal_info_type)
189 {
190 u64 max_size = 0;
191
192 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
193 IA64_LOG_LOCK_INIT(sal_info_type);
194
195 // SAL will tell us the maximum size of any error record of this type
196 max_size = ia64_sal_get_state_info_size(sal_info_type);
197 if (!max_size)
198 /* alloc_bootmem() doesn't like zero-sized allocations! */
199 return;
200
201 // set up OS data structures to hold error info
202 IA64_LOG_ALLOCATE(sal_info_type, max_size);
203 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
204 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
205 }
206
207 /*
208 * ia64_log_get
209 *
210 * Get the current MCA log from SAL and copy it into the OS log buffer.
211 *
212 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
213 * irq_safe whether you can use printk at this point
214 * Outputs : size (total record length)
215 * *buffer (ptr to error record)
216 *
217 */
218 static u64
219 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
220 {
221 sal_log_record_header_t *log_buffer;
222 u64 total_len = 0;
223 int s;
224
225 IA64_LOG_LOCK(sal_info_type);
226
227 /* Get the process state information */
228 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
229
230 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
231
232 if (total_len) {
233 IA64_LOG_INDEX_INC(sal_info_type);
234 IA64_LOG_UNLOCK(sal_info_type);
235 if (irq_safe) {
236 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
237 "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
238 }
239 *buffer = (u8 *) log_buffer;
240 return total_len;
241 } else {
242 IA64_LOG_UNLOCK(sal_info_type);
243 return 0;
244 }
245 }
246
247 /*
248 * ia64_mca_log_sal_error_record
249 *
250 * This function retrieves a specified error record type from SAL
251 * and wakes up any processes waiting for error records.
252 *
253 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
254 * FIXME: remove MCA and irq_safe.
255 */
256 static void
257 ia64_mca_log_sal_error_record(int sal_info_type)
258 {
259 u8 *buffer;
260 sal_log_record_header_t *rh;
261 u64 size;
262 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
263 #ifdef IA64_MCA_DEBUG_INFO
264 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
265 #endif
266
267 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
268 if (!size)
269 return;
270
271 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
272
273 if (irq_safe)
274 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
275 smp_processor_id(),
276 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
277
278 /* Clear logs from corrected errors in case there's no user-level logger */
279 rh = (sal_log_record_header_t *)buffer;
280 if (rh->severity == sal_log_severity_corrected)
281 ia64_sal_clear_state_info(sal_info_type);
282 }
283
284 /*
285 * platform dependent error handling
286 */
287 #ifndef PLATFORM_MCA_HANDLERS
288
289 #ifdef CONFIG_ACPI
290
291 int cpe_vector = -1;
292
293 static irqreturn_t
294 ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
295 {
296 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
297 static int index;
298 static DEFINE_SPINLOCK(cpe_history_lock);
299
300 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
301 __FUNCTION__, cpe_irq, smp_processor_id());
302
303 /* SAL spec states this should run w/ interrupts enabled */
304 local_irq_enable();
305
306 /* Get the CPE error record and log it */
307 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
308
309 spin_lock(&cpe_history_lock);
310 if (!cpe_poll_enabled && cpe_vector >= 0) {
311
312 int i, count = 1; /* we know 1 happened now */
313 unsigned long now = jiffies;
314
315 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
316 if (now - cpe_history[i] <= HZ)
317 count++;
318 }
319
320 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
321 if (count >= CPE_HISTORY_LENGTH) {
322
323 cpe_poll_enabled = 1;
324 spin_unlock(&cpe_history_lock);
325 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
326
327 /*
328 * Corrected errors will still be corrected, but
329 * make sure there's a log somewhere that indicates
330 * something is generating more than we can handle.
331 */
332 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
333
334 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
335
336 /* lock already released, get out now */
337 return IRQ_HANDLED;
338 } else {
339 cpe_history[index++] = now;
340 if (index == CPE_HISTORY_LENGTH)
341 index = 0;
342 }
343 }
344 spin_unlock(&cpe_history_lock);
345 return IRQ_HANDLED;
346 }
347
348 #endif /* CONFIG_ACPI */
349
350 #ifdef CONFIG_ACPI
351 /*
352 * ia64_mca_register_cpev
353 *
354 * Register the corrected platform error vector with SAL.
355 *
356 * Inputs
357 * cpev Corrected Platform Error Vector number
358 *
359 * Outputs
360 * None
361 */
362 static void
363 ia64_mca_register_cpev (int cpev)
364 {
365 /* Register the CPE interrupt vector with SAL */
366 struct ia64_sal_retval isrv;
367
368 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
369 if (isrv.status) {
370 printk(KERN_ERR "Failed to register Corrected Platform "
371 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
372 return;
373 }
374
375 IA64_MCA_DEBUG("%s: corrected platform error "
376 "vector %#x registered\n", __FUNCTION__, cpev);
377 }
378 #endif /* CONFIG_ACPI */
379
380 #endif /* PLATFORM_MCA_HANDLERS */
381
382 /*
383 * ia64_mca_cmc_vector_setup
384 *
385 * Setup the corrected machine check vector register in the processor.
386 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
387 * This function is invoked on a per-processor basis.
388 *
389 * Inputs
390 * None
391 *
392 * Outputs
393 * None
394 */
395 void
396 ia64_mca_cmc_vector_setup (void)
397 {
398 cmcv_reg_t cmcv;
399
400 cmcv.cmcv_regval = 0;
401 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
402 cmcv.cmcv_vector = IA64_CMC_VECTOR;
403 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
404
405 IA64_MCA_DEBUG("%s: CPU %d corrected "
406 "machine check vector %#x registered.\n",
407 __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
408
409 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
410 __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
411 }
412
413 /*
414 * ia64_mca_cmc_vector_disable
415 *
416 * Mask the corrected machine check vector register in the processor.
