Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[deliverable/linux.git] / arch / ia64 / kernel / mca.c
1 /*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
4 *
5 * Updated for latest kernel
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 *
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
11 *
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
14 *
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
17 *
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
20 *
21 * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
23 *
24 * 03/04/15 D. Mosberger Added INIT backtrace support.
25 * 02/03/25 M. Domsch GUID cleanups
26 *
27 * 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU
28 * error flag, set SAL default return values, changed
29 * error record structure to linked list, added init call
30 * to sal_get_state_info_size().
31 *
32 * 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected
33 * platform errors, completed code for logging of
34 * corrected & uncorrected machine check errors, and
35 * updated for conformance with Nov. 2000 revision of the
36 * SAL 3.0 spec.
37 * 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38 * added min save state dump, added INIT handler.
39 *
40 * 2003-12-08 Keith Owens <kaos@sgi.com>
41 * smp_call_function() must not be called from interrupt context (can
42 * deadlock on tasklist_lock). Use keventd to call smp_call_function().
43 *
44 * 2004-02-01 Keith Owens <kaos@sgi.com>
45 * Avoid deadlock when using printk() for MCA and INIT records.
46 * Delete all record printing code, moved to salinfo_decode in user space.
47 * Mark variables and functions static where possible.
48 * Delete dead variables and functions.
49 * Reorder to remove the need for forward declarations and to consolidate
50 * related code.
51 *
52 * 2005-08-12 Keith Owens <kaos@sgi.com>
53 * Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
54 *
55 * 2005-10-07 Keith Owens <kaos@sgi.com>
56 * Add notify_die() hooks.
57 *
58 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
59 * Add printing support for MCA/INIT.
60 *
61 * 2007-04-27 Russ Anderson <rja@sgi.com>
62 * Support multiple cpus going through OS_MCA in the same event.
63 */
64 #include <linux/types.h>
65 #include <linux/init.h>
66 #include <linux/sched.h>
67 #include <linux/interrupt.h>
68 #include <linux/irq.h>
69 #include <linux/bootmem.h>
70 #include <linux/acpi.h>
71 #include <linux/timer.h>
72 #include <linux/module.h>
73 #include <linux/kernel.h>
74 #include <linux/smp.h>
75 #include <linux/workqueue.h>
76 #include <linux/cpumask.h>
77 #include <linux/kdebug.h>
78 #include <linux/cpu.h>
79
80 #include <asm/delay.h>
81 #include <asm/machvec.h>
82 #include <asm/meminit.h>
83 #include <asm/page.h>
84 #include <asm/ptrace.h>
85 #include <asm/system.h>
86 #include <asm/sal.h>
87 #include <asm/mca.h>
88 #include <asm/kexec.h>
89
90 #include <asm/irq.h>
91 #include <asm/hw_irq.h>
92
93 #include "mca_drv.h"
94 #include "entry.h"
95
96 #if defined(IA64_MCA_DEBUG_INFO)
97 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
98 #else
99 # define IA64_MCA_DEBUG(fmt...)
100 #endif
101
102 /* Used by mca_asm.S */
103 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
104 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
105 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
106 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
107
108 unsigned long __per_cpu_mca[NR_CPUS];
109
110 /* In mca_asm.S */
111 extern void ia64_os_init_dispatch_monarch (void);
112 extern void ia64_os_init_dispatch_slave (void);
113
114 static int monarch_cpu = -1;
115
116 static ia64_mc_info_t ia64_mc_info;
117
118 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
119 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
120 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
121 #define CPE_HISTORY_LENGTH 5
122 #define CMC_HISTORY_LENGTH 5
123
124 #ifdef CONFIG_ACPI
125 static struct timer_list cpe_poll_timer;
126 #endif
127 static struct timer_list cmc_poll_timer;
128 /*
129 * This variable tells whether we are currently in polling mode.
130 * Start with this in the wrong state so we won't play w/ timers
131 * before the system is ready.
132 */
133 static int cmc_polling_enabled = 1;
134
135 /*
136 * Clearing this variable prevents CPE polling from getting activated
137 * in mca_late_init. Use it if your system doesn't provide a CPEI,
138 * but encounters problems retrieving CPE logs. This should only be
139 * necessary for debugging.
140 */
141 static int cpe_poll_enabled = 1;
142
143 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
144
145 static int mca_init __initdata;
146
147 /*
148 * limited & delayed printing support for MCA/INIT handler
149 */
150
151 #define mprintk(fmt...) ia64_mca_printk(fmt)
152
153 #define MLOGBUF_SIZE (512+256*NR_CPUS)
154 #define MLOGBUF_MSGMAX 256
155 static char mlogbuf[MLOGBUF_SIZE];
156 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
157 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
158 static unsigned long mlogbuf_start;
159 static unsigned long mlogbuf_end;
160 static unsigned int mlogbuf_finished = 0;
161 static unsigned long mlogbuf_timestamp = 0;
162
163 static int loglevel_save = -1;
164 #define BREAK_LOGLEVEL(__console_loglevel) \
165 oops_in_progress = 1; \
166 if (loglevel_save < 0) \
167 loglevel_save = __console_loglevel; \
168 __console_loglevel = 15;
169
170 #define RESTORE_LOGLEVEL(__console_loglevel) \
171 if (loglevel_save >= 0) { \
172 __console_loglevel = loglevel_save; \
173 loglevel_save = -1; \
174 } \
175 mlogbuf_finished = 0; \
176 oops_in_progress = 0;
177
178 /*
179 * Push messages into buffer, print them later if not urgent.
180 */
181 void ia64_mca_printk(const char *fmt, ...)
182 {
183 va_list args;
184 int printed_len;
185 char temp_buf[MLOGBUF_MSGMAX];
186 char *p;
187
188 va_start(args, fmt);
189 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
190 va_end(args);
191
192 /* Copy the output into mlogbuf */
193 if (oops_in_progress) {
194 /* mlogbuf was abandoned, use printk directly instead. */
195 printk(temp_buf);
196 } else {
197 spin_lock(&mlogbuf_wlock);
198 for (p = temp_buf; *p; p++) {
199 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
200 if (next != mlogbuf_start) {
201 mlogbuf[mlogbuf_end] = *p;
202 mlogbuf_end = next;
203 } else {
204 /* buffer full */
205 break;
206 }
207 }
208 mlogbuf[mlogbuf_end] = '\0';
209 spin_unlock(&mlogbuf_wlock);
210 }
211 }
212 EXPORT_SYMBOL(ia64_mca_printk);
213
214 /*
215 * Print buffered messages.
