Merge branch 'pending' of master.kernel.org:/pub/scm/linux/kernel/git/vxy/lksctp-dev
[deliverable/linux.git] / arch / ia64 / kernel / mca.c
1 /*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
4 *
5 * Copyright (C) 2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 *
8 * Copyright (C) 2002 Dell Inc.
9 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
10 *
11 * Copyright (C) 2002 Intel
12 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
13 *
14 * Copyright (C) 2001 Intel
15 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
16 *
17 * Copyright (C) 2000 Intel
18 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
19 *
20 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
21 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
22 *
23 * Copyright (C) 2006 FUJITSU LIMITED
24 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
25 *
26 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
27 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
28 * added min save state dump, added INIT handler.
29 *
30 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
31 * Added setup of CMCI and CPEI IRQs, logging of corrected platform
32 * errors, completed code for logging of corrected & uncorrected
33 * machine check errors, and updated for conformance with Nov. 2000
34 * revision of the SAL 3.0 spec.
35 *
36 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
37 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
38 * set SAL default return values, changed error record structure to
39 * linked list, added init call to sal_get_state_info_size().
40 *
41 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
42 * GUID cleanups.
43 *
44 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
45 * Added INIT backtrace support.
46 *
47 * 2003-12-08 Keith Owens <kaos@sgi.com>
48 * smp_call_function() must not be called from interrupt context
49 * (can deadlock on tasklist_lock).
50 * Use keventd to call smp_call_function().
51 *
52 * 2004-02-01 Keith Owens <kaos@sgi.com>
53 * Avoid deadlock when using printk() for MCA and INIT records.
54 * Delete all record printing code, moved to salinfo_decode in user
55 * space. Mark variables and functions static where possible.
56 * Delete dead variables and functions. Reorder to remove the need
57 * for forward declarations and to consolidate related code.
58 *
59 * 2005-08-12 Keith Owens <kaos@sgi.com>
60 * Convert MCA/INIT handlers to use per event stacks and SAL/OS
61 * state.
62 *
63 * 2005-10-07 Keith Owens <kaos@sgi.com>
64 * Add notify_die() hooks.
65 *
66 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
67 * Add printing support for MCA/INIT.
68 *
69 * 2007-04-27 Russ Anderson <rja@sgi.com>
70 * Support multiple cpus going through OS_MCA in the same event.
71 */
72 #include <linux/types.h>
73 #include <linux/init.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/irq.h>
77 #include <linux/bootmem.h>
78 #include <linux/acpi.h>
79 #include <linux/timer.h>
80 #include <linux/module.h>
81 #include <linux/kernel.h>
82 #include <linux/smp.h>
83 #include <linux/workqueue.h>
84 #include <linux/cpumask.h>
85 #include <linux/kdebug.h>
86 #include <linux/cpu.h>
87
88 #include <asm/delay.h>
89 #include <asm/machvec.h>
90 #include <asm/meminit.h>
91 #include <asm/page.h>
92 #include <asm/ptrace.h>
93 #include <asm/system.h>
94 #include <asm/sal.h>
95 #include <asm/mca.h>
96 #include <asm/kexec.h>
97
98 #include <asm/irq.h>
99 #include <asm/hw_irq.h>
100
101 #include "mca_drv.h"
102 #include "entry.h"
103
104 #if defined(IA64_MCA_DEBUG_INFO)
105 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
106 #else
107 # define IA64_MCA_DEBUG(fmt...)
108 #endif
109
110 /* Used by mca_asm.S */
111 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
112 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
113 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
114 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
115
116 unsigned long __per_cpu_mca[NR_CPUS];
117
118 /* In mca_asm.S */
119 extern void ia64_os_init_dispatch_monarch (void);
120 extern void ia64_os_init_dispatch_slave (void);
121
122 static int monarch_cpu = -1;
123
124 static ia64_mc_info_t ia64_mc_info;
125
126 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
127 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
128 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
129 #define CPE_HISTORY_LENGTH 5
130 #define CMC_HISTORY_LENGTH 5
131
132 #ifdef CONFIG_ACPI
133 static struct timer_list cpe_poll_timer;
134 #endif
135 static struct timer_list cmc_poll_timer;
136 /*
137 * This variable tells whether we are currently in polling mode.
138 * Start with this in the wrong state so we won't play w/ timers
139 * before the system is ready.
140 */
141 static int cmc_polling_enabled = 1;
142
143 /*
144 * Clearing this variable prevents CPE polling from getting activated
145 * in mca_late_init. Use it if your system doesn't provide a CPEI,
146 * but encounters problems retrieving CPE logs. This should only be
147 * necessary for debugging.
148 */
149 static int cpe_poll_enabled = 1;
150
151 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
152
153 static int mca_init __initdata;
154
155 /*
156 * limited & delayed printing support for MCA/INIT handler
157 */
158
159 #define mprintk(fmt...) ia64_mca_printk(fmt)
160
161 #define MLOGBUF_SIZE (512+256*NR_CPUS)
162 #define MLOGBUF_MSGMAX 256
163 static char mlogbuf[MLOGBUF_SIZE];
164 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
165 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
166 static unsigned long mlogbuf_start;
167 static unsigned long mlogbuf_end;
168 static unsigned int mlogbuf_finished = 0;
169 static unsigned long mlogbuf_timestamp = 0;
170
171 static int loglevel_save = -1;
172 #define BREAK_LOGLEVEL(__console_loglevel) \
173 oops_in_progress = 1; \
174 if (loglevel_save < 0) \
175 loglevel_save = __console_loglevel; \
176 __console_loglevel = 15;
177
178 #define RESTORE_LOGLEVEL(__console_loglevel) \
179 if (loglevel_save >= 0) { \
180 __console_loglevel = loglevel_save; \
181 loglevel_save = -1; \
182 } \
183 mlogbuf_finished = 0; \
184 oops_in_progress = 0;
185
186 /*
187 * Push messages into buffer, print them later if not urgent.
188 */
189 void ia64_mca_printk(const char *fmt, ...)
190 {
191 va_list args;
192 int printed_len;
193 char temp_buf[MLOGBUF_MSGMAX];
194 char *p;
195
196 va_start(args, fmt);
197 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
198 va_end(args);
199
200 /* Copy the output into mlogbuf */
201 if (oops_in_progress) {
202 /* mlogbuf was abandoned, use printk directly instead. */
203 printk(temp_buf);
204 } else {
205 spin_lock(&mlogbuf_wlock);
206 for (p = temp_buf; *p; p++) {
207 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
208 if (next != mlogbuf_start) {
209 mlogbuf[mlogbuf_end] = *p;
210 mlogbuf_end = next;
211 } else {
212 /* buffer full */
213 break;
214 }
215 }
216 mlogbuf[mlogbuf_end] = '\0';
217 spin_unlock(&mlogbuf_wlock);
218 }
219 }
220 EXPORT_SYMBOL(ia64_mca_printk);
221
222 /*
223 * Print buffered messages.
224 * NOTE: call this after returning normal context. (ex. from salinfod)
225 */
226 void ia64_mlogbuf_dump(void)
227 {
228 char temp_buf[MLOGBUF_MSGMAX];
229 char *p;
230 unsigned long index;
231 unsigned long flags;
232 unsigned int printed_len;
233
234 /* Get output from mlogbuf */
235 while (mlogbuf_start != mlogbuf_end) {
236 temp_buf[0] = '\0';
237 p = temp_buf;
238 printed_len = 0;
239
240 spin_lock_irqsave(&mlogbuf_rlock, flags);
241
242 index = mlogbuf_start;
243 while (index != mlogbuf_end) {
244 *p = mlogbuf[index];
245 index = (index + 1) % MLOGBUF_SIZE;
246 if (!*p)
247 break;
248 p++;
249 if (++printed_len >= MLOGBUF_MSGMAX - 1)
250 break;
251 }
252 *p = '\0';
253 if (temp_buf[0])
254 printk(temp_buf);
255 mlogbuf_start = index;
256
257 mlogbuf_timestamp = 0;
258 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
259 }
260 }
261 EXPORT_SYMBOL(ia64_mlogbuf_dump);
262
263 /*
264 * Call this if system is going to down or if immediate flushing messages to
265 * console is required. (ex. recovery was failed, crash dump is going to be
266 * invoked, long-wait rendezvous etc.)