417 * This function is invoked on a per-processor basis.
418 *
419 * Inputs
420 * dummy(unused)
421 *
422 * Outputs
423 * None
424 */
425 static void
426 ia64_mca_cmc_vector_disable (void *dummy)
427 {
428 cmcv_reg_t cmcv;
429
430 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
431
432 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
433 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
434
435 IA64_MCA_DEBUG("%s: CPU %d corrected "
436 "machine check vector %#x disabled.\n",
437 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
438 }
439
440 /*
441 * ia64_mca_cmc_vector_enable
442 *
443 * Unmask the corrected machine check vector register in the processor.
444 * This function is invoked on a per-processor basis.
445 *
446 * Inputs
447 * dummy(unused)
448 *
449 * Outputs
450 * None
451 */
452 static void
453 ia64_mca_cmc_vector_enable (void *dummy)
454 {
455 cmcv_reg_t cmcv;
456
457 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
458
459 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
460 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
461
462 IA64_MCA_DEBUG("%s: CPU %d corrected "
463 "machine check vector %#x enabled.\n",
464 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
465 }
466
467 /*
468 * ia64_mca_cmc_vector_disable_keventd
469 *
470 * Called via keventd (smp_call_function() is not safe in interrupt context) to
471 * disable the cmc interrupt vector.
472 */
473 static void
474 ia64_mca_cmc_vector_disable_keventd(void *unused)
475 {
476 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
477 }
478
479 /*
480 * ia64_mca_cmc_vector_enable_keventd
481 *
482 * Called via keventd (smp_call_function() is not safe in interrupt context) to
483 * enable the cmc interrupt vector.
484 */
485 static void
486 ia64_mca_cmc_vector_enable_keventd(void *unused)
487 {
488 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
489 }
490
491 /*
492 * ia64_mca_wakeup
493 *
494 * Send an inter-cpu interrupt to wake-up a particular cpu
495 * and mark that cpu to be out of rendez.
496 *
497 * Inputs : cpuid
498 * Outputs : None
499 */
500 static void
501 ia64_mca_wakeup(int cpu)
502 {
503 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
504 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
505
506 }
507
508 /*
509 * ia64_mca_wakeup_all
510 *
511 * Wakeup all the cpus which have rendez'ed previously.
512 *
513 * Inputs : None
514 * Outputs : None
515 */
516 static void
517 ia64_mca_wakeup_all(void)
518 {
519 int cpu;
520
521 /* Clear the Rendez checkin flag for all cpus */
522 for_each_online_cpu(cpu) {
523 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
524 ia64_mca_wakeup(cpu);
525 }
526
527 }
528
529 /*
530 * ia64_mca_rendez_interrupt_handler
531 *
532 * This is handler used to put slave processors into spinloop
533 * while the monarch processor does the mca handling and later
534 * wake each slave up once the monarch is done.
535 *
536 * Inputs : None
537 * Outputs : None
538 */
539 static irqreturn_t
540 ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *regs)
541 {
542 unsigned long flags;
543 int cpu = smp_processor_id();
544
545 /* Mask all interrupts */
546 local_irq_save(flags);
547 if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", regs, 0, 0, 0)
548 == NOTIFY_STOP)
549 ia64_mca_spin(__FUNCTION__);
550
551 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
552 /* Register with the SAL monarch that the slave has
553 * reached SAL
554 */
555 ia64_sal_mc_rendez();
556
557 if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", regs, 0, 0, 0)
558 == NOTIFY_STOP)
559 ia64_mca_spin(__FUNCTION__);
560
561 /* Wait for the monarch cpu to exit. */
562 while (monarch_cpu != -1)
563 cpu_relax(); /* spin until monarch leaves */
564
565 if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", regs, 0, 0, 0)
566 == NOTIFY_STOP)
567 ia64_mca_spin(__FUNCTION__);
568
569 /* Enable all interrupts */
570 local_irq_restore(flags);
571 return IRQ_HANDLED;
572 }
573
574 /*
575 * ia64_mca_wakeup_int_handler
576 *
577 * The interrupt handler for processing the inter-cpu interrupt to the
578 * slave cpu which was spinning in the rendez loop.
579 * Since this spinning is done by turning off the interrupts and
580 * polling on the wakeup-interrupt bit in the IRR, there is
581 * nothing useful to be done in the handler.
582 *
583 * Inputs : wakeup_irq (Wakeup-interrupt bit)
584 * arg (Interrupt handler specific argument)
585 * ptregs (Exception frame at the time of the interrupt)
586 * Outputs : None
587 *
588 */
589 static irqreturn_t
590 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
591 {
592 return IRQ_HANDLED;
593 }
594
595 /* Function pointer for extra MCA recovery */
596 int (*ia64_mca_ucmc_extension)
597 (void*,struct ia64_sal_os_state*)
598 = NULL;
599
600 int
601 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
602 {
603 if (ia64_mca_ucmc_extension)
604 return 1;
605
606 ia64_mca_ucmc_extension = fn;
607 return 0;
608 }
609
610 void
611 ia64_unreg_MCA_extension(void)
612 {
613 if (ia64_mca_ucmc_extension)
614 ia64_mca_ucmc_extension = NULL;
615 }
616
617 EXPORT_SYMBOL(ia64_reg_MCA_extension);
618 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
619
620
621 static inline void
622 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
623 {
624 u64 fslot, tslot, nat;
625 *tr = *fr;
626 fslot = ((unsigned long)fr >> 3) & 63;
627 tslot = ((unsigned long)tr >> 3) & 63;
628 *tnat &= ~(1UL << tslot);
629 nat = (fnat >> fslot) & 1;
630 *tnat |= (nat << tslot);
631 }
632
633 /* On entry to this routine, we are running on the per cpu stack, see
634 * mca_asm.h. The original stack has not been touched by this event. Some of
635 * the original stack's registers will be in the RBS on this stack. This stack
636 * also contains a partial pt_regs and switch_stack, the rest of the data is in
637 * PAL minstate.