216 * NOTE: call this after returning normal context. (ex. from salinfod)
217 */
218 void ia64_mlogbuf_dump(void)
219 {
220 char temp_buf[MLOGBUF_MSGMAX];
221 char *p;
222 unsigned long index;
223 unsigned long flags;
224 unsigned int printed_len;
225
226 /* Get output from mlogbuf */
227 while (mlogbuf_start != mlogbuf_end) {
228 temp_buf[0] = '\0';
229 p = temp_buf;
230 printed_len = 0;
231
232 spin_lock_irqsave(&mlogbuf_rlock, flags);
233
234 index = mlogbuf_start;
235 while (index != mlogbuf_end) {
236 *p = mlogbuf[index];
237 index = (index + 1) % MLOGBUF_SIZE;
238 if (!*p)
239 break;
240 p++;
241 if (++printed_len >= MLOGBUF_MSGMAX - 1)
242 break;
243 }
244 *p = '\0';
245 if (temp_buf[0])
246 printk(temp_buf);
247 mlogbuf_start = index;
248
249 mlogbuf_timestamp = 0;
250 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
251 }
252 }
253 EXPORT_SYMBOL(ia64_mlogbuf_dump);
254
255 /*
256 * Call this if system is going to down or if immediate flushing messages to
257 * console is required. (ex. recovery was failed, crash dump is going to be
258 * invoked, long-wait rendezvous etc.)
259 * NOTE: this should be called from monarch.
260 */
261 static void ia64_mlogbuf_finish(int wait)
262 {
263 BREAK_LOGLEVEL(console_loglevel);
264
265 spin_lock_init(&mlogbuf_rlock);
266 ia64_mlogbuf_dump();
267 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
268 "MCA/INIT might be dodgy or fail.\n");
269
270 if (!wait)
271 return;
272
273 /* wait for console */
274 printk("Delaying for 5 seconds...\n");
275 udelay(5*1000000);
276
277 mlogbuf_finished = 1;
278 }
279
280 /*
281 * Print buffered messages from INIT context.
282 */
283 static void ia64_mlogbuf_dump_from_init(void)
284 {
285 if (mlogbuf_finished)
286 return;
287
288 if (mlogbuf_timestamp && (mlogbuf_timestamp + 30*HZ > jiffies)) {
289 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
290 " and the system seems to be messed up.\n");
291 ia64_mlogbuf_finish(0);
292 return;
293 }
294
295 if (!spin_trylock(&mlogbuf_rlock)) {
296 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
297 "Generated messages other than stack dump will be "
298 "buffered to mlogbuf and will be printed later.\n");
299 printk(KERN_ERR "INIT: If messages would not printed after "
300 "this INIT, wait 30sec and assert INIT again.\n");
301 if (!mlogbuf_timestamp)
302 mlogbuf_timestamp = jiffies;
303 return;
304 }
305 spin_unlock(&mlogbuf_rlock);
306 ia64_mlogbuf_dump();
307 }
308
309 static void inline
310 ia64_mca_spin(const char *func)
311 {
312 if (monarch_cpu == smp_processor_id())
313 ia64_mlogbuf_finish(0);
314 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
315 while (1)
316 cpu_relax();
317 }
318 /*
319 * IA64_MCA log support
320 */
321 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
322 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
323
324 typedef struct ia64_state_log_s
325 {
326 spinlock_t isl_lock;
327 int isl_index;
328 unsigned long isl_count;
329 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
330 } ia64_state_log_t;
331
332 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
333
334 #define IA64_LOG_ALLOCATE(it, size) \
335 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
336 (ia64_err_rec_t *)alloc_bootmem(size); \
337 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
338 (ia64_err_rec_t *)alloc_bootmem(size);}
339 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
340 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
341 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
342 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
343 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
344 #define IA64_LOG_INDEX_INC(it) \
345 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
346 ia64_state_log[it].isl_count++;}
347 #define IA64_LOG_INDEX_DEC(it) \
348 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
349 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
350 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
351 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
352
353 /*
354 * ia64_log_init
355 * Reset the OS ia64 log buffer
356 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
357 * Outputs : None
358 */
359 static void __init
360 ia64_log_init(int sal_info_type)
361 {
362 u64 max_size = 0;
363
364 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
365 IA64_LOG_LOCK_INIT(sal_info_type);
366
367 // SAL will tell us the maximum size of any error record of this type
368 max_size = ia64_sal_get_state_info_size(sal_info_type);
369 if (!max_size)
370 /* alloc_bootmem() doesn't like zero-sized allocations! */
371 return;
372
373 // set up OS data structures to hold error info
374 IA64_LOG_ALLOCATE(sal_info_type, max_size);
375 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
376 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
377 }
378
379 /*
380 * ia64_log_get
381 *
382 * Get the current MCA log from SAL and copy it into the OS log buffer.
383 *
384 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
385 * irq_safe whether you can use printk at this point
386 * Outputs : size (total record length)
387 * *buffer (ptr to error record)
388 *
389 */
390 static u64
391 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
392 {
393 sal_log_record_header_t *log_buffer;
394 u64 total_len = 0;
395 unsigned long s;
396
397 IA64_LOG_LOCK(sal_info_type);
398
399 /* Get the process state information */
400 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
401
402 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
403
404 if (total_len) {
405 IA64_LOG_INDEX_INC(sal_info_type);
406 IA64_LOG_UNLOCK(sal_info_type);
407 if (irq_safe) {
408 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
409 "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
410 }
411 *buffer = (u8 *) log_buffer;
412 return total_len;
413 } else {
414 IA64_LOG_UNLOCK(sal_info_type);
415 return 0;
416 }
417 }
418
419 /*
420 * ia64_mca_log_sal_error_record
421 *
422 * This function retrieves a specified error record type from SAL
423 * and wakes up any processes waiting for error records.
424 *
425 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
426 * FIXME: remove MCA and irq_safe.
427 */
428 static void
429 ia64_mca_log_sal_error_record(int sal_info_type)
430 {
431 u8 *buffer;
432 sal_log_record_header_t *rh;
433 u64 size;
434 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
435 #ifdef IA64_MCA_DEBUG_INFO
436 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
437 #endif
438
439 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
440 if (!size)
441 return;
442
443 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
444
445 if (irq_safe)
446 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
447 smp_processor_id(),
448 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
449
450 /* Clear logs from corrected errors in case there's no user-level logger */
451 rh = (sal_log_record_header_t *)buffer;
452 if (rh->severity == sal_log_severity_corrected)
453 ia64_sal_clear_state_info(sal_info_type);
454 }
455
456 /*
457 * search_mca_table
458 * See if the MCA surfaced in an instruction range
459 * that has been tagged as recoverable.