267 * NOTE: this should be called from monarch.
268 */
269 static void ia64_mlogbuf_finish(int wait)
270 {
271 BREAK_LOGLEVEL(console_loglevel);
272
273 spin_lock_init(&mlogbuf_rlock);
274 ia64_mlogbuf_dump();
275 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
276 "MCA/INIT might be dodgy or fail.\n");
277
278 if (!wait)
279 return;
280
281 /* wait for console */
282 printk("Delaying for 5 seconds...\n");
283 udelay(5*1000000);
284
285 mlogbuf_finished = 1;
286 }
287
288 /*
289 * Print buffered messages from INIT context.
290 */
291 static void ia64_mlogbuf_dump_from_init(void)
292 {
293 if (mlogbuf_finished)
294 return;
295
296 if (mlogbuf_timestamp && (mlogbuf_timestamp + 30*HZ > jiffies)) {
297 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
298 " and the system seems to be messed up.\n");
299 ia64_mlogbuf_finish(0);
300 return;
301 }
302
303 if (!spin_trylock(&mlogbuf_rlock)) {
304 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
305 "Generated messages other than stack dump will be "
306 "buffered to mlogbuf and will be printed later.\n");
307 printk(KERN_ERR "INIT: If messages would not printed after "
308 "this INIT, wait 30sec and assert INIT again.\n");
309 if (!mlogbuf_timestamp)
310 mlogbuf_timestamp = jiffies;
311 return;
312 }
313 spin_unlock(&mlogbuf_rlock);
314 ia64_mlogbuf_dump();
315 }
316
317 static void inline
318 ia64_mca_spin(const char *func)
319 {
320 if (monarch_cpu == smp_processor_id())
321 ia64_mlogbuf_finish(0);
322 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
323 while (1)
324 cpu_relax();
325 }
326 /*
327 * IA64_MCA log support
328 */
329 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
330 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
331
332 typedef struct ia64_state_log_s
333 {
334 spinlock_t isl_lock;
335 int isl_index;
336 unsigned long isl_count;
337 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
338 } ia64_state_log_t;
339
340 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
341
342 #define IA64_LOG_ALLOCATE(it, size) \
343 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
344 (ia64_err_rec_t *)alloc_bootmem(size); \
345 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
346 (ia64_err_rec_t *)alloc_bootmem(size);}
347 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
348 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
349 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
350 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
351 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
352 #define IA64_LOG_INDEX_INC(it) \
353 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
354 ia64_state_log[it].isl_count++;}
355 #define IA64_LOG_INDEX_DEC(it) \
356 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
357 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
358 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
359 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
360
361 /*
362 * ia64_log_init
363 * Reset the OS ia64 log buffer
364 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
365 * Outputs : None
366 */
367 static void __init
368 ia64_log_init(int sal_info_type)
369 {
370 u64 max_size = 0;
371
372 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
373 IA64_LOG_LOCK_INIT(sal_info_type);
374
375 // SAL will tell us the maximum size of any error record of this type
376 max_size = ia64_sal_get_state_info_size(sal_info_type);
377 if (!max_size)
378 /* alloc_bootmem() doesn't like zero-sized allocations! */
379 return;
380
381 // set up OS data structures to hold error info
382 IA64_LOG_ALLOCATE(sal_info_type, max_size);
383 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
384 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
385 }
386
387 /*
388 * ia64_log_get
389 *
390 * Get the current MCA log from SAL and copy it into the OS log buffer.
391 *
392 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
393 * irq_safe whether you can use printk at this point
394 * Outputs : size (total record length)
395 * *buffer (ptr to error record)
396 *
397 */
398 static u64
399 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
400 {
401 sal_log_record_header_t *log_buffer;
402 u64 total_len = 0;
403 unsigned long s;
404
405 IA64_LOG_LOCK(sal_info_type);
406
407 /* Get the process state information */
408 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
409
410 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
411
412 if (total_len) {
413 IA64_LOG_INDEX_INC(sal_info_type);
414 IA64_LOG_UNLOCK(sal_info_type);
415 if (irq_safe) {
416 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
417 "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
418 }
419 *buffer = (u8 *) log_buffer;
420 return total_len;
421 } else {
422 IA64_LOG_UNLOCK(sal_info_type);
423 return 0;
424 }
425 }
426
427 /*
428 * ia64_mca_log_sal_error_record
429 *
430 * This function retrieves a specified error record type from SAL
431 * and wakes up any processes waiting for error records.
432 *
433 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
434 * FIXME: remove MCA and irq_safe.
435 */
436 static void
437 ia64_mca_log_sal_error_record(int sal_info_type)
438 {
439 u8 *buffer;
440 sal_log_record_header_t *rh;
441 u64 size;
442 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
443 #ifdef IA64_MCA_DEBUG_INFO
444 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
445 #endif
446
447 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
448 if (!size)
449 return;
450
451 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
452
453 if (irq_safe)
454 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
455 smp_processor_id(),
456 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
457
458 /* Clear logs from corrected errors in case there's no user-level logger */
459 rh = (sal_log_record_header_t *)buffer;
460 if (rh->severity == sal_log_severity_corrected)
461 ia64_sal_clear_state_info(sal_info_type);
462 }
463
464 /*
465 * search_mca_table
466 * See if the MCA surfaced in an instruction range
467 * that has been tagged as recoverable.
468 *
469 * Inputs
470 * first First address range to check
471 * last Last address range to check
472 * ip Instruction pointer, address we are looking for
473 *
474 * Return value:
475 * 1 on Success (in the table)/ 0 on Failure (not in the table)
476 */
477 int
478 search_mca_table (const struct mca_table_entry *first,
479 const struct mca_table_entry *last,
480 unsigned long ip)
481 {
482 const struct mca_table_entry *curr;
483 u64 curr_start, curr_end;
484
485 curr = first;
486 while (curr <= last) {
487 curr_start = (u64) &curr->start_addr + curr->start_addr;
488 curr_end = (u64) &curr->end_addr + curr->end_addr;
489
490 if ((ip >= curr_start) && (ip <= curr_end)) {
491 return 1;
492 }
493 curr++;
494 }
495 return 0;
496 }
497
498 /* Given an address, look for it in the mca tables. */
499 int mca_recover_range(unsigned long addr)
500 {
501 extern struct mca_table_entry __start___mca_table[];
502 extern struct mca_table_entry __stop___mca_table[];
503
504 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
505 }
506 EXPORT_SYMBOL_GPL(mca_recover_range);
507
508 #ifdef CONFIG_ACPI
509
510 int cpe_vector = -1;
511 int ia64_cpe_irq = -1;
512
513 static irqreturn_t
514 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
515 {
516 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
517 static int index;
518 static DEFINE_SPINLOCK(cpe_history_lock);
519
520 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
521 __FUNCTION__, cpe_irq, smp_processor_id());
522
523 /* SAL spec states this should run w/ interrupts enabled */
524 local_irq_enable();
525
526 spin_lock(&cpe_history_lock);
527 if (!cpe_poll_enabled && cpe_vector >= 0) {
528
529 int i, count = 1; /* we know 1 happened now */
530 unsigned long now = jiffies;
531
532 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
533 if (now - cpe_history[i] <= HZ)
534 count++;
535 }
536
537 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
538 if (count >= CPE_HISTORY_LENGTH) {
539
540 cpe_poll_enabled = 1;
541 spin_unlock(&cpe_history_lock);
542 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
543
544 /*
545 * Corrected errors will still be corrected, but
546 * make sure there's a log somewhere that indicates
547 * something is generating more than we can handle.