638 *
639 * The first thing to do is modify the original stack to look like a blocked
640 * task so we can run backtrace on the original task. Also mark the per cpu
641 * stack as current to ensure that we use the correct task state, it also means
642 * that we can do backtrace on the MCA/INIT handler code itself.
643 */
644
645 static task_t *
646 ia64_mca_modify_original_stack(struct pt_regs *regs,
647 const struct switch_stack *sw,
648 struct ia64_sal_os_state *sos,
649 const char *type)
650 {
651 char *p, comm[sizeof(current->comm)];
652 ia64_va va;
653 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
654 const pal_min_state_area_t *ms = sos->pal_min_state;
655 task_t *previous_current;
656 struct pt_regs *old_regs;
657 struct switch_stack *old_sw;
658 unsigned size = sizeof(struct pt_regs) +
659 sizeof(struct switch_stack) + 16;
660 u64 *old_bspstore, *old_bsp;
661 u64 *new_bspstore, *new_bsp;
662 u64 old_unat, old_rnat, new_rnat, nat;
663 u64 slots, loadrs = regs->loadrs;
664 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
665 u64 ar_bspstore = regs->ar_bspstore;
666 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
667 const u64 *bank;
668 const char *msg;
669 int cpu = smp_processor_id();
670
671 previous_current = curr_task(cpu);
672 set_curr_task(cpu, current);
673 if ((p = strchr(current->comm, ' ')))
674 *p = '\0';
675
676 /* Best effort attempt to cope with MCA/INIT delivered while in
677 * physical mode.
678 */
679 regs->cr_ipsr = ms->pmsa_ipsr;
680 if (ia64_psr(regs)->dt == 0) {
681 va.l = r12;
682 if (va.f.reg == 0) {
683 va.f.reg = 7;
684 r12 = va.l;
685 }
686 va.l = r13;
687 if (va.f.reg == 0) {
688 va.f.reg = 7;
689 r13 = va.l;
690 }
691 }
692 if (ia64_psr(regs)->rt == 0) {
693 va.l = ar_bspstore;
694 if (va.f.reg == 0) {
695 va.f.reg = 7;
696 ar_bspstore = va.l;
697 }
698 va.l = ar_bsp;
699 if (va.f.reg == 0) {
700 va.f.reg = 7;
701 ar_bsp = va.l;
702 }
703 }
704
705 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
706 * have been copied to the old stack, the old stack may fail the
707 * validation tests below. So ia64_old_stack() must restore the dirty
708 * registers from the new stack. The old and new bspstore probably
709 * have different alignments, so loadrs calculated on the old bsp
710 * cannot be used to restore from the new bsp. Calculate a suitable
711 * loadrs for the new stack and save it in the new pt_regs, where
712 * ia64_old_stack() can get it.
713 */
714 old_bspstore = (u64 *)ar_bspstore;
715 old_bsp = (u64 *)ar_bsp;
716 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
717 new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
718 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
719 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
720
721 /* Verify the previous stack state before we change it */
722 if (user_mode(regs)) {
723 msg = "occurred in user space";
724 goto no_mod;
725 }
726 if (r13 != sos->prev_IA64_KR_CURRENT) {
727 msg = "inconsistent previous current and r13";
728 goto no_mod;
729 }
730 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
731 msg = "inconsistent r12 and r13";
732 goto no_mod;
733 }
734 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
735 msg = "inconsistent ar.bspstore and r13";
736 goto no_mod;
737 }
738 va.p = old_bspstore;
739 if (va.f.reg < 5) {
740 msg = "old_bspstore is in the wrong region";
741 goto no_mod;
742 }
743 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
744 msg = "inconsistent ar.bsp and r13";
745 goto no_mod;
746 }
747 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
748 if (ar_bspstore + size > r12) {
749 msg = "no room for blocked state";
750 goto no_mod;
751 }
752
753 /* Change the comm field on the MCA/INT task to include the pid that
754 * was interrupted, it makes for easier debugging. If that pid was 0
755 * (swapper or nested MCA/INIT) then use the start of the previous comm
756 * field suffixed with its cpu.
757 */
758 if (previous_current->pid)
759 snprintf(comm, sizeof(comm), "%s %d",
760 current->comm, previous_current->pid);
761 else {
762 int l;
763 if ((p = strchr(previous_current->comm, ' ')))
764 l = p - previous_current->comm;
765 else
766 l = strlen(previous_current->comm);
767 snprintf(comm, sizeof(comm), "%s %*s %d",
768 current->comm, l, previous_current->comm,
769 task_thread_info(previous_current)->cpu);
770 }
771 memcpy(current->comm, comm, sizeof(current->comm));
772
773 /* Make the original task look blocked. First stack a struct pt_regs,
774 * describing the state at the time of interrupt. mca_asm.S built a
775 * partial pt_regs, copy it and fill in the blanks using minstate.