460 *
461 * Inputs
462 * first First address range to check
463 * last Last address range to check
464 * ip Instruction pointer, address we are looking for
465 *
466 * Return value:
467 * 1 on Success (in the table)/ 0 on Failure (not in the table)
468 */
469 int
470 search_mca_table (const struct mca_table_entry *first,
471 const struct mca_table_entry *last,
472 unsigned long ip)
473 {
474 const struct mca_table_entry *curr;
475 u64 curr_start, curr_end;
476
477 curr = first;
478 while (curr <= last) {
479 curr_start = (u64) &curr->start_addr + curr->start_addr;
480 curr_end = (u64) &curr->end_addr + curr->end_addr;
481
482 if ((ip >= curr_start) && (ip <= curr_end)) {
483 return 1;
484 }
485 curr++;
486 }
487 return 0;
488 }
489
490 /* Given an address, look for it in the mca tables. */
491 int mca_recover_range(unsigned long addr)
492 {
493 extern struct mca_table_entry __start___mca_table[];
494 extern struct mca_table_entry __stop___mca_table[];
495
496 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
497 }
498 EXPORT_SYMBOL_GPL(mca_recover_range);
499
500 #ifdef CONFIG_ACPI
501
502 int cpe_vector = -1;
503 int ia64_cpe_irq = -1;
504
505 static irqreturn_t
506 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
507 {
508 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
509 static int index;
510 static DEFINE_SPINLOCK(cpe_history_lock);
511
512 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
513 __FUNCTION__, cpe_irq, smp_processor_id());
514
515 /* SAL spec states this should run w/ interrupts enabled */
516 local_irq_enable();
517
518 spin_lock(&cpe_history_lock);
519 if (!cpe_poll_enabled && cpe_vector >= 0) {
520
521 int i, count = 1; /* we know 1 happened now */
522 unsigned long now = jiffies;
523
524 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
525 if (now - cpe_history[i] <= HZ)
526 count++;
527 }
528
529 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
530 if (count >= CPE_HISTORY_LENGTH) {
531
532 cpe_poll_enabled = 1;
533 spin_unlock(&cpe_history_lock);
534 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
535
536 /*
537 * Corrected errors will still be corrected, but
538 * make sure there's a log somewhere that indicates
539 * something is generating more than we can handle.
540 */
541 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
542
543 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
544
545 /* lock already released, get out now */
546 goto out;
547 } else {
548 cpe_history[index++] = now;
549 if (index == CPE_HISTORY_LENGTH)
550 index = 0;
551 }
552 }
553 spin_unlock(&cpe_history_lock);
554 out:
555 /* Get the CPE error record and log it */
556 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
557
558 return IRQ_HANDLED;
559 }
560
561 #endif /* CONFIG_ACPI */
562
563 #ifdef CONFIG_ACPI
564 /*
565 * ia64_mca_register_cpev
566 *
567 * Register the corrected platform error vector with SAL.
568 *
569 * Inputs
570 * cpev Corrected Platform Error Vector number
571 *
572 * Outputs
573 * None
574 */
575 void
576 ia64_mca_register_cpev (int cpev)
577 {
578 /* Register the CPE interrupt vector with SAL */
579 struct ia64_sal_retval isrv;
580
581 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
582 if (isrv.status) {
583 printk(KERN_ERR "Failed to register Corrected Platform "
584 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
585 return;
586 }
587
588 IA64_MCA_DEBUG("%s: corrected platform error "
589 "vector %#x registered\n", __FUNCTION__, cpev);
590 }
591 #endif /* CONFIG_ACPI */
592
593 /*
594 * ia64_mca_cmc_vector_setup
595 *
596 * Setup the corrected machine check vector register in the processor.
597 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
598 * This function is invoked on a per-processor basis.
599 *
600 * Inputs
601 * None
602 *
603 * Outputs
604 * None
605 */
606 void __cpuinit
607 ia64_mca_cmc_vector_setup (void)
608 {
609 cmcv_reg_t cmcv;
610
611 cmcv.cmcv_regval = 0;
612 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
613 cmcv.cmcv_vector = IA64_CMC_VECTOR;
614 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
615
616 IA64_MCA_DEBUG("%s: CPU %d corrected "
617 "machine check vector %#x registered.\n",
618 __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
619
620 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
621 __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
622 }
623
624 /*
625 * ia64_mca_cmc_vector_disable
626 *
627 * Mask the corrected machine check vector register in the processor.
628 * This function is invoked on a per-processor basis.
629 *
630 * Inputs
631 * dummy(unused)
632 *
633 * Outputs
634 * None
635 */
636 static void
637 ia64_mca_cmc_vector_disable (void *dummy)
638 {
639 cmcv_reg_t cmcv;
640
641 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
642
643 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
644 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
645
646 IA64_MCA_DEBUG("%s: CPU %d corrected "
647 "machine check vector %#x disabled.\n",
648 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
649 }
650
651 /*
652 * ia64_mca_cmc_vector_enable
653 *
654 * Unmask the corrected machine check vector register in the processor.
655 * This function is invoked on a per-processor basis.
656 *
657 * Inputs
658 * dummy(unused)
659 *
660 * Outputs
661 * None
662 */
663 static void
664 ia64_mca_cmc_vector_enable (void *dummy)
665 {
666 cmcv_reg_t cmcv;
667
668 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
669
670 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
671 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
672
673 IA64_MCA_DEBUG("%s: CPU %d corrected "
674 "machine check vector %#x enabled.\n",
675 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
676 }
677
678 /*
679 * ia64_mca_cmc_vector_disable_keventd
680 *
681 * Called via keventd (smp_call_function() is not safe in interrupt context) to
682 * disable the cmc interrupt vector.
683 */
684 static void
685 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
686 {
687 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
688 }
689
690 /*
691 * ia64_mca_cmc_vector_enable_keventd
692 *
693 * Called via keventd (smp_call_function() is not safe in interrupt context) to
694 * enable the cmc interrupt vector.
695 */
696 static void
697 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
698 {
699 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
700 }
701
702 /*
703 * ia64_mca_wakeup
704 *
705 * Send an inter-cpu interrupt to wake-up a particular cpu.
706 *
707 * Inputs : cpuid
708 * Outputs : None
709 */
710 static void
711 ia64_mca_wakeup(int cpu)
712 {
713 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
714 }
715
716 /*
717 * ia64_mca_wakeup_all
718 *
719 * Wakeup all the slave cpus which have rendez'ed previously.
720 *
721 * Inputs : None
722 * Outputs : None
723 */
724 static void
725 ia64_mca_wakeup_all(void)
726 {
727 int cpu;
728
729 /* Clear the Rendez checkin flag for all cpus */
730 for_each_online_cpu(cpu) {
731 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
732 ia64_mca_wakeup(cpu);
733 }
734
735 }
736
737 /*
738 * ia64_mca_rendez_interrupt_handler
739 *
740 * This is handler used to put slave processors into spinloop
741 * while the monarch processor does the mca handling and later
742 * wake each slave up once the monarch is done. The state
743 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
744 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
745 * the cpu has come out of OS rendezvous.