548 */
549 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
550
551 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
552
553 /* lock already released, get out now */
554 goto out;
555 } else {
556 cpe_history[index++] = now;
557 if (index == CPE_HISTORY_LENGTH)
558 index = 0;
559 }
560 }
561 spin_unlock(&cpe_history_lock);
562 out:
563 /* Get the CPE error record and log it */
564 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
565
566 return IRQ_HANDLED;
567 }
568
569 #endif /* CONFIG_ACPI */
570
571 #ifdef CONFIG_ACPI
572 /*
573 * ia64_mca_register_cpev
574 *
575 * Register the corrected platform error vector with SAL.
576 *
577 * Inputs
578 * cpev Corrected Platform Error Vector number
579 *
580 * Outputs
581 * None
582 */
583 void
584 ia64_mca_register_cpev (int cpev)
585 {
586 /* Register the CPE interrupt vector with SAL */
587 struct ia64_sal_retval isrv;
588
589 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
590 if (isrv.status) {
591 printk(KERN_ERR "Failed to register Corrected Platform "
592 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
593 return;
594 }
595
596 IA64_MCA_DEBUG("%s: corrected platform error "
597 "vector %#x registered\n", __FUNCTION__, cpev);
598 }
599 #endif /* CONFIG_ACPI */
600
601 /*
602 * ia64_mca_cmc_vector_setup
603 *
604 * Setup the corrected machine check vector register in the processor.
605 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
606 * This function is invoked on a per-processor basis.
607 *
608 * Inputs
609 * None
610 *
611 * Outputs
612 * None
613 */
614 void __cpuinit
615 ia64_mca_cmc_vector_setup (void)
616 {
617 cmcv_reg_t cmcv;
618
619 cmcv.cmcv_regval = 0;
620 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
621 cmcv.cmcv_vector = IA64_CMC_VECTOR;
622 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
623
624 IA64_MCA_DEBUG("%s: CPU %d corrected "
625 "machine check vector %#x registered.\n",
626 __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
627
628 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
629 __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
630 }
631
632 /*
633 * ia64_mca_cmc_vector_disable
634 *
635 * Mask the corrected machine check vector register in the processor.
636 * This function is invoked on a per-processor basis.
637 *
638 * Inputs
639 * dummy(unused)
640 *
641 * Outputs
642 * None
643 */
644 static void
645 ia64_mca_cmc_vector_disable (void *dummy)
646 {
647 cmcv_reg_t cmcv;
648
649 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
650
651 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
652 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
653
654 IA64_MCA_DEBUG("%s: CPU %d corrected "
655 "machine check vector %#x disabled.\n",
656 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
657 }
658
659 /*
660 * ia64_mca_cmc_vector_enable
661 *
662 * Unmask the corrected machine check vector register in the processor.
663 * This function is invoked on a per-processor basis.
664 *
665 * Inputs
666 * dummy(unused)
667 *
668 * Outputs
669 * None
670 */
671 static void
672 ia64_mca_cmc_vector_enable (void *dummy)
673 {
674 cmcv_reg_t cmcv;
675
676 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
677
678 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
679 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
680
681 IA64_MCA_DEBUG("%s: CPU %d corrected "
682 "machine check vector %#x enabled.\n",
683 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
684 }
685
686 /*
687 * ia64_mca_cmc_vector_disable_keventd
688 *
689 * Called via keventd (smp_call_function() is not safe in interrupt context) to
690 * disable the cmc interrupt vector.
691 */
692 static void
693 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
694 {
695 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
696 }
697
698 /*
699 * ia64_mca_cmc_vector_enable_keventd
700 *
701 * Called via keventd (smp_call_function() is not safe in interrupt context) to
702 * enable the cmc interrupt vector.
703 */
704 static void
705 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
706 {
707 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
708 }
709
710 /*
711 * ia64_mca_wakeup
712 *
713 * Send an inter-cpu interrupt to wake-up a particular cpu.
714 *
715 * Inputs : cpuid
716 * Outputs : None
717 */
718 static void
719 ia64_mca_wakeup(int cpu)
720 {
721 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
722 }
723
724 /*
725 * ia64_mca_wakeup_all
726 *
727 * Wakeup all the slave cpus which have rendez'ed previously.
728 *
729 * Inputs : None
730 * Outputs : None
731 */
732 static void
733 ia64_mca_wakeup_all(void)
734 {
735 int cpu;
736
737 /* Clear the Rendez checkin flag for all cpus */
738 for_each_online_cpu(cpu) {
739 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
740 ia64_mca_wakeup(cpu);
741 }
742
743 }
744
745 /*
746 * ia64_mca_rendez_interrupt_handler
747 *
748 * This is handler used to put slave processors into spinloop
749 * while the monarch processor does the mca handling and later
750 * wake each slave up once the monarch is done. The state
751 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
752 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
753 * the cpu has come out of OS rendezvous.
754 *
755 * Inputs : None
756 * Outputs : None
757 */
758 static irqreturn_t
759 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
760 {
761 unsigned long flags;
762 int cpu = smp_processor_id();
763 struct ia64_mca_notify_die nd =
764 { .sos = NULL, .monarch_cpu = &monarch_cpu };
765
766 /* Mask all interrupts */
767 local_irq_save(flags);
768 if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", get_irq_regs(),
769 (long)&nd, 0, 0) == NOTIFY_STOP)
770 ia64_mca_spin(__FUNCTION__);
771
772 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
773 /* Register with the SAL monarch that the slave has
774 * reached SAL
775 */
776 ia64_sal_mc_rendez();
777
778 if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", get_irq_regs(),
779 (long)&nd, 0, 0) == NOTIFY_STOP)
780 ia64_mca_spin(__FUNCTION__);
781
782 /* Wait for the monarch cpu to exit. */
783 while (monarch_cpu != -1)
784 cpu_relax(); /* spin until monarch leaves */
785
786 if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", get_irq_regs(),
787 (long)&nd, 0, 0) == NOTIFY_STOP)
788 ia64_mca_spin(__FUNCTION__);
789
790 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
791 /* Enable all interrupts */
792 local_irq_restore(flags);
793 return IRQ_HANDLED;
794 }
795
796 /*
797 * ia64_mca_wakeup_int_handler
798 *
799 * The interrupt handler for processing the inter-cpu interrupt to the
800 * slave cpu which was spinning in the rendez loop.
801 * Since this spinning is done by turning off the interrupts and
802 * polling on the wakeup-interrupt bit in the IRR, there is
803 * nothing useful to be done in the handler.
804 *
805 * Inputs : wakeup_irq (Wakeup-interrupt bit)
806 * arg (Interrupt handler specific argument)
807 * Outputs : None
808 *
809 */
810 static irqreturn_t
811 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
812 {
813 return IRQ_HANDLED;
814 }
815
816 /* Function pointer for extra MCA recovery */
817 int (*ia64_mca_ucmc_extension)
818 (void*,struct ia64_sal_os_state*)
819 = NULL;
820
821 int
822 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
823 {
824 if (ia64_mca_ucmc_extension)
825 return 1;
826
827 ia64_mca_ucmc_extension = fn;
828 return 0;
829 }
830
831 void
832 ia64_unreg_MCA_extension(void)
833 {
834 if (ia64_mca_ucmc_extension)
835 ia64_mca_ucmc_extension = NULL;
836 }
837
838 EXPORT_SYMBOL(ia64_reg_MCA_extension);
839 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
840
841
842 static inline void
843 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
844 {
845 u64 fslot, tslot, nat;
846 *tr = *fr;
847 fslot = ((unsigned long)fr >> 3) & 63;
848 tslot = ((unsigned long)tr >> 3) & 63;
849 *tnat &= ~(1UL << tslot);
850 nat = (fnat >> fslot) & 1;
851 *tnat |= (nat << tslot);
852 }
853
854 /* Change the comm field on the MCA/INT task to include the pid that
855 * was interrupted, it makes for easier debugging. If that pid was 0
856 * (swapper or nested MCA/INIT) then use the start of the previous comm
857 * field suffixed with its cpu.