776 */
777 p = (char *)r12 - sizeof(*regs);
778 old_regs = (struct pt_regs *)p;
779 memcpy(old_regs, regs, sizeof(*regs));
780 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
781 * pmsa_{xip,xpsr,xfs}
782 */
783 if (ia64_psr(regs)->ic) {
784 old_regs->cr_iip = ms->pmsa_iip;
785 old_regs->cr_ipsr = ms->pmsa_ipsr;
786 old_regs->cr_ifs = ms->pmsa_ifs;
787 } else {
788 old_regs->cr_iip = ms->pmsa_xip;
789 old_regs->cr_ipsr = ms->pmsa_xpsr;
790 old_regs->cr_ifs = ms->pmsa_xfs;
791 }
792 old_regs->pr = ms->pmsa_pr;
793 old_regs->b0 = ms->pmsa_br0;
794 old_regs->loadrs = loadrs;
795 old_regs->ar_rsc = ms->pmsa_rsc;
796 old_unat = old_regs->ar_unat;
797 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
798 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
799 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
800 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
801 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
802 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
803 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
804 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
805 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
806 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
807 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
808 if (ia64_psr(old_regs)->bn)
809 bank = ms->pmsa_bank1_gr;
810 else
811 bank = ms->pmsa_bank0_gr;
812 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
813 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
814 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
815 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
816 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
817 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
818 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
819 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
820 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
821 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
822 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
823 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
824 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
825 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
826 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
827 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
828
829 /* Next stack a struct switch_stack. mca_asm.S built a partial
830 * switch_stack, copy it and fill in the blanks using pt_regs and
831 * minstate.
832 *
833 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
834 * ar.pfs is set to 0.
835 *
836 * unwind.c::unw_unwind() does special processing for interrupt frames.
837 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
838 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
839 * that this is documented, of course. Set PRED_NON_SYSCALL in the
840 * switch_stack on the original stack so it will unwind correctly when
841 * unwind.c reads pt_regs.
842 *
843 * thread.ksp is updated to point to the synthesized switch_stack.
844 */
845 p -= sizeof(struct switch_stack);
846 old_sw = (struct switch_stack *)p;
847 memcpy(old_sw, sw, sizeof(*sw));
848 old_sw->caller_unat = old_unat;
849 old_sw->ar_fpsr = old_regs->ar_fpsr;
850 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
851 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
852 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
853 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
854 old_sw->b0 = (u64)ia64_leave_kernel;
855 old_sw->b1 = ms->pmsa_br1;
856 old_sw->ar_pfs = 0;
857 old_sw->ar_unat = old_unat;
858 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
859 previous_current->thread.ksp = (u64)p - 16;
860
861 /* Finally copy the original stack's registers back to its RBS.
862 * Registers from ar.bspstore through ar.bsp at the time of the event
863 * are in the current RBS, copy them back to the original stack. The
864 * copy must be done register by register because the original bspstore
865 * and the current one have different alignments, so the saved RNAT
866 * data occurs at different places.
867 *
868 * mca_asm does cover, so the old_bsp already includes all registers at
869 * the time of MCA/INIT. It also does flushrs, so all registers before
870 * this function have been written to backing store on the MCA/INIT
871 * stack.
872 */
873 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
874 old_rnat = regs->ar_rnat;
875 while (slots--) {
876 if (ia64_rse_is_rnat_slot(new_bspstore)) {
877 new_rnat = ia64_get_rnat(new_bspstore++);
878 }
879 if (ia64_rse_is_rnat_slot(old_bspstore)) {
880 *old_bspstore++ = old_rnat;
881 old_rnat = 0;
882 }
883 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
884 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
885 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
886 *old_bspstore++ = *new_bspstore++;
887 }
888 old_sw->ar_bspstore = (unsigned long)old_bspstore;
889 old_sw->ar_rnat = old_rnat;
890
891 sos->prev_task = previous_current;
892 return previous_current;
893
894 no_mod:
895 printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
896 smp_processor_id(), type, msg);
897 return previous_current;
898 }
899
900 /* The monarch/slave interaction is based on monarch_cpu and requires that all
901 * slaves have entered rendezvous before the monarch leaves. If any cpu has
902 * not entered rendezvous yet then wait a bit. The assumption is that any
903 * slave that has not rendezvoused after a reasonable time is never going to do
904 * so. In this context, slave includes cpus that respond to the MCA rendezvous
905 * interrupt, as well as cpus that receive the INIT slave event.
906 */
907
908 static void
909 ia64_wait_for_slaves(int monarch)
910 {
911 int c, wait = 0;
912 for_each_online_cpu(c) {
913 if (c == monarch)
914 continue;
915 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
916 udelay(1000); /* short wait first */
917 wait = 1;
918 break;
919 }
920 }
921 if (!wait)
922 return;
923 for_each_online_cpu(c) {
924 if (c == monarch)
925 continue;
926 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
927 udelay(5*1000000); /* wait 5 seconds for slaves (arbitrary) */
928 break;
929 }
930 }
931 }
932
933 /*
934 * ia64_mca_handler
935 *
936 * This is uncorrectable machine check handler called from OS_MCA
937 * dispatch code which is in turn called from SAL_CHECK().
938 * This is the place where the core of OS MCA handling is done.
939 * Right now the logs are extracted and displayed in a well-defined
940 * format. This handler code is supposed to be run only on the
941 * monarch processor. Once the monarch is done with MCA handling
942 * further MCA logging is enabled by clearing logs.
943 * Monarch also has the duty of sending wakeup-IPIs to pull the
944 * slave processors out of rendezvous spinloop.
945 */
946 void
947 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
948 struct ia64_sal_os_state *sos)
949 {
950 pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
951 &sos->proc_state_param;
952 int recover, cpu = smp_processor_id();
953 task_t *previous_current;
954
955 oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */
956 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
957 monarch_cpu = cpu;
958 if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, 0, 0, 0)
959 == NOTIFY_STOP)
960 ia64_mca_spin(__FUNCTION__);
961 ia64_wait_for_slaves(cpu);
962
963 /* Wakeup all the processors which are spinning in the rendezvous loop.
964 * They will leave SAL, then spin in the OS with interrupts disabled
965 * until this monarch cpu leaves the MCA handler. That gets control
966 * back to the OS so we can backtrace the other cpus, backtrace when
967 * spinning in SAL does not work.