746 *
747 * Inputs : None
748 * Outputs : None
749 */
750 static irqreturn_t
751 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
752 {
753 unsigned long flags;
754 int cpu = smp_processor_id();
755 struct ia64_mca_notify_die nd =
756 { .sos = NULL, .monarch_cpu = &monarch_cpu };
757
758 /* Mask all interrupts */
759 local_irq_save(flags);
760 if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", get_irq_regs(),
761 (long)&nd, 0, 0) == NOTIFY_STOP)
762 ia64_mca_spin(__FUNCTION__);
763
764 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
765 /* Register with the SAL monarch that the slave has
766 * reached SAL
767 */
768 ia64_sal_mc_rendez();
769
770 if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", get_irq_regs(),
771 (long)&nd, 0, 0) == NOTIFY_STOP)
772 ia64_mca_spin(__FUNCTION__);
773
774 /* Wait for the monarch cpu to exit. */
775 while (monarch_cpu != -1)
776 cpu_relax(); /* spin until monarch leaves */
777
778 if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", get_irq_regs(),
779 (long)&nd, 0, 0) == NOTIFY_STOP)
780 ia64_mca_spin(__FUNCTION__);
781
782 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
783 /* Enable all interrupts */
784 local_irq_restore(flags);
785 return IRQ_HANDLED;
786 }
787
788 /*
789 * ia64_mca_wakeup_int_handler
790 *
791 * The interrupt handler for processing the inter-cpu interrupt to the
792 * slave cpu which was spinning in the rendez loop.
793 * Since this spinning is done by turning off the interrupts and
794 * polling on the wakeup-interrupt bit in the IRR, there is
795 * nothing useful to be done in the handler.
796 *
797 * Inputs : wakeup_irq (Wakeup-interrupt bit)
798 * arg (Interrupt handler specific argument)
799 * Outputs : None
800 *
801 */
802 static irqreturn_t
803 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
804 {
805 return IRQ_HANDLED;
806 }
807
808 /* Function pointer for extra MCA recovery */
809 int (*ia64_mca_ucmc_extension)
810 (void*,struct ia64_sal_os_state*)
811 = NULL;
812
813 int
814 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
815 {
816 if (ia64_mca_ucmc_extension)
817 return 1;
818
819 ia64_mca_ucmc_extension = fn;
820 return 0;
821 }
822
823 void
824 ia64_unreg_MCA_extension(void)
825 {
826 if (ia64_mca_ucmc_extension)
827 ia64_mca_ucmc_extension = NULL;
828 }
829
830 EXPORT_SYMBOL(ia64_reg_MCA_extension);
831 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
832
833
834 static inline void
835 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
836 {
837 u64 fslot, tslot, nat;
838 *tr = *fr;
839 fslot = ((unsigned long)fr >> 3) & 63;
840 tslot = ((unsigned long)tr >> 3) & 63;
841 *tnat &= ~(1UL << tslot);
842 nat = (fnat >> fslot) & 1;
843 *tnat |= (nat << tslot);
844 }
845
846 /* Change the comm field on the MCA/INT task to include the pid that
847 * was interrupted, it makes for easier debugging. If that pid was 0
848 * (swapper or nested MCA/INIT) then use the start of the previous comm
849 * field suffixed with its cpu.
850 */
851
852 static void
853 ia64_mca_modify_comm(const struct task_struct *previous_current)
854 {
855 char *p, comm[sizeof(current->comm)];
856 if (previous_current->pid)
857 snprintf(comm, sizeof(comm), "%s %d",
858 current->comm, previous_current->pid);
859 else {
860 int l;
861 if ((p = strchr(previous_current->comm, ' ')))
862 l = p - previous_current->comm;
863 else
864 l = strlen(previous_current->comm);
865 snprintf(comm, sizeof(comm), "%s %*s %d",
866 current->comm, l, previous_current->comm,
867 task_thread_info(previous_current)->cpu);
868 }
869 memcpy(current->comm, comm, sizeof(current->comm));
870 }
871
872 /* On entry to this routine, we are running on the per cpu stack, see
873 * mca_asm.h. The original stack has not been touched by this event. Some of
874 * the original stack's registers will be in the RBS on this stack. This stack
875 * also contains a partial pt_regs and switch_stack, the rest of the data is in
876 * PAL minstate.
877 *
878 * The first thing to do is modify the original stack to look like a blocked
879 * task so we can run backtrace on the original task. Also mark the per cpu
880 * stack as current to ensure that we use the correct task state, it also means
881 * that we can do backtrace on the MCA/INIT handler code itself.
882 */
883
884 static struct task_struct *
885 ia64_mca_modify_original_stack(struct pt_regs *regs,
886 const struct switch_stack *sw,
887 struct ia64_sal_os_state *sos,
888 const char *type)
889 {
890 char *p;
891 ia64_va va;
892 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
893 const pal_min_state_area_t *ms = sos->pal_min_state;
894 struct task_struct *previous_current;
895 struct pt_regs *old_regs;
896 struct switch_stack *old_sw;
897 unsigned size = sizeof(struct pt_regs) +
898 sizeof(struct switch_stack) + 16;
899 u64 *old_bspstore, *old_bsp;
900 u64 *new_bspstore, *new_bsp;
901 u64 old_unat, old_rnat, new_rnat, nat;
902 u64 slots, loadrs = regs->loadrs;
903 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
904 u64 ar_bspstore = regs->ar_bspstore;
905 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
906 const u64 *bank;
907 const char *msg;
908 int cpu = smp_processor_id();
909
910 previous_current = curr_task(cpu);
911 set_curr_task(cpu, current);
912 if ((p = strchr(current->comm, ' ')))
913 *p = '\0';
914
915 /* Best effort attempt to cope with MCA/INIT delivered while in
916 * physical mode.
917 */
918 regs->cr_ipsr = ms->pmsa_ipsr;
919 if (ia64_psr(regs)->dt == 0) {
920 va.l = r12;
921 if (va.f.reg == 0) {
922 va.f.reg = 7;
923 r12 = va.l;
924 }
925 va.l = r13;
926 if (va.f.reg == 0) {
927 va.f.reg = 7;
928 r13 = va.l;
929 }
930 }
931 if (ia64_psr(regs)->rt == 0) {
932 va.l = ar_bspstore;
933 if (va.f.reg == 0) {
934 va.f.reg = 7;
935 ar_bspstore = va.l;
936 }
937 va.l = ar_bsp;
938 if (va.f.reg == 0) {
939 va.f.reg = 7;
940 ar_bsp = va.l;
941 }
942 }
943
944 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
945 * have been copied to the old stack, the old stack may fail the
946 * validation tests below. So ia64_old_stack() must restore the dirty
947 * registers from the new stack. The old and new bspstore probably
948 * have different alignments, so loadrs calculated on the old bsp
949 * cannot be used to restore from the new bsp. Calculate a suitable
950 * loadrs for the new stack and save it in the new pt_regs, where
951 * ia64_old_stack() can get it.