858 */
859
860 static void
861 ia64_mca_modify_comm(const struct task_struct *previous_current)
862 {
863 char *p, comm[sizeof(current->comm)];
864 if (previous_current->pid)
865 snprintf(comm, sizeof(comm), "%s %d",
866 current->comm, previous_current->pid);
867 else {
868 int l;
869 if ((p = strchr(previous_current->comm, ' ')))
870 l = p - previous_current->comm;
871 else
872 l = strlen(previous_current->comm);
873 snprintf(comm, sizeof(comm), "%s %*s %d",
874 current->comm, l, previous_current->comm,
875 task_thread_info(previous_current)->cpu);
876 }
877 memcpy(current->comm, comm, sizeof(current->comm));
878 }
879
880 /* On entry to this routine, we are running on the per cpu stack, see
881 * mca_asm.h. The original stack has not been touched by this event. Some of
882 * the original stack's registers will be in the RBS on this stack. This stack
883 * also contains a partial pt_regs and switch_stack, the rest of the data is in
884 * PAL minstate.
885 *
886 * The first thing to do is modify the original stack to look like a blocked
887 * task so we can run backtrace on the original task. Also mark the per cpu
888 * stack as current to ensure that we use the correct task state, it also means
889 * that we can do backtrace on the MCA/INIT handler code itself.
890 */
891
892 static struct task_struct *
893 ia64_mca_modify_original_stack(struct pt_regs *regs,
894 const struct switch_stack *sw,
895 struct ia64_sal_os_state *sos,
896 const char *type)
897 {
898 char *p;
899 ia64_va va;
900 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
901 const pal_min_state_area_t *ms = sos->pal_min_state;
902 struct task_struct *previous_current;
903 struct pt_regs *old_regs;
904 struct switch_stack *old_sw;
905 unsigned size = sizeof(struct pt_regs) +
906 sizeof(struct switch_stack) + 16;
907 u64 *old_bspstore, *old_bsp;
908 u64 *new_bspstore, *new_bsp;
909 u64 old_unat, old_rnat, new_rnat, nat;
910 u64 slots, loadrs = regs->loadrs;
911 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
912 u64 ar_bspstore = regs->ar_bspstore;
913 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
914 const u64 *bank;
915 const char *msg;
916 int cpu = smp_processor_id();
917
918 previous_current = curr_task(cpu);
919 set_curr_task(cpu, current);
920 if ((p = strchr(current->comm, ' ')))
921 *p = '\0';
922
923 /* Best effort attempt to cope with MCA/INIT delivered while in
924 * physical mode.
925 */
926 regs->cr_ipsr = ms->pmsa_ipsr;
927 if (ia64_psr(regs)->dt == 0) {
928 va.l = r12;
929 if (va.f.reg == 0) {
930 va.f.reg = 7;
931 r12 = va.l;
932 }
933 va.l = r13;
934 if (va.f.reg == 0) {
935 va.f.reg = 7;
936 r13 = va.l;
937 }
938 }
939 if (ia64_psr(regs)->rt == 0) {
940 va.l = ar_bspstore;
941 if (va.f.reg == 0) {
942 va.f.reg = 7;
943 ar_bspstore = va.l;
944 }
945 va.l = ar_bsp;
946 if (va.f.reg == 0) {
947 va.f.reg = 7;
948 ar_bsp = va.l;
949 }
950 }
951
952 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
953 * have been copied to the old stack, the old stack may fail the
954 * validation tests below. So ia64_old_stack() must restore the dirty
955 * registers from the new stack. The old and new bspstore probably
956 * have different alignments, so loadrs calculated on the old bsp
957 * cannot be used to restore from the new bsp. Calculate a suitable
958 * loadrs for the new stack and save it in the new pt_regs, where
959 * ia64_old_stack() can get it.
960 */
961 old_bspstore = (u64 *)ar_bspstore;
962 old_bsp = (u64 *)ar_bsp;
963 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
964 new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
965 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
966 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
967
968 /* Verify the previous stack state before we change it */
969 if (user_mode(regs)) {
970 msg = "occurred in user space";
971 /* previous_current is guaranteed to be valid when the task was
972 * in user space, so ...
973 */
974 ia64_mca_modify_comm(previous_current);
975 goto no_mod;
976 }
977
978 if (r13 != sos->prev_IA64_KR_CURRENT) {
979 msg = "inconsistent previous current and r13";
980 goto no_mod;
981 }
982
983 if (!mca_recover_range(ms->pmsa_iip)) {
984 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
985 msg = "inconsistent r12 and r13";
986 goto no_mod;
987 }
988 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
989 msg = "inconsistent ar.bspstore and r13";
990 goto no_mod;
991 }
992 va.p = old_bspstore;
993 if (va.f.reg < 5) {
994 msg = "old_bspstore is in the wrong region";
995 goto no_mod;
996 }
997 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
998 msg = "inconsistent ar.bsp and r13";
999 goto no_mod;
1000 }
1001 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1002 if (ar_bspstore + size > r12) {
1003 msg = "no room for blocked state";
1004 goto no_mod;
1005 }
1006 }
1007
1008 ia64_mca_modify_comm(previous_current);
1009
1010 /* Make the original task look blocked. First stack a struct pt_regs,
1011 * describing the state at the time of interrupt. mca_asm.S built a
1012 * partial pt_regs, copy it and fill in the blanks using minstate.
1013 */
1014 p = (char *)r12 - sizeof(*regs);
1015 old_regs = (struct pt_regs *)p;
1016 memcpy(old_regs, regs, sizeof(*regs));
1017 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1018 * pmsa_{xip,xpsr,xfs}
1019 */
1020 if (ia64_psr(regs)->ic) {
1021 old_regs->cr_iip = ms->pmsa_iip;
1022 old_regs->cr_ipsr = ms->pmsa_ipsr;
1023 old_regs->cr_ifs = ms->pmsa_ifs;
1024 } else {
1025 old_regs->cr_iip = ms->pmsa_xip;
1026 old_regs->cr_ipsr = ms->pmsa_xpsr;
1027 old_regs->cr_ifs = ms->pmsa_xfs;
1028 }
1029 old_regs->pr = ms->pmsa_pr;
1030 old_regs->b0 = ms->pmsa_br0;
1031 old_regs->loadrs = loadrs;
1032 old_regs->ar_rsc = ms->pmsa_rsc;
1033 old_unat = old_regs->ar_unat;
1034 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
1035 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
1036 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
1037 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
1038 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
1039 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
1040 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
1041 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
1042 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
1043 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
1044 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
1045 if (ia64_psr(old_regs)->bn)
1046 bank = ms->pmsa_bank1_gr;
1047 else
1048 bank = ms->pmsa_bank0_gr;
1049 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
1050 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
1051 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
1052 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
1053 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
1054 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
1055 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
1056 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
1057 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
1058 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
1059 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
1060 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
1061 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
1062 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
1063 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
1064 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
1065
1066 /* Next stack a struct switch_stack. mca_asm.S built a partial
1067 * switch_stack, copy it and fill in the blanks using pt_regs and
1068 * minstate.
1069 *
1070 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1071 * ar.pfs is set to 0.
1072 *
1073 * unwind.c::unw_unwind() does special processing for interrupt frames.
1074 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1075 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1076 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1077 * switch_stack on the original stack so it will unwind correctly when
1078 * unwind.c reads pt_regs.
1079 *
1080 * thread.ksp is updated to point to the synthesized switch_stack.