968 */
969 ia64_mca_wakeup_all();
970 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, 0, 0, 0)
971 == NOTIFY_STOP)
972 ia64_mca_spin(__FUNCTION__);
973
974 /* Get the MCA error record and log it */
975 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
976
977 /* TLB error is only exist in this SAL error record */
978 recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
979 /* other error recovery */
980 || (ia64_mca_ucmc_extension
981 && ia64_mca_ucmc_extension(
982 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
983 sos));
984
985 if (recover) {
986 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
987 rh->severity = sal_log_severity_corrected;
988 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
989 sos->os_status = IA64_MCA_CORRECTED;
990 }
991 if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, 0, 0, recover)
992 == NOTIFY_STOP)
993 ia64_mca_spin(__FUNCTION__);
994
995 set_curr_task(cpu, previous_current);
996 monarch_cpu = -1;
997 }
998
999 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
1000 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
1001
1002 /*
1003 * ia64_mca_cmc_int_handler
1004 *
1005 * This is corrected machine check interrupt handler.
1006 * Right now the logs are extracted and displayed in a well-defined
1007 * format.
1008 *
1009 * Inputs
1010 * interrupt number
1011 * client data arg ptr
1012 * saved registers ptr
1013 *
1014 * Outputs
1015 * None
1016 */
1017 static irqreturn_t
1018 ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
1019 {
1020 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1021 static int index;
1022 static DEFINE_SPINLOCK(cmc_history_lock);
1023
1024 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1025 __FUNCTION__, cmc_irq, smp_processor_id());
1026
1027 /* SAL spec states this should run w/ interrupts enabled */
1028 local_irq_enable();
1029
1030 /* Get the CMC error record and log it */
1031 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1032
1033 spin_lock(&cmc_history_lock);
1034 if (!cmc_polling_enabled) {
1035 int i, count = 1; /* we know 1 happened now */
1036 unsigned long now = jiffies;
1037
1038 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1039 if (now - cmc_history[i] <= HZ)
1040 count++;
1041 }
1042
1043 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1044 if (count >= CMC_HISTORY_LENGTH) {
1045
1046 cmc_polling_enabled = 1;
1047 spin_unlock(&cmc_history_lock);
1048 /* If we're being hit with CMC interrupts, we won't
1049 * ever execute the schedule_work() below. Need to
1050 * disable CMC interrupts on this processor now.
1051 */
1052 ia64_mca_cmc_vector_disable(NULL);
1053 schedule_work(&cmc_disable_work);
1054
1055 /*
1056 * Corrected errors will still be corrected, but
1057 * make sure there's a log somewhere that indicates
1058 * something is generating more than we can handle.
1059 */
1060 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1061
1062 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1063
1064 /* lock already released, get out now */
1065 return IRQ_HANDLED;
1066 } else {
1067 cmc_history[index++] = now;
1068 if (index == CMC_HISTORY_LENGTH)
1069 index = 0;
1070 }
1071 }
1072 spin_unlock(&cmc_history_lock);
1073 return IRQ_HANDLED;
1074 }
1075
1076 /*
1077 * ia64_mca_cmc_int_caller
1078 *
1079 * Triggered by sw interrupt from CMC polling routine. Calls
1080 * real interrupt handler and either triggers a sw interrupt
1081 * on the next cpu or does cleanup at the end.
1082 *
1083 * Inputs
1084 * interrupt number
1085 * client data arg ptr
1086 * saved registers ptr
1087 * Outputs
1088 * handled
1089 */
1090 static irqreturn_t
1091 ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs)
1092 {
1093 static int start_count = -1;
1094 unsigned int cpuid;
1095
1096 cpuid = smp_processor_id();
1097
1098 /* If first cpu, update count */
1099 if (start_count == -1)
1100 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1101
1102 ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs);
1103
1104 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1105
1106 if (cpuid < NR_CPUS) {
1107 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1108 } else {
1109 /* If no log record, switch out of polling mode */
1110 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1111
1112 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1113 schedule_work(&cmc_enable_work);
1114 cmc_polling_enabled = 0;
1115
1116 } else {
1117
1118 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1119 }
1120
1121 start_count = -1;
1122 }
1123
1124 return IRQ_HANDLED;
1125 }
1126
1127 /*
1128 * ia64_mca_cmc_poll
1129 *
1130 * Poll for Corrected Machine Checks (CMCs)
1131 *
1132 * Inputs : dummy(unused)
1133 * Outputs : None
1134 *
1135 */
1136 static void
1137 ia64_mca_cmc_poll (unsigned long dummy)
1138 {
1139 /* Trigger a CMC interrupt cascade */
1140 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1141 }
1142
1143 /*
1144 * ia64_mca_cpe_int_caller
1145 *
1146 * Triggered by sw interrupt from CPE polling routine. Calls
1147 * real interrupt handler and either triggers a sw interrupt
1148 * on the next cpu or does cleanup at the end.
1149 *
1150 * Inputs
1151 * interrupt number
1152 * client data arg ptr
1153 * saved registers ptr
1154 * Outputs
1155 * handled
1156 */
1157 #ifdef CONFIG_ACPI
1158
1159 static irqreturn_t
1160 ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
1161 {
1162 static int start_count = -1;
1163 static int poll_time = MIN_CPE_POLL_INTERVAL;
1164 unsigned int cpuid;
1165
1166 cpuid = smp_processor_id();
1167
1168 /* If first cpu, update count */
1169 if (start_count == -1)
1170 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1171
1172 ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
1173
1174 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1175
1176 if (cpuid < NR_CPUS) {
1177 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1178 } else {
1179 /*
1180 * If a log was recorded, increase our polling frequency,
1181 * otherwise, backoff or return to interrupt mode.