952 */
953 old_bspstore = (u64 *)ar_bspstore;
954 old_bsp = (u64 *)ar_bsp;
955 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
956 new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
957 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
958 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
959
960 /* Verify the previous stack state before we change it */
961 if (user_mode(regs)) {
962 msg = "occurred in user space";
963 /* previous_current is guaranteed to be valid when the task was
964 * in user space, so ...
965 */
966 ia64_mca_modify_comm(previous_current);
967 goto no_mod;
968 }
969
970 if (r13 != sos->prev_IA64_KR_CURRENT) {
971 msg = "inconsistent previous current and r13";
972 goto no_mod;
973 }
974
975 if (!mca_recover_range(ms->pmsa_iip)) {
976 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
977 msg = "inconsistent r12 and r13";
978 goto no_mod;
979 }
980 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
981 msg = "inconsistent ar.bspstore and r13";
982 goto no_mod;
983 }
984 va.p = old_bspstore;
985 if (va.f.reg < 5) {
986 msg = "old_bspstore is in the wrong region";
987 goto no_mod;
988 }
989 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
990 msg = "inconsistent ar.bsp and r13";
991 goto no_mod;
992 }
993 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
994 if (ar_bspstore + size > r12) {
995 msg = "no room for blocked state";
996 goto no_mod;
997 }
998 }
999
1000 ia64_mca_modify_comm(previous_current);
1001
1002 /* Make the original task look blocked. First stack a struct pt_regs,
1003 * describing the state at the time of interrupt. mca_asm.S built a
1004 * partial pt_regs, copy it and fill in the blanks using minstate.
1005 */
1006 p = (char *)r12 - sizeof(*regs);
1007 old_regs = (struct pt_regs *)p;
1008 memcpy(old_regs, regs, sizeof(*regs));
1009 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1010 * pmsa_{xip,xpsr,xfs}
1011 */
1012 if (ia64_psr(regs)->ic) {
1013 old_regs->cr_iip = ms->pmsa_iip;
1014 old_regs->cr_ipsr = ms->pmsa_ipsr;
1015 old_regs->cr_ifs = ms->pmsa_ifs;
1016 } else {
1017 old_regs->cr_iip = ms->pmsa_xip;
1018 old_regs->cr_ipsr = ms->pmsa_xpsr;
1019 old_regs->cr_ifs = ms->pmsa_xfs;
1020 }
1021 old_regs->pr = ms->pmsa_pr;
1022 old_regs->b0 = ms->pmsa_br0;
1023 old_regs->loadrs = loadrs;
1024 old_regs->ar_rsc = ms->pmsa_rsc;
1025 old_unat = old_regs->ar_unat;
1026 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
1027 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
1028 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
1029 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
1030 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
1031 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
1032 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
1033 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
1034 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
1035 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
1036 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
1037 if (ia64_psr(old_regs)->bn)
1038 bank = ms->pmsa_bank1_gr;
1039 else
1040 bank = ms->pmsa_bank0_gr;
1041 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
1042 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
1043 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
1044 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
1045 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
1046 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
1047 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
1048 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
1049 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
1050 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
1051 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
1052 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
1053 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
1054 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
1055 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
1056 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
1057
1058 /* Next stack a struct switch_stack. mca_asm.S built a partial
1059 * switch_stack, copy it and fill in the blanks using pt_regs and
1060 * minstate.
1061 *
1062 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1063 * ar.pfs is set to 0.
1064 *
1065 * unwind.c::unw_unwind() does special processing for interrupt frames.
1066 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1067 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1068 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1069 * switch_stack on the original stack so it will unwind correctly when
1070 * unwind.c reads pt_regs.
1071 *
1072 * thread.ksp is updated to point to the synthesized switch_stack.
1073 */
1074 p -= sizeof(struct switch_stack);
1075 old_sw = (struct switch_stack *)p;
1076 memcpy(old_sw, sw, sizeof(*sw));
1077 old_sw->caller_unat = old_unat;
1078 old_sw->ar_fpsr = old_regs->ar_fpsr;
1079 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1080 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1081 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1082 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1083 old_sw->b0 = (u64)ia64_leave_kernel;
1084 old_sw->b1 = ms->pmsa_br1;
1085 old_sw->ar_pfs = 0;
1086 old_sw->ar_unat = old_unat;
1087 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1088 previous_current->thread.ksp = (u64)p - 16;
1089
1090 /* Finally copy the original stack's registers back to its RBS.
1091 * Registers from ar.bspstore through ar.bsp at the time of the event
1092 * are in the current RBS, copy them back to the original stack. The
1093 * copy must be done register by register because the original bspstore
1094 * and the current one have different alignments, so the saved RNAT
1095 * data occurs at different places.
1096 *
1097 * mca_asm does cover, so the old_bsp already includes all registers at
1098 * the time of MCA/INIT. It also does flushrs, so all registers before
1099 * this function have been written to backing store on the MCA/INIT
1100 * stack.
1101 */
1102 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1103 old_rnat = regs->ar_rnat;
1104 while (slots--) {
1105 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1106 new_rnat = ia64_get_rnat(new_bspstore++);
1107 }
1108 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1109 *old_bspstore++ = old_rnat;
1110 old_rnat = 0;
1111 }
1112 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1113 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1114 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1115 *old_bspstore++ = *new_bspstore++;
1116 }
1117 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1118 old_sw->ar_rnat = old_rnat;
1119
1120 sos->prev_task = previous_current;
1121 return previous_current;
1122
1123 no_mod:
1124 printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1125 smp_processor_id(), type, msg);
1126 return previous_current;
1127 }
1128
1129 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1130 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1131 * not entered rendezvous yet then wait a bit. The assumption is that any
1132 * slave that has not rendezvoused after a reasonable time is never going to do
1133 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1134 * interrupt, as well as cpus that receive the INIT slave event.
1135 */
1136
1137 static void
1138 ia64_wait_for_slaves(int monarch, const char *type)
1139 {
1140 int c, i , wait;
1141
1142 /*
1143 * wait 5 seconds total for slaves (arbitrary)
1144 */
1145 for (i = 0; i < 5000; i++) {
1146 wait = 0;
1147 for_each_online_cpu(c) {
1148 if (c == monarch)
1149 continue;
1150 if (ia64_mc_info.imi_rendez_checkin[c]
1151 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1152 udelay(1000); /* short wait */
1153 wait = 1;
1154 break;
1155 }
1156 }
1157 if (!wait)
1158 goto all_in;
1159 }
1160
1161 /*
1162 * Maybe slave(s) dead. Print buffered messages immediately.