1081 */
1082 p -= sizeof(struct switch_stack);
1083 old_sw = (struct switch_stack *)p;
1084 memcpy(old_sw, sw, sizeof(*sw));
1085 old_sw->caller_unat = old_unat;
1086 old_sw->ar_fpsr = old_regs->ar_fpsr;
1087 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1088 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1089 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1090 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1091 old_sw->b0 = (u64)ia64_leave_kernel;
1092 old_sw->b1 = ms->pmsa_br1;
1093 old_sw->ar_pfs = 0;
1094 old_sw->ar_unat = old_unat;
1095 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1096 previous_current->thread.ksp = (u64)p - 16;
1097
1098 /* Finally copy the original stack's registers back to its RBS.
1099 * Registers from ar.bspstore through ar.bsp at the time of the event
1100 * are in the current RBS, copy them back to the original stack. The
1101 * copy must be done register by register because the original bspstore
1102 * and the current one have different alignments, so the saved RNAT
1103 * data occurs at different places.
1104 *
1105 * mca_asm does cover, so the old_bsp already includes all registers at
1106 * the time of MCA/INIT. It also does flushrs, so all registers before
1107 * this function have been written to backing store on the MCA/INIT
1108 * stack.
1109 */
1110 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1111 old_rnat = regs->ar_rnat;
1112 while (slots--) {
1113 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1114 new_rnat = ia64_get_rnat(new_bspstore++);
1115 }
1116 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1117 *old_bspstore++ = old_rnat;
1118 old_rnat = 0;
1119 }
1120 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1121 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1122 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1123 *old_bspstore++ = *new_bspstore++;
1124 }
1125 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1126 old_sw->ar_rnat = old_rnat;
1127
1128 sos->prev_task = previous_current;
1129 return previous_current;
1130
1131 no_mod:
1132 printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1133 smp_processor_id(), type, msg);
1134 return previous_current;
1135 }
1136
1137 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1138 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1139 * not entered rendezvous yet then wait a bit. The assumption is that any
1140 * slave that has not rendezvoused after a reasonable time is never going to do
1141 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1142 * interrupt, as well as cpus that receive the INIT slave event.
1143 */
1144
1145 static void
1146 ia64_wait_for_slaves(int monarch, const char *type)
1147 {
1148 int c, i , wait;
1149
1150 /*
1151 * wait 5 seconds total for slaves (arbitrary)
1152 */
1153 for (i = 0; i < 5000; i++) {
1154 wait = 0;
1155 for_each_online_cpu(c) {
1156 if (c == monarch)
1157 continue;
1158 if (ia64_mc_info.imi_rendez_checkin[c]
1159 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1160 udelay(1000); /* short wait */
1161 wait = 1;
1162 break;
1163 }
1164 }
1165 if (!wait)
1166 goto all_in;
1167 }
1168
1169 /*
1170 * Maybe slave(s) dead. Print buffered messages immediately.
1171 */
1172 ia64_mlogbuf_finish(0);
1173 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1174 for_each_online_cpu(c) {
1175 if (c == monarch)
1176 continue;
1177 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1178 mprintk(" %d", c);
1179 }
1180 mprintk("\n");
1181 return;
1182
1183 all_in:
1184 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1185 return;
1186 }
1187
1188 /*
1189 * ia64_mca_handler
1190 *
1191 * This is uncorrectable machine check handler called from OS_MCA
1192 * dispatch code which is in turn called from SAL_CHECK().
1193 * This is the place where the core of OS MCA handling is done.
1194 * Right now the logs are extracted and displayed in a well-defined
1195 * format. This handler code is supposed to be run only on the
1196 * monarch processor. Once the monarch is done with MCA handling
1197 * further MCA logging is enabled by clearing logs.
1198 * Monarch also has the duty of sending wakeup-IPIs to pull the
1199 * slave processors out of rendezvous spinloop.
1200 *
1201 * If multiple processors call into OS_MCA, the first will become
1202 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1203 * bitmask. After the first monarch has processed its MCA, it
1204 * will wake up the next cpu in the mca_cpu bitmask and then go
1205 * into the rendezvous loop. When all processors have serviced
1206 * their MCA, the last monarch frees up the rest of the processors.
1207 */
1208 void
1209 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1210 struct ia64_sal_os_state *sos)
1211 {
1212 int recover, cpu = smp_processor_id();
1213 struct task_struct *previous_current;
1214 struct ia64_mca_notify_die nd =
1215 { .sos = sos, .monarch_cpu = &monarch_cpu };
1216 static atomic_t mca_count;
1217 static cpumask_t mca_cpu;
1218
1219 if (atomic_add_return(1, &mca_count) == 1) {
1220 monarch_cpu = cpu;
1221 sos->monarch = 1;
1222 } else {
1223 cpu_set(cpu, mca_cpu);
1224 sos->monarch = 0;
1225 }
1226 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1227 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1228
1229 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1230
1231 if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, (long)&nd, 0, 0)
1232 == NOTIFY_STOP)
1233 ia64_mca_spin(__FUNCTION__);
1234
1235 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1236 if (sos->monarch) {
1237 ia64_wait_for_slaves(cpu, "MCA");
1238
1239 /* Wakeup all the processors which are spinning in the
1240 * rendezvous loop. They will leave SAL, then spin in the OS
1241 * with interrupts disabled until this monarch cpu leaves the
1242 * MCA handler. That gets control back to the OS so we can
1243 * backtrace the other cpus, backtrace when spinning in SAL
1244 * does not work.
1245 */
1246 ia64_mca_wakeup_all();
1247 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, (long)&nd, 0, 0)
1248 == NOTIFY_STOP)
1249 ia64_mca_spin(__FUNCTION__);
1250 } else {
1251 while (cpu_isset(cpu, mca_cpu))
1252 cpu_relax(); /* spin until monarch wakes us */
1253 }
1254
1255 /* Get the MCA error record and log it */
1256 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1257
1258 /* MCA error recovery */
1259 recover = (ia64_mca_ucmc_extension
1260 && ia64_mca_ucmc_extension(
1261 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1262 sos));
1263
1264 if (recover) {
1265 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1266 rh->severity = sal_log_severity_corrected;
1267 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1268 sos->os_status = IA64_MCA_CORRECTED;
1269 } else {
1270 /* Dump buffered message to console */
1271 ia64_mlogbuf_finish(1);
1272 #ifdef CONFIG_KEXEC
1273 atomic_set(&kdump_in_progress, 1);
1274 monarch_cpu = -1;
1275 #endif
1276 }
1277 if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, (long)&nd, 0, recover)
1278 == NOTIFY_STOP)
1279 ia64_mca_spin(__FUNCTION__);
1280
1281
1282 if (atomic_dec_return(&mca_count) > 0) {
1283 int i;
1284
1285 /* wake up the next monarch cpu,
1286 * and put this cpu in the rendez loop.
1287 */
1288 for_each_online_cpu(i) {
1289 if (cpu_isset(i, mca_cpu)) {
1290 monarch_cpu = i;
1291 cpu_clear(i, mca_cpu); /* wake next cpu */
1292 while (monarch_cpu != -1)
1293 cpu_relax(); /* spin until last cpu leaves */
1294 set_curr_task(cpu, previous_current);
1295 ia64_mc_info.imi_rendez_checkin[cpu]
1296 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1297 return;
1298 }
1299 }
1300 }
1301 set_curr_task(cpu, previous_current);
1302 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1303 monarch_cpu = -1; /* This frees the slaves and previous monarchs */
1304 }
1305
1306 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1307 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1308
1309 /*
1310 * ia64_mca_cmc_int_handler
1311 *
1312 * This is corrected machine check interrupt handler.
1313 * Right now the logs are extracted and displayed in a well-defined
1314 * format.