1182 */
1183 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1184 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1185 } else if (cpe_vector < 0) {
1186 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1187 } else {
1188 poll_time = MIN_CPE_POLL_INTERVAL;
1189
1190 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1191 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1192 cpe_poll_enabled = 0;
1193 }
1194
1195 if (cpe_poll_enabled)
1196 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1197 start_count = -1;
1198 }
1199
1200 return IRQ_HANDLED;
1201 }
1202
1203 /*
1204 * ia64_mca_cpe_poll
1205 *
1206 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1207 * on first cpu, from there it will trickle through all the cpus.
1208 *
1209 * Inputs : dummy(unused)
1210 * Outputs : None
1211 *
1212 */
1213 static void
1214 ia64_mca_cpe_poll (unsigned long dummy)
1215 {
1216 /* Trigger a CPE interrupt cascade */
1217 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1218 }
1219
1220 #endif /* CONFIG_ACPI */
1221
1222 static int
1223 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1224 {
1225 int c;
1226 struct task_struct *g, *t;
1227 if (val != DIE_INIT_MONARCH_PROCESS)
1228 return NOTIFY_DONE;
1229 printk(KERN_ERR "Processes interrupted by INIT -");
1230 for_each_online_cpu(c) {
1231 struct ia64_sal_os_state *s;
1232 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1233 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1234 g = s->prev_task;
1235 if (g) {
1236 if (g->pid)
1237 printk(" %d", g->pid);
1238 else
1239 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1240 }
1241 }
1242 printk("\n\n");
1243 if (read_trylock(&tasklist_lock)) {
1244 do_each_thread (g, t) {
1245 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1246 show_stack(t, NULL);
1247 } while_each_thread (g, t);
1248 read_unlock(&tasklist_lock);
1249 }
1250 return NOTIFY_DONE;
1251 }
1252
1253 /*
1254 * C portion of the OS INIT handler
1255 *
1256 * Called from ia64_os_init_dispatch
1257 *
1258 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1259 * this event. This code is used for both monarch and slave INIT events, see
1260 * sos->monarch.
1261 *
1262 * All INIT events switch to the INIT stack and change the previous process to
1263 * blocked status. If one of the INIT events is the monarch then we are
1264 * probably processing the nmi button/command. Use the monarch cpu to dump all
1265 * the processes. The slave INIT events all spin until the monarch cpu
1266 * returns. We can also get INIT slave events for MCA, in which case the MCA
1267 * process is the monarch.
1268 */
1269
1270 void
1271 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1272 struct ia64_sal_os_state *sos)
1273 {
1274 static atomic_t slaves;
1275 static atomic_t monarchs;
1276 task_t *previous_current;
1277 int cpu = smp_processor_id();
1278
1279 oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */
1280 console_loglevel = 15; /* make sure printks make it to console */
1281
1282 printk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1283 sos->proc_state_param, cpu, sos->monarch);
1284 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1285
1286 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1287 sos->os_status = IA64_INIT_RESUME;
1288
1289 /* FIXME: Workaround for broken proms that drive all INIT events as
1290 * slaves. The last slave that enters is promoted to be a monarch.
1291 * Remove this code in September 2006, that gives platforms a year to
1292 * fix their proms and get their customers updated.
1293 */
1294 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1295 printk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1296 __FUNCTION__, cpu);
1297 atomic_dec(&slaves);
1298 sos->monarch = 1;
1299 }
1300
1301 /* FIXME: Workaround for broken proms that drive all INIT events as
1302 * monarchs. Second and subsequent monarchs are demoted to slaves.
1303 * Remove this code in September 2006, that gives platforms a year to
1304 * fix their proms and get their customers updated.
1305 */
1306 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1307 printk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1308 __FUNCTION__, cpu);
1309 atomic_dec(&monarchs);
1310 sos->monarch = 0;
1311 }
1312
1313 if (!sos->monarch) {
1314 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1315 while (monarch_cpu == -1)
1316 cpu_relax(); /* spin until monarch enters */
1317 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, 0, 0, 0)
1318 == NOTIFY_STOP)
1319 ia64_mca_spin(__FUNCTION__);
1320 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, 0, 0, 0)
1321 == NOTIFY_STOP)
1322 ia64_mca_spin(__FUNCTION__);
1323 while (monarch_cpu != -1)
1324 cpu_relax(); /* spin until monarch leaves */
1325 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, 0, 0, 0)
1326 == NOTIFY_STOP)
1327 ia64_mca_spin(__FUNCTION__);
1328 printk("Slave on cpu %d returning to normal service.\n", cpu);
1329 set_curr_task(cpu, previous_current);
1330 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1331 atomic_dec(&slaves);
1332 return;
1333 }
1334
1335 monarch_cpu = cpu;
1336 if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, 0, 0, 0)
1337 == NOTIFY_STOP)
1338 ia64_mca_spin(__FUNCTION__);
1339
1340 /*
1341 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1342 * generated via the BMC's command-line interface, but since the console is on the
1343 * same serial line, the user will need some time to switch out of the BMC before
1344 * the dump begins.
1345 */
1346 printk("Delaying for 5 seconds...\n");
1347 udelay(5*1000000);
1348 ia64_wait_for_slaves(cpu);
1349 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1350 * to default_monarch_init_process() above and just print all the
1351 * tasks.