1163 */
1164 ia64_mlogbuf_finish(0);
1165 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1166 for_each_online_cpu(c) {
1167 if (c == monarch)
1168 continue;
1169 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1170 mprintk(" %d", c);
1171 }
1172 mprintk("\n");
1173 return;
1174
1175 all_in:
1176 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1177 return;
1178 }
1179
1180 /*
1181 * ia64_mca_handler
1182 *
1183 * This is uncorrectable machine check handler called from OS_MCA
1184 * dispatch code which is in turn called from SAL_CHECK().
1185 * This is the place where the core of OS MCA handling is done.
1186 * Right now the logs are extracted and displayed in a well-defined
1187 * format. This handler code is supposed to be run only on the
1188 * monarch processor. Once the monarch is done with MCA handling
1189 * further MCA logging is enabled by clearing logs.
1190 * Monarch also has the duty of sending wakeup-IPIs to pull the
1191 * slave processors out of rendezvous spinloop.
1192 *
1193 * If multiple processors call into OS_MCA, the first will become
1194 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1195 * bitmask. After the first monarch has processed its MCA, it
1196 * will wake up the next cpu in the mca_cpu bitmask and then go
1197 * into the rendezvous loop. When all processors have serviced
1198 * their MCA, the last monarch frees up the rest of the processors.
1199 */
1200 void
1201 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1202 struct ia64_sal_os_state *sos)
1203 {
1204 int recover, cpu = smp_processor_id();
1205 struct task_struct *previous_current;
1206 struct ia64_mca_notify_die nd =
1207 { .sos = sos, .monarch_cpu = &monarch_cpu };
1208 static atomic_t mca_count;
1209 static cpumask_t mca_cpu;
1210
1211 if (atomic_add_return(1, &mca_count) == 1) {
1212 monarch_cpu = cpu;
1213 sos->monarch = 1;
1214 } else {
1215 cpu_set(cpu, mca_cpu);
1216 sos->monarch = 0;
1217 }
1218 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1219 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1220
1221 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1222
1223 if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, (long)&nd, 0, 0)
1224 == NOTIFY_STOP)
1225 ia64_mca_spin(__FUNCTION__);
1226
1227 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1228 if (sos->monarch) {
1229 ia64_wait_for_slaves(cpu, "MCA");
1230
1231 /* Wakeup all the processors which are spinning in the
1232 * rendezvous loop. They will leave SAL, then spin in the OS
1233 * with interrupts disabled until this monarch cpu leaves the
1234 * MCA handler. That gets control back to the OS so we can
1235 * backtrace the other cpus, backtrace when spinning in SAL
1236 * does not work.
1237 */
1238 ia64_mca_wakeup_all();
1239 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, (long)&nd, 0, 0)
1240 == NOTIFY_STOP)
1241 ia64_mca_spin(__FUNCTION__);
1242 } else {
1243 while (cpu_isset(cpu, mca_cpu))
1244 cpu_relax(); /* spin until monarch wakes us */
1245 }
1246
1247 /* Get the MCA error record and log it */
1248 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1249
1250 /* MCA error recovery */
1251 recover = (ia64_mca_ucmc_extension
1252 && ia64_mca_ucmc_extension(
1253 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1254 sos));
1255
1256 if (recover) {
1257 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1258 rh->severity = sal_log_severity_corrected;
1259 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1260 sos->os_status = IA64_MCA_CORRECTED;
1261 } else {
1262 /* Dump buffered message to console */
1263 ia64_mlogbuf_finish(1);
1264 #ifdef CONFIG_KEXEC
1265 atomic_set(&kdump_in_progress, 1);
1266 monarch_cpu = -1;
1267 #endif
1268 }
1269 if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, (long)&nd, 0, recover)
1270 == NOTIFY_STOP)
1271 ia64_mca_spin(__FUNCTION__);
1272
1273
1274 if (atomic_dec_return(&mca_count) > 0) {
1275 int i;
1276
1277 /* wake up the next monarch cpu,
1278 * and put this cpu in the rendez loop.
1279 */
1280 for_each_online_cpu(i) {
1281 if (cpu_isset(i, mca_cpu)) {
1282 monarch_cpu = i;
1283 cpu_clear(i, mca_cpu); /* wake next cpu */
1284 while (monarch_cpu != -1)
1285 cpu_relax(); /* spin until last cpu leaves */
1286 set_curr_task(cpu, previous_current);
1287 ia64_mc_info.imi_rendez_checkin[cpu]
1288 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1289 return;
1290 }
1291 }
1292 }
1293 set_curr_task(cpu, previous_current);
1294 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1295 monarch_cpu = -1; /* This frees the slaves and previous monarchs */
1296 }
1297
1298 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1299 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1300
1301 /*
1302 * ia64_mca_cmc_int_handler
1303 *
1304 * This is corrected machine check interrupt handler.
1305 * Right now the logs are extracted and displayed in a well-defined
1306 * format.
1307 *
1308 * Inputs
1309 * interrupt number
1310 * client data arg ptr
1311 *
1312 * Outputs
1313 * None
1314 */
1315 static irqreturn_t
1316 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1317 {
1318 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1319 static int index;
1320 static DEFINE_SPINLOCK(cmc_history_lock);
1321
1322 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1323 __FUNCTION__, cmc_irq, smp_processor_id());
1324
1325 /* SAL spec states this should run w/ interrupts enabled */
1326 local_irq_enable();
1327
1328 spin_lock(&cmc_history_lock);
1329 if (!cmc_polling_enabled) {
1330 int i, count = 1; /* we know 1 happened now */
1331 unsigned long now = jiffies;
1332
1333 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1334 if (now - cmc_history[i] <= HZ)
1335 count++;
1336 }
1337
1338 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1339 if (count >= CMC_HISTORY_LENGTH) {
1340
1341 cmc_polling_enabled = 1;
1342 spin_unlock(&cmc_history_lock);
1343 /* If we're being hit with CMC interrupts, we won't
1344 * ever execute the schedule_work() below. Need to
1345 * disable CMC interrupts on this processor now.
1346 */
1347 ia64_mca_cmc_vector_disable(NULL);
1348 schedule_work(&cmc_disable_work);
1349
1350 /*
1351 * Corrected errors will still be corrected, but
1352 * make sure there's a log somewhere that indicates
1353 * something is generating more than we can handle.
1354 */
1355 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1356
1357 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1358
1359 /* lock already released, get out now */
1360 goto out;
1361 } else {
1362 cmc_history[index++] = now;
1363 if (index == CMC_HISTORY_LENGTH)
1364 index = 0;
1365 }
1366 }
1367 spin_unlock(&cmc_history_lock);
1368 out:
1369 /* Get the CMC error record and log it */
1370 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1371
1372 return IRQ_HANDLED;
1373 }
1374
1375 /*
1376 * ia64_mca_cmc_int_caller
1377 *
1378 * Triggered by sw interrupt from CMC polling routine. Calls
1379 * real interrupt handler and either triggers a sw interrupt
1380 * on the next cpu or does cleanup at the end.