1315 *
1316 * Inputs
1317 * interrupt number
1318 * client data arg ptr
1319 *
1320 * Outputs
1321 * None
1322 */
1323 static irqreturn_t
1324 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1325 {
1326 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1327 static int index;
1328 static DEFINE_SPINLOCK(cmc_history_lock);
1329
1330 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1331 __FUNCTION__, cmc_irq, smp_processor_id());
1332
1333 /* SAL spec states this should run w/ interrupts enabled */
1334 local_irq_enable();
1335
1336 spin_lock(&cmc_history_lock);
1337 if (!cmc_polling_enabled) {
1338 int i, count = 1; /* we know 1 happened now */
1339 unsigned long now = jiffies;
1340
1341 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1342 if (now - cmc_history[i] <= HZ)
1343 count++;
1344 }
1345
1346 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1347 if (count >= CMC_HISTORY_LENGTH) {
1348
1349 cmc_polling_enabled = 1;
1350 spin_unlock(&cmc_history_lock);
1351 /* If we're being hit with CMC interrupts, we won't
1352 * ever execute the schedule_work() below. Need to
1353 * disable CMC interrupts on this processor now.
1354 */
1355 ia64_mca_cmc_vector_disable(NULL);
1356 schedule_work(&cmc_disable_work);
1357
1358 /*
1359 * Corrected errors will still be corrected, but
1360 * make sure there's a log somewhere that indicates
1361 * something is generating more than we can handle.
1362 */
1363 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1364
1365 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1366
1367 /* lock already released, get out now */
1368 goto out;
1369 } else {
1370 cmc_history[index++] = now;
1371 if (index == CMC_HISTORY_LENGTH)
1372 index = 0;
1373 }
1374 }
1375 spin_unlock(&cmc_history_lock);
1376 out:
1377 /* Get the CMC error record and log it */
1378 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1379
1380 return IRQ_HANDLED;
1381 }
1382
1383 /*
1384 * ia64_mca_cmc_int_caller
1385 *
1386 * Triggered by sw interrupt from CMC polling routine. Calls
1387 * real interrupt handler and either triggers a sw interrupt
1388 * on the next cpu or does cleanup at the end.
1389 *
1390 * Inputs
1391 * interrupt number
1392 * client data arg ptr
1393 * Outputs
1394 * handled
1395 */
1396 static irqreturn_t
1397 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1398 {
1399 static int start_count = -1;
1400 unsigned int cpuid;
1401
1402 cpuid = smp_processor_id();
1403
1404 /* If first cpu, update count */
1405 if (start_count == -1)
1406 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1407
1408 ia64_mca_cmc_int_handler(cmc_irq, arg);
1409
1410 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1411
1412 if (cpuid < NR_CPUS) {
1413 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1414 } else {
1415 /* If no log record, switch out of polling mode */
1416 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1417
1418 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1419 schedule_work(&cmc_enable_work);
1420 cmc_polling_enabled = 0;
1421
1422 } else {
1423
1424 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1425 }
1426
1427 start_count = -1;
1428 }
1429
1430 return IRQ_HANDLED;
1431 }
1432
1433 /*
1434 * ia64_mca_cmc_poll
1435 *
1436 * Poll for Corrected Machine Checks (CMCs)
1437 *
1438 * Inputs : dummy(unused)
1439 * Outputs : None
1440 *
1441 */
1442 static void
1443 ia64_mca_cmc_poll (unsigned long dummy)
1444 {
1445 /* Trigger a CMC interrupt cascade */
1446 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1447 }
1448
1449 /*
1450 * ia64_mca_cpe_int_caller
1451 *
1452 * Triggered by sw interrupt from CPE polling routine. Calls
1453 * real interrupt handler and either triggers a sw interrupt
1454 * on the next cpu or does cleanup at the end.
1455 *
1456 * Inputs
1457 * interrupt number
1458 * client data arg ptr
1459 * Outputs
1460 * handled
1461 */
1462 #ifdef CONFIG_ACPI
1463
1464 static irqreturn_t
1465 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1466 {
1467 static int start_count = -1;
1468 static int poll_time = MIN_CPE_POLL_INTERVAL;
1469 unsigned int cpuid;
1470
1471 cpuid = smp_processor_id();
1472
1473 /* If first cpu, update count */
1474 if (start_count == -1)
1475 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1476
1477 ia64_mca_cpe_int_handler(cpe_irq, arg);
1478
1479 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1480
1481 if (cpuid < NR_CPUS) {
1482 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1483 } else {
1484 /*
1485 * If a log was recorded, increase our polling frequency,
1486 * otherwise, backoff or return to interrupt mode.
1487 */
1488 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1489 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1490 } else if (cpe_vector < 0) {
1491 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1492 } else {
1493 poll_time = MIN_CPE_POLL_INTERVAL;
1494
1495 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1496 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1497 cpe_poll_enabled = 0;
1498 }
1499
1500 if (cpe_poll_enabled)
1501 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1502 start_count = -1;
1503 }
1504
1505 return IRQ_HANDLED;
1506 }
1507
1508 /*
1509 * ia64_mca_cpe_poll
1510 *
1511 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1512 * on first cpu, from there it will trickle through all the cpus.
1513 *
1514 * Inputs : dummy(unused)
1515 * Outputs : None
1516 *
1517 */
1518 static void
1519 ia64_mca_cpe_poll (unsigned long dummy)
1520 {
1521 /* Trigger a CPE interrupt cascade */
1522 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1523 }
1524
1525 #endif /* CONFIG_ACPI */
1526
1527 static int
1528 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1529 {
1530 int c;
1531 struct task_struct *g, *t;
1532 if (val != DIE_INIT_MONARCH_PROCESS)
1533 return NOTIFY_DONE;
1534 #ifdef CONFIG_KEXEC
1535 if (atomic_read(&kdump_in_progress))
1536 return NOTIFY_DONE;
1537 #endif
1538
1539 /*
1540 * FIXME: mlogbuf will brim over with INIT stack dumps.
1541 * To enable show_stack from INIT, we use oops_in_progress which should
1542 * be used in real oops. This would cause something wrong after INIT.
1543 */
1544 BREAK_LOGLEVEL(console_loglevel);
1545 ia64_mlogbuf_dump_from_init();
1546
1547 printk(KERN_ERR "Processes interrupted by INIT -");
1548 for_each_online_cpu(c) {
1549 struct ia64_sal_os_state *s;
1550 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1551 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1552 g = s->prev_task;
1553 if (g) {
1554 if (g->pid)
1555 printk(" %d", g->pid);
1556 else
1557 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1558 }
1559 }
1560 printk("\n\n");
1561 if (read_trylock(&tasklist_lock)) {
1562 do_each_thread (g, t) {
1563 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1564 show_stack(t, NULL);
1565 } while_each_thread (g, t);
1566 read_unlock(&tasklist_lock);
1567 }
1568 /* FIXME: This will not restore zapped printk locks. */
1569 RESTORE_LOGLEVEL(console_loglevel);
1570 return NOTIFY_DONE;
1571 }
1572
1573 /*
1574 * C portion of the OS INIT handler
1575 *
1576 * Called from ia64_os_init_dispatch
1577 *
1578 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1579 * this event. This code is used for both monarch and slave INIT events, see
1580 * sos->monarch.
1581 *
1582 * All INIT events switch to the INIT stack and change the previous process to
1583 * blocked status. If one of the INIT events is the monarch then we are
1584 * probably processing the nmi button/command. Use the monarch cpu to dump all
1585 * the processes. The slave INIT events all spin until the monarch cpu
1586 * returns. We can also get INIT slave events for MCA, in which case the MCA
1587 * process is the monarch.
1588 */
1589
1590 void
1591 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1592 struct ia64_sal_os_state *sos)
1593 {
1594 static atomic_t slaves;
1595 static atomic_t monarchs;
1596 struct task_struct *previous_current;
1597 int cpu = smp_processor_id();
1598 struct ia64_mca_notify_die nd =
1599 { .sos = sos, .monarch_cpu = &monarch_cpu };
1600
1601 (void) notify_die(DIE_INIT_ENTER, "INIT", regs, (long)&nd, 0, 0);
1602
1603 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1604 sos->proc_state_param, cpu, sos->monarch);
1605 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1606
1607 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1608 sos->os_status = IA64_INIT_RESUME;
1609
1610 /* FIXME: Workaround for broken proms that drive all INIT events as
1611 * slaves. The last slave that enters is promoted to be a monarch.