1352 */
1353 if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, 0, 0, 0)
1354 == NOTIFY_STOP)
1355 ia64_mca_spin(__FUNCTION__);
1356 if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, 0, 0, 0)
1357 == NOTIFY_STOP)
1358 ia64_mca_spin(__FUNCTION__);
1359 printk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1360 atomic_dec(&monarchs);
1361 set_curr_task(cpu, previous_current);
1362 monarch_cpu = -1;
1363 return;
1364 }
1365
1366 static int __init
1367 ia64_mca_disable_cpe_polling(char *str)
1368 {
1369 cpe_poll_enabled = 0;
1370 return 1;
1371 }
1372
1373 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1374
1375 static struct irqaction cmci_irqaction = {
1376 .handler = ia64_mca_cmc_int_handler,
1377 .flags = SA_INTERRUPT,
1378 .name = "cmc_hndlr"
1379 };
1380
1381 static struct irqaction cmcp_irqaction = {
1382 .handler = ia64_mca_cmc_int_caller,
1383 .flags = SA_INTERRUPT,
1384 .name = "cmc_poll"
1385 };
1386
1387 static struct irqaction mca_rdzv_irqaction = {
1388 .handler = ia64_mca_rendez_int_handler,
1389 .flags = SA_INTERRUPT,
1390 .name = "mca_rdzv"
1391 };
1392
1393 static struct irqaction mca_wkup_irqaction = {
1394 .handler = ia64_mca_wakeup_int_handler,
1395 .flags = SA_INTERRUPT,
1396 .name = "mca_wkup"
1397 };
1398
1399 #ifdef CONFIG_ACPI
1400 static struct irqaction mca_cpe_irqaction = {
1401 .handler = ia64_mca_cpe_int_handler,
1402 .flags = SA_INTERRUPT,
1403 .name = "cpe_hndlr"
1404 };
1405
1406 static struct irqaction mca_cpep_irqaction = {
1407 .handler = ia64_mca_cpe_int_caller,
1408 .flags = SA_INTERRUPT,
1409 .name = "cpe_poll"
1410 };
1411 #endif /* CONFIG_ACPI */
1412
1413 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1414 * these stacks can never sleep, they cannot return from the kernel to user
1415 * space, they do not appear in a normal ps listing. So there is no need to
1416 * format most of the fields.
1417 */
1418
1419 static void
1420 format_mca_init_stack(void *mca_data, unsigned long offset,
1421 const char *type, int cpu)
1422 {
1423 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1424 struct thread_info *ti;
1425 memset(p, 0, KERNEL_STACK_SIZE);
1426 ti = task_thread_info(p);
1427 ti->flags = _TIF_MCA_INIT;
1428 ti->preempt_count = 1;
1429 ti->task = p;
1430 ti->cpu = cpu;
1431 p->thread_info = ti;
1432 p->state = TASK_UNINTERRUPTIBLE;
1433 __set_bit(cpu, &p->cpus_allowed);
1434 INIT_LIST_HEAD(&p->tasks);
1435 p->parent = p->real_parent = p->group_leader = p;
1436 INIT_LIST_HEAD(&p->children);
1437 INIT_LIST_HEAD(&p->sibling);
1438 strncpy(p->comm, type, sizeof(p->comm)-1);
1439 }
1440
1441 /* Do per-CPU MCA-related initialization. */
1442
1443 void __devinit
1444 ia64_mca_cpu_init(void *cpu_data)
1445 {
1446 void *pal_vaddr;
1447
1448 if (smp_processor_id() == 0) {
1449 void *mca_data;
1450 int cpu;
1451
1452 mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
1453 * NR_CPUS + KERNEL_STACK_SIZE);
1454 mca_data = (void *)(((unsigned long)mca_data +
1455 KERNEL_STACK_SIZE - 1) &
1456 (-KERNEL_STACK_SIZE));
1457 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1458 format_mca_init_stack(mca_data,
1459 offsetof(struct ia64_mca_cpu, mca_stack),
1460 "MCA", cpu);
1461 format_mca_init_stack(mca_data,
1462 offsetof(struct ia64_mca_cpu, init_stack),
1463 "INIT", cpu);
1464 __per_cpu_mca[cpu] = __pa(mca_data);
1465 mca_data += sizeof(struct ia64_mca_cpu);
1466 }
1467 }
1468
1469 /*
1470 * The MCA info structure was allocated earlier and its
1471 * physical address saved in __per_cpu_mca[cpu]. Copy that
1472 * address * to ia64_mca_data so we can access it as a per-CPU
1473 * variable.
1474 */
1475 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1476
1477 /*
1478 * Stash away a copy of the PTE needed to map the per-CPU page.
1479 * We may need it during MCA recovery.
1480 */
1481 __get_cpu_var(ia64_mca_per_cpu_pte) =
1482 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1483
1484 /*
1485 * Also, stash away a copy of the PAL address and the PTE
1486 * needed to map it.
1487 */
1488 pal_vaddr = efi_get_pal_addr();
1489 if (!pal_vaddr)
1490 return;
1491 __get_cpu_var(ia64_mca_pal_base) =
1492 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1493 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1494 PAGE_KERNEL));
1495 }
1496
1497 /*
1498 * ia64_mca_init
1499 *
1500 * Do all the system level mca specific initialization.
1501 *
1502 * 1. Register spinloop and wakeup request interrupt vectors
1503 *
1504 * 2. Register OS_MCA handler entry point
1505 *
1506 * 3. Register OS_INIT handler entry point
1507 *
1508 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1509 *
1510 * Note that this initialization is done very early before some kernel
1511 * services are available.