1381 *
1382 * Inputs
1383 * interrupt number
1384 * client data arg ptr
1385 * Outputs
1386 * handled
1387 */
1388 static irqreturn_t
1389 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1390 {
1391 static int start_count = -1;
1392 unsigned int cpuid;
1393
1394 cpuid = smp_processor_id();
1395
1396 /* If first cpu, update count */
1397 if (start_count == -1)
1398 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1399
1400 ia64_mca_cmc_int_handler(cmc_irq, arg);
1401
1402 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1403
1404 if (cpuid < NR_CPUS) {
1405 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1406 } else {
1407 /* If no log record, switch out of polling mode */
1408 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1409
1410 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1411 schedule_work(&cmc_enable_work);
1412 cmc_polling_enabled = 0;
1413
1414 } else {
1415
1416 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1417 }
1418
1419 start_count = -1;
1420 }
1421
1422 return IRQ_HANDLED;
1423 }
1424
1425 /*
1426 * ia64_mca_cmc_poll
1427 *
1428 * Poll for Corrected Machine Checks (CMCs)
1429 *
1430 * Inputs : dummy(unused)
1431 * Outputs : None
1432 *
1433 */
1434 static void
1435 ia64_mca_cmc_poll (unsigned long dummy)
1436 {
1437 /* Trigger a CMC interrupt cascade */
1438 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1439 }
1440
1441 /*
1442 * ia64_mca_cpe_int_caller
1443 *
1444 * Triggered by sw interrupt from CPE polling routine. Calls
1445 * real interrupt handler and either triggers a sw interrupt
1446 * on the next cpu or does cleanup at the end.
1447 *
1448 * Inputs
1449 * interrupt number
1450 * client data arg ptr
1451 * Outputs
1452 * handled
1453 */
1454 #ifdef CONFIG_ACPI
1455
1456 static irqreturn_t
1457 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1458 {
1459 static int start_count = -1;
1460 static int poll_time = MIN_CPE_POLL_INTERVAL;
1461 unsigned int cpuid;
1462
1463 cpuid = smp_processor_id();
1464
1465 /* If first cpu, update count */
1466 if (start_count == -1)
1467 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1468
1469 ia64_mca_cpe_int_handler(cpe_irq, arg);
1470
1471 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1472
1473 if (cpuid < NR_CPUS) {
1474 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1475 } else {
1476 /*
1477 * If a log was recorded, increase our polling frequency,
1478 * otherwise, backoff or return to interrupt mode.
1479 */
1480 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1481 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1482 } else if (cpe_vector < 0) {
1483 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1484 } else {
1485 poll_time = MIN_CPE_POLL_INTERVAL;
1486
1487 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1488 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1489 cpe_poll_enabled = 0;
1490 }
1491
1492 if (cpe_poll_enabled)
1493 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1494 start_count = -1;
1495 }
1496
1497 return IRQ_HANDLED;
1498 }
1499
1500 /*
1501 * ia64_mca_cpe_poll
1502 *
1503 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1504 * on first cpu, from there it will trickle through all the cpus.
1505 *
1506 * Inputs : dummy(unused)
1507 * Outputs : None
1508 *
1509 */
1510 static void
1511 ia64_mca_cpe_poll (unsigned long dummy)
1512 {
1513 /* Trigger a CPE interrupt cascade */
1514 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1515 }
1516
1517 #endif /* CONFIG_ACPI */
1518
1519 static int
1520 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1521 {
1522 int c;
1523 struct task_struct *g, *t;
1524 if (val != DIE_INIT_MONARCH_PROCESS)
1525 return NOTIFY_DONE;
1526 #ifdef CONFIG_KEXEC
1527 if (atomic_read(&kdump_in_progress))
1528 return NOTIFY_DONE;
1529 #endif
1530
1531 /*
1532 * FIXME: mlogbuf will brim over with INIT stack dumps.
1533 * To enable show_stack from INIT, we use oops_in_progress which should
1534 * be used in real oops. This would cause something wrong after INIT.
1535 */
1536 BREAK_LOGLEVEL(console_loglevel);
1537 ia64_mlogbuf_dump_from_init();
1538
1539 printk(KERN_ERR "Processes interrupted by INIT -");
1540 for_each_online_cpu(c) {
1541 struct ia64_sal_os_state *s;
1542 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1543 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1544 g = s->prev_task;
1545 if (g) {
1546 if (g->pid)
1547 printk(" %d", g->pid);
1548 else
1549 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1550 }
1551 }
1552 printk("\n\n");
1553 if (read_trylock(&tasklist_lock)) {
1554 do_each_thread (g, t) {
1555 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1556 show_stack(t, NULL);
1557 } while_each_thread (g, t);
1558 read_unlock(&tasklist_lock);
1559 }
1560 /* FIXME: This will not restore zapped printk locks. */
1561 RESTORE_LOGLEVEL(console_loglevel);
1562 return NOTIFY_DONE;
1563 }
1564
1565 /*
1566 * C portion of the OS INIT handler
1567 *
1568 * Called from ia64_os_init_dispatch
1569 *
1570 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1571 * this event. This code is used for both monarch and slave INIT events, see
1572 * sos->monarch.
1573 *
1574 * All INIT events switch to the INIT stack and change the previous process to
1575 * blocked status. If one of the INIT events is the monarch then we are
1576 * probably processing the nmi button/command. Use the monarch cpu to dump all
1577 * the processes. The slave INIT events all spin until the monarch cpu
1578 * returns. We can also get INIT slave events for MCA, in which case the MCA
1579 * process is the monarch.
1580 */
1581
1582 void
1583 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1584 struct ia64_sal_os_state *sos)
1585 {
1586 static atomic_t slaves;
1587 static atomic_t monarchs;
1588 struct task_struct *previous_current;
1589 int cpu = smp_processor_id();
1590 struct ia64_mca_notify_die nd =
1591 { .sos = sos, .monarch_cpu = &monarch_cpu };
1592
1593 (void) notify_die(DIE_INIT_ENTER, "INIT", regs, (long)&nd, 0, 0);
1594
1595 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1596 sos->proc_state_param, cpu, sos->monarch);
1597 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1598
1599 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1600 sos->os_status = IA64_INIT_RESUME;
1601
1602 /* FIXME: Workaround for broken proms that drive all INIT events as
1603 * slaves. The last slave that enters is promoted to be a monarch.
1604 * Remove this code in September 2006, that gives platforms a year to
1605 * fix their proms and get their customers updated.
1606 */
1607 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1608 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1609 __FUNCTION__, cpu);
1610 atomic_dec(&slaves);
1611 sos->monarch = 1;
1612 }
1613
1614 /* FIXME: Workaround for broken proms that drive all INIT events as
1615 * monarchs. Second and subsequent monarchs are demoted to slaves.