1612 * Remove this code in September 2006, that gives platforms a year to
1613 * fix their proms and get their customers updated.
1614 */
1615 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1616 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1617 __FUNCTION__, cpu);
1618 atomic_dec(&slaves);
1619 sos->monarch = 1;
1620 }
1621
1622 /* FIXME: Workaround for broken proms that drive all INIT events as
1623 * monarchs. Second and subsequent monarchs are demoted to slaves.
1624 * Remove this code in September 2006, that gives platforms a year to
1625 * fix their proms and get their customers updated.
1626 */
1627 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1628 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1629 __FUNCTION__, cpu);
1630 atomic_dec(&monarchs);
1631 sos->monarch = 0;
1632 }
1633
1634 if (!sos->monarch) {
1635 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1636 while (monarch_cpu == -1)
1637 cpu_relax(); /* spin until monarch enters */
1638 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, (long)&nd, 0, 0)
1639 == NOTIFY_STOP)
1640 ia64_mca_spin(__FUNCTION__);
1641 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1642 == NOTIFY_STOP)
1643 ia64_mca_spin(__FUNCTION__);
1644 while (monarch_cpu != -1)
1645 cpu_relax(); /* spin until monarch leaves */
1646 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1647 == NOTIFY_STOP)
1648 ia64_mca_spin(__FUNCTION__);
1649 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1650 set_curr_task(cpu, previous_current);
1651 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1652 atomic_dec(&slaves);
1653 return;
1654 }
1655
1656 monarch_cpu = cpu;
1657 if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, (long)&nd, 0, 0)
1658 == NOTIFY_STOP)
1659 ia64_mca_spin(__FUNCTION__);
1660
1661 /*
1662 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1663 * generated via the BMC's command-line interface, but since the console is on the
1664 * same serial line, the user will need some time to switch out of the BMC before
1665 * the dump begins.
1666 */
1667 mprintk("Delaying for 5 seconds...\n");
1668 udelay(5*1000000);
1669 ia64_wait_for_slaves(cpu, "INIT");
1670 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1671 * to default_monarch_init_process() above and just print all the
1672 * tasks.
1673 */
1674 if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1675 == NOTIFY_STOP)
1676 ia64_mca_spin(__FUNCTION__);
1677 if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1678 == NOTIFY_STOP)
1679 ia64_mca_spin(__FUNCTION__);
1680 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1681 atomic_dec(&monarchs);
1682 set_curr_task(cpu, previous_current);
1683 monarch_cpu = -1;
1684 return;
1685 }
1686
1687 static int __init
1688 ia64_mca_disable_cpe_polling(char *str)
1689 {
1690 cpe_poll_enabled = 0;
1691 return 1;
1692 }
1693
1694 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1695
1696 static struct irqaction cmci_irqaction = {
1697 .handler = ia64_mca_cmc_int_handler,
1698 .flags = IRQF_DISABLED,
1699 .name = "cmc_hndlr"
1700 };
1701
1702 static struct irqaction cmcp_irqaction = {
1703 .handler = ia64_mca_cmc_int_caller,
1704 .flags = IRQF_DISABLED,
1705 .name = "cmc_poll"
1706 };
1707
1708 static struct irqaction mca_rdzv_irqaction = {
1709 .handler = ia64_mca_rendez_int_handler,
1710 .flags = IRQF_DISABLED,
1711 .name = "mca_rdzv"
1712 };
1713
1714 static struct irqaction mca_wkup_irqaction = {
1715 .handler = ia64_mca_wakeup_int_handler,
1716 .flags = IRQF_DISABLED,
1717 .name = "mca_wkup"
1718 };
1719
1720 #ifdef CONFIG_ACPI
1721 static struct irqaction mca_cpe_irqaction = {
1722 .handler = ia64_mca_cpe_int_handler,
1723 .flags = IRQF_DISABLED,
1724 .name = "cpe_hndlr"
1725 };
1726
1727 static struct irqaction mca_cpep_irqaction = {
1728 .handler = ia64_mca_cpe_int_caller,
1729 .flags = IRQF_DISABLED,
1730 .name = "cpe_poll"
1731 };
1732 #endif /* CONFIG_ACPI */
1733
1734 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1735 * these stacks can never sleep, they cannot return from the kernel to user
1736 * space, they do not appear in a normal ps listing. So there is no need to
1737 * format most of the fields.
1738 */
1739
1740 static void __cpuinit
1741 format_mca_init_stack(void *mca_data, unsigned long offset,
1742 const char *type, int cpu)
1743 {
1744 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1745 struct thread_info *ti;
1746 memset(p, 0, KERNEL_STACK_SIZE);
1747 ti = task_thread_info(p);
1748 ti->flags = _TIF_MCA_INIT;
1749 ti->preempt_count = 1;
1750 ti->task = p;
1751 ti->cpu = cpu;
1752 p->stack = ti;
1753 p->state = TASK_UNINTERRUPTIBLE;
1754 cpu_set(cpu, p->cpus_allowed);
1755 INIT_LIST_HEAD(&p->tasks);
1756 p->parent = p->real_parent = p->group_leader = p;
1757 INIT_LIST_HEAD(&p->children);
1758 INIT_LIST_HEAD(&p->sibling);
1759 strncpy(p->comm, type, sizeof(p->comm)-1);
1760 }
1761
1762 /* Caller prevents this from being called after init */
1763 static void * __init_refok mca_bootmem(void)
1764 {
1765 return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
1766 KERNEL_STACK_SIZE, 0);
1767 }
1768
1769 /* Do per-CPU MCA-related initialization. */
1770 void __cpuinit
1771 ia64_mca_cpu_init(void *cpu_data)
1772 {
1773 void *pal_vaddr;
1774 void *data;
1775 long sz = sizeof(struct ia64_mca_cpu);
1776 int cpu = smp_processor_id();
1777 static int first_time = 1;
1778
1779 /*
1780 * Structure will already be allocated if cpu has been online,
1781 * then offlined.
1782 */
1783 if (__per_cpu_mca[cpu]) {
1784 data = __va(__per_cpu_mca[cpu]);
1785 } else {
1786 if (first_time) {
1787 data = mca_bootmem();
1788 first_time = 0;
1789 } else
1790 data = page_address(alloc_pages_node(numa_node_id(),
1791 GFP_KERNEL, get_order(sz)));
1792 if (!data)
1793 panic("Could not allocate MCA memory for cpu %d\n",
1794 cpu);
1795 }
1796 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1797 "MCA", cpu);
1798 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1799 "INIT", cpu);
1800 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[cpu] = __pa(data);
1801
1802 /*
1803 * Stash away a copy of the PTE needed to map the per-CPU page.
1804 * We may need it during MCA recovery.
1805 */
1806 __get_cpu_var(ia64_mca_per_cpu_pte) =
1807 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1808
1809 /*
1810 * Also, stash away a copy of the PAL address and the PTE
1811 * needed to map it.