1512 *
1513 * Inputs : None
1514 *
1515 * Outputs : None
1516 */
1517 void __init
1518 ia64_mca_init(void)
1519 {
1520 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1521 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1522 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1523 int i;
1524 s64 rc;
1525 struct ia64_sal_retval isrv;
1526 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1527 static struct notifier_block default_init_monarch_nb = {
1528 .notifier_call = default_monarch_init_process,
1529 .priority = 0/* we need to notified last */
1530 };
1531
1532 IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1533
1534 /* Clear the Rendez checkin flag for all cpus */
1535 for(i = 0 ; i < NR_CPUS; i++)
1536 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1537
1538 /*
1539 * Register the rendezvous spinloop and wakeup mechanism with SAL
1540 */
1541
1542 /* Register the rendezvous interrupt vector with SAL */
1543 while (1) {
1544 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1545 SAL_MC_PARAM_MECHANISM_INT,
1546 IA64_MCA_RENDEZ_VECTOR,
1547 timeout,
1548 SAL_MC_PARAM_RZ_ALWAYS);
1549 rc = isrv.status;
1550 if (rc == 0)
1551 break;
1552 if (rc == -2) {
1553 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1554 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1555 timeout = isrv.v0;
1556 continue;
1557 }
1558 printk(KERN_ERR "Failed to register rendezvous interrupt "
1559 "with SAL (status %ld)\n", rc);
1560 return;
1561 }
1562
1563 /* Register the wakeup interrupt vector with SAL */
1564 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1565 SAL_MC_PARAM_MECHANISM_INT,
1566 IA64_MCA_WAKEUP_VECTOR,
1567 0, 0);
1568 rc = isrv.status;
1569 if (rc) {
1570 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1571 "(status %ld)\n", rc);
1572 return;
1573 }
1574
1575 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1576
1577 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1578 /*
1579 * XXX - disable SAL checksum by setting size to 0; should be
1580 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1581 */
1582 ia64_mc_info.imi_mca_handler_size = 0;
1583
1584 /* Register the os mca handler with SAL */
1585 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1586 ia64_mc_info.imi_mca_handler,
1587 ia64_tpa(mca_hldlr_ptr->gp),
1588 ia64_mc_info.imi_mca_handler_size,
1589 0, 0, 0)))
1590 {
1591 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1592 "(status %ld)\n", rc);
1593 return;
1594 }
1595
1596 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1597 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1598
1599 /*
1600 * XXX - disable SAL checksum by setting size to 0, should be
1601 * size of the actual init handler in mca_asm.S.
1602 */
1603 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1604 ia64_mc_info.imi_monarch_init_handler_size = 0;
1605 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
1606 ia64_mc_info.imi_slave_init_handler_size = 0;
1607
1608 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1609 ia64_mc_info.imi_monarch_init_handler);
1610
1611 /* Register the os init handler with SAL */
1612 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1613 ia64_mc_info.imi_monarch_init_handler,
1614 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1615 ia64_mc_info.imi_monarch_init_handler_size,
1616 ia64_mc_info.imi_slave_init_handler,
1617 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1618 ia64_mc_info.imi_slave_init_handler_size)))
1619 {
1620 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1621 "(status %ld)\n", rc);
1622 return;
1623 }
1624 if (register_die_notifier(&default_init_monarch_nb)) {
1625 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1626 return;
1627 }
1628
1629 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1630
1631 /*
1632 * Configure the CMCI/P vector and handler. Interrupts for CMC are
1633 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1634 */
1635 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1636 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1637 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
1638
1639 /* Setup the MCA rendezvous interrupt vector */
1640 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1641
1642 /* Setup the MCA wakeup interrupt vector */
1643 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1644
1645 #ifdef CONFIG_ACPI
1646 /* Setup the CPEI/P handler */
1647 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1648 #endif
1649
1650 /* Initialize the areas set aside by the OS to buffer the
1651 * platform/processor error states for MCA/INIT/CMC
1652 * handling.
1653 */
1654 ia64_log_init(SAL_INFO_TYPE_MCA);
1655 ia64_log_init(SAL_INFO_TYPE_INIT);
1656 ia64_log_init(SAL_INFO_TYPE_CMC);
1657 ia64_log_init(SAL_INFO_TYPE_CPE);
1658
1659 mca_init = 1;
1660 printk(KERN_INFO "MCA related initialization done\n");
1661 }
1662
1663 /*
1664 * ia64_mca_late_init
1665 *
1666 * Opportunity to setup things that require initialization later
1667 * than ia64_mca_init. Setup a timer to poll for CPEs if the
1668 * platform doesn't support an interrupt driven mechanism.
1669 *
1670 * Inputs : None
1671 * Outputs : Status
1672 */
1673 static int __init
1674 ia64_mca_late_init(void)
1675 {
1676 if (!mca_init)
1677 return 0;
1678
1679 /* Setup the CMCI/P vector and handler */
1680 init_timer(&cmc_poll_timer);
1681 cmc_poll_timer.function = ia64_mca_cmc_poll;
1682
1683 /* Unmask/enable the vector */
1684 cmc_polling_enabled = 0;
1685 schedule_work(&cmc_enable_work);
1686
1687 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1688
1689 #ifdef CONFIG_ACPI
1690 /* Setup the CPEI/P vector and handler */
1691 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1692 init_timer(&cpe_poll_timer);
1693 cpe_poll_timer.function = ia64_mca_cpe_poll;
1694
1695 {
1696 irq_desc_t *desc;
1697 unsigned int irq;
1698
1699 if (cpe_vector >= 0) {
1700 /* If platform supports CPEI, enable the irq. */
1701 cpe_poll_enabled = 0;
1702 for (irq = 0; irq < NR_IRQS; ++irq)
1703 if (irq_to_vector(irq) == cpe_vector) {
1704 desc = irq_descp(irq);
1705 desc->status |= IRQ_PER_CPU;
1706 setup_irq(irq, &mca_cpe_irqaction);
1707 }
1708 ia64_mca_register_cpev(cpe_vector);
1709 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1710 } else {
1711 /* If platform doesn't support CPEI, get the timer going. */
1712 if (cpe_poll_enabled) {
1713 ia64_mca_cpe_poll(0UL);
1714 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1715 }
1716 }
1717 }
1718 #endif
1719
1720 return 0;
1721 }
1722
1723 device_initcall(ia64_mca_late_init);
This page took 0.09331 seconds and 5 git commands to generate.