1812 */
1813 pal_vaddr = efi_get_pal_addr();
1814 if (!pal_vaddr)
1815 return;
1816 __get_cpu_var(ia64_mca_pal_base) =
1817 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1818 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1819 PAGE_KERNEL));
1820 }
1821
1822 static void __cpuinit ia64_mca_cmc_vector_adjust(void *dummy)
1823 {
1824 unsigned long flags;
1825
1826 local_irq_save(flags);
1827 if (!cmc_polling_enabled)
1828 ia64_mca_cmc_vector_enable(NULL);
1829 local_irq_restore(flags);
1830 }
1831
1832 static int __cpuinit mca_cpu_callback(struct notifier_block *nfb,
1833 unsigned long action,
1834 void *hcpu)
1835 {
1836 int hotcpu = (unsigned long) hcpu;
1837
1838 switch (action) {
1839 case CPU_ONLINE:
1840 case CPU_ONLINE_FROZEN:
1841 smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
1842 NULL, 1, 0);
1843 break;
1844 }
1845 return NOTIFY_OK;
1846 }
1847
1848 static struct notifier_block mca_cpu_notifier __cpuinitdata = {
1849 .notifier_call = mca_cpu_callback
1850 };
1851
1852 /*
1853 * ia64_mca_init
1854 *
1855 * Do all the system level mca specific initialization.
1856 *
1857 * 1. Register spinloop and wakeup request interrupt vectors
1858 *
1859 * 2. Register OS_MCA handler entry point
1860 *
1861 * 3. Register OS_INIT handler entry point
1862 *
1863 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1864 *
1865 * Note that this initialization is done very early before some kernel
1866 * services are available.
1867 *
1868 * Inputs : None
1869 *
1870 * Outputs : None
1871 */
1872 void __init
1873 ia64_mca_init(void)
1874 {
1875 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1876 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1877 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1878 int i;
1879 s64 rc;
1880 struct ia64_sal_retval isrv;
1881 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1882 static struct notifier_block default_init_monarch_nb = {
1883 .notifier_call = default_monarch_init_process,
1884 .priority = 0/* we need to notified last */
1885 };
1886
1887 IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1888
1889 /* Clear the Rendez checkin flag for all cpus */
1890 for(i = 0 ; i < NR_CPUS; i++)
1891 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1892
1893 /*
1894 * Register the rendezvous spinloop and wakeup mechanism with SAL
1895 */
1896
1897 /* Register the rendezvous interrupt vector with SAL */
1898 while (1) {
1899 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1900 SAL_MC_PARAM_MECHANISM_INT,
1901 IA64_MCA_RENDEZ_VECTOR,
1902 timeout,
1903 SAL_MC_PARAM_RZ_ALWAYS);
1904 rc = isrv.status;
1905 if (rc == 0)
1906 break;
1907 if (rc == -2) {
1908 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1909 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1910 timeout = isrv.v0;
1911 (void) notify_die(DIE_MCA_NEW_TIMEOUT, "MCA", NULL, timeout, 0, 0);
1912 continue;
1913 }
1914 printk(KERN_ERR "Failed to register rendezvous interrupt "
1915 "with SAL (status %ld)\n", rc);
1916 return;
1917 }
1918
1919 /* Register the wakeup interrupt vector with SAL */
1920 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1921 SAL_MC_PARAM_MECHANISM_INT,
1922 IA64_MCA_WAKEUP_VECTOR,
1923 0, 0);
1924 rc = isrv.status;
1925 if (rc) {
1926 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1927 "(status %ld)\n", rc);
1928 return;
1929 }
1930
1931 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1932
1933 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1934 /*
1935 * XXX - disable SAL checksum by setting size to 0; should be
1936 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1937 */
1938 ia64_mc_info.imi_mca_handler_size = 0;
1939
1940 /* Register the os mca handler with SAL */
1941 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1942 ia64_mc_info.imi_mca_handler,
1943 ia64_tpa(mca_hldlr_ptr->gp),
1944 ia64_mc_info.imi_mca_handler_size,
1945 0, 0, 0)))
1946 {
1947 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1948 "(status %ld)\n", rc);
1949 return;
1950 }
1951
1952 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1953 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1954
1955 /*
1956 * XXX - disable SAL checksum by setting size to 0, should be
1957 * size of the actual init handler in mca_asm.S.
1958 */
1959 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1960 ia64_mc_info.imi_monarch_init_handler_size = 0;
1961 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
1962 ia64_mc_info.imi_slave_init_handler_size = 0;
1963
1964 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1965 ia64_mc_info.imi_monarch_init_handler);
1966
1967 /* Register the os init handler with SAL */
1968 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1969 ia64_mc_info.imi_monarch_init_handler,
1970 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1971 ia64_mc_info.imi_monarch_init_handler_size,
1972 ia64_mc_info.imi_slave_init_handler,
1973 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1974 ia64_mc_info.imi_slave_init_handler_size)))
1975 {
1976 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1977 "(status %ld)\n", rc);
1978 return;
1979 }
1980 if (register_die_notifier(&default_init_monarch_nb)) {
1981 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1982 return;
1983 }
1984
1985 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1986
1987 /*
1988 * Configure the CMCI/P vector and handler. Interrupts for CMC are
1989 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1990 */
1991 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1992 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1993 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
1994
1995 /* Setup the MCA rendezvous interrupt vector */
1996 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1997
1998 /* Setup the MCA wakeup interrupt vector */
1999 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2000
2001 #ifdef CONFIG_ACPI
2002 /* Setup the CPEI/P handler */
2003 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2004 #endif
2005
2006 /* Initialize the areas set aside by the OS to buffer the
2007 * platform/processor error states for MCA/INIT/CMC
2008 * handling.
2009 */
2010 ia64_log_init(SAL_INFO_TYPE_MCA);
2011 ia64_log_init(SAL_INFO_TYPE_INIT);
2012 ia64_log_init(SAL_INFO_TYPE_CMC);
2013 ia64_log_init(SAL_INFO_TYPE_CPE);
2014
2015 mca_init = 1;
2016 printk(KERN_INFO "MCA related initialization done\n");
2017 }
2018
2019 /*
2020 * ia64_mca_late_init
2021 *
2022 * Opportunity to setup things that require initialization later
2023 * than ia64_mca_init. Setup a timer to poll for CPEs if the
2024 * platform doesn't support an interrupt driven mechanism.
2025 *
2026 * Inputs : None
2027 * Outputs : Status
2028 */
2029 static int __init
2030 ia64_mca_late_init(void)
2031 {
2032 if (!mca_init)
2033 return 0;
2034
2035 register_hotcpu_notifier(&mca_cpu_notifier);
2036
2037 /* Setup the CMCI/P vector and handler */
2038 init_timer(&cmc_poll_timer);
2039 cmc_poll_timer.function = ia64_mca_cmc_poll;
2040
2041 /* Unmask/enable the vector */
2042 cmc_polling_enabled = 0;
2043 schedule_work(&cmc_enable_work);
2044
2045 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
2046
2047 #ifdef CONFIG_ACPI
2048 /* Setup the CPEI/P vector and handler */
2049 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2050 init_timer(&cpe_poll_timer);
2051 cpe_poll_timer.function = ia64_mca_cpe_poll;
2052
2053 {
2054 irq_desc_t *desc;
2055 unsigned int irq;
2056
2057 if (cpe_vector >= 0) {
2058 /* If platform supports CPEI, enable the irq. */
2059 irq = local_vector_to_irq(cpe_vector);
2060 if (irq > 0) {
2061 cpe_poll_enabled = 0;
2062 desc = irq_desc + irq;
2063 desc->status |= IRQ_PER_CPU;
2064 setup_irq(irq, &mca_cpe_irqaction);
2065 ia64_cpe_irq = irq;
2066 ia64_mca_register_cpev(cpe_vector);
2067 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2068 __FUNCTION__);
2069 return 0;
2070 }
2071 printk(KERN_ERR "%s: Failed to find irq for CPE "
2072 "interrupt handler, vector %d\n",
2073 __FUNCTION__, cpe_vector);
2074 }
2075 /* If platform doesn't support CPEI, get the timer going. */
2076 if (cpe_poll_enabled) {
2077 ia64_mca_cpe_poll(0UL);
2078 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
2079 }
2080 }
2081 #endif
2082
2083 return 0;
2084 }
2085
2086 device_initcall(ia64_mca_late_init);
This page took 0.072692 seconds and 6 git commands to generate.