1616 * Remove this code in September 2006, that gives platforms a year to
1617 * fix their proms and get their customers updated.
1618 */
1619 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1620 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1621 __FUNCTION__, cpu);
1622 atomic_dec(&monarchs);
1623 sos->monarch = 0;
1624 }
1625
1626 if (!sos->monarch) {
1627 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1628 while (monarch_cpu == -1)
1629 cpu_relax(); /* spin until monarch enters */
1630 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, (long)&nd, 0, 0)
1631 == NOTIFY_STOP)
1632 ia64_mca_spin(__FUNCTION__);
1633 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1634 == NOTIFY_STOP)
1635 ia64_mca_spin(__FUNCTION__);
1636 while (monarch_cpu != -1)
1637 cpu_relax(); /* spin until monarch leaves */
1638 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1639 == NOTIFY_STOP)
1640 ia64_mca_spin(__FUNCTION__);
1641 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1642 set_curr_task(cpu, previous_current);
1643 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1644 atomic_dec(&slaves);
1645 return;
1646 }
1647
1648 monarch_cpu = cpu;
1649 if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, (long)&nd, 0, 0)
1650 == NOTIFY_STOP)
1651 ia64_mca_spin(__FUNCTION__);
1652
1653 /*
1654 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1655 * generated via the BMC's command-line interface, but since the console is on the
1656 * same serial line, the user will need some time to switch out of the BMC before
1657 * the dump begins.
1658 */
1659 mprintk("Delaying for 5 seconds...\n");
1660 udelay(5*1000000);
1661 ia64_wait_for_slaves(cpu, "INIT");
1662 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1663 * to default_monarch_init_process() above and just print all the
1664 * tasks.
1665 */
1666 if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1667 == NOTIFY_STOP)
1668 ia64_mca_spin(__FUNCTION__);
1669 if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1670 == NOTIFY_STOP)
1671 ia64_mca_spin(__FUNCTION__);
1672 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1673 atomic_dec(&monarchs);
1674 set_curr_task(cpu, previous_current);
1675 monarch_cpu = -1;
1676 return;
1677 }
1678
1679 static int __init
1680 ia64_mca_disable_cpe_polling(char *str)
1681 {
1682 cpe_poll_enabled = 0;
1683 return 1;
1684 }
1685
1686 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1687
1688 static struct irqaction cmci_irqaction = {
1689 .handler = ia64_mca_cmc_int_handler,
1690 .flags = IRQF_DISABLED,
1691 .name = "cmc_hndlr"
1692 };
1693
1694 static struct irqaction cmcp_irqaction = {
1695 .handler = ia64_mca_cmc_int_caller,
1696 .flags = IRQF_DISABLED,
1697 .name = "cmc_poll"
1698 };
1699
1700 static struct irqaction mca_rdzv_irqaction = {
1701 .handler = ia64_mca_rendez_int_handler,
1702 .flags = IRQF_DISABLED,
1703 .name = "mca_rdzv"
1704 };
1705
1706 static struct irqaction mca_wkup_irqaction = {
1707 .handler = ia64_mca_wakeup_int_handler,
1708 .flags = IRQF_DISABLED,
1709 .name = "mca_wkup"
1710 };
1711
1712 #ifdef CONFIG_ACPI
1713 static struct irqaction mca_cpe_irqaction = {
1714 .handler = ia64_mca_cpe_int_handler,
1715 .flags = IRQF_DISABLED,
1716 .name = "cpe_hndlr"
1717 };
1718
1719 static struct irqaction mca_cpep_irqaction = {
1720 .handler = ia64_mca_cpe_int_caller,
1721 .flags = IRQF_DISABLED,
1722 .name = "cpe_poll"
1723 };
1724 #endif /* CONFIG_ACPI */
1725
1726 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1727 * these stacks can never sleep, they cannot return from the kernel to user
1728 * space, they do not appear in a normal ps listing. So there is no need to
1729 * format most of the fields.
1730 */
1731
1732 static void __cpuinit
1733 format_mca_init_stack(void *mca_data, unsigned long offset,
1734 const char *type, int cpu)
1735 {
1736 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1737 struct thread_info *ti;
1738 memset(p, 0, KERNEL_STACK_SIZE);
1739 ti = task_thread_info(p);
1740 ti->flags = _TIF_MCA_INIT;
1741 ti->preempt_count = 1;
1742 ti->task = p;
1743 ti->cpu = cpu;
1744 p->stack = ti;
1745 p->state = TASK_UNINTERRUPTIBLE;
1746 cpu_set(cpu, p->cpus_allowed);
1747 INIT_LIST_HEAD(&p->tasks);
1748 p->parent = p->real_parent = p->group_leader = p;
1749 INIT_LIST_HEAD(&p->children);
1750 INIT_LIST_HEAD(&p->sibling);
1751 strncpy(p->comm, type, sizeof(p->comm)-1);
1752 }
1753
1754 /* Caller prevents this from being called after init */
1755 static void * __init_refok mca_bootmem(void)
1756 {
1757 void *p;
1758
1759 p = alloc_bootmem(sizeof(struct ia64_mca_cpu) * NR_CPUS +
1760 KERNEL_STACK_SIZE);
1761 return (void *)ALIGN((unsigned long)p, KERNEL_STACK_SIZE);
1762 }
1763
1764 /* Do per-CPU MCA-related initialization. */
1765 void __cpuinit
1766 ia64_mca_cpu_init(void *cpu_data)
1767 {
1768 void *pal_vaddr;
1769 static int first_time = 1;
1770
1771 if (first_time) {
1772 void *mca_data;
1773 int cpu;
1774
1775 first_time = 0;
1776 mca_data = mca_bootmem();
1777 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1778 format_mca_init_stack(mca_data,
1779 offsetof(struct ia64_mca_cpu, mca_stack),
1780 "MCA", cpu);
1781 format_mca_init_stack(mca_data,
1782 offsetof(struct ia64_mca_cpu, init_stack),
1783 "INIT", cpu);
1784 __per_cpu_mca[cpu] = __pa(mca_data);
1785 mca_data += sizeof(struct ia64_mca_cpu);
1786 }
1787 }
1788
1789 /*
1790 * The MCA info structure was allocated earlier and its
1791 * physical address saved in __per_cpu_mca[cpu]. Copy that
1792 * address * to ia64_mca_data so we can access it as a per-CPU
1793 * variable.
1794 */
1795 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1796
1797 /*
1798 * Stash away a copy of the PTE needed to map the per-CPU page.
1799 * We may need it during MCA recovery.
1800 */
1801 __get_cpu_var(ia64_mca_per_cpu_pte) =
1802 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1803
1804 /*
1805 * Also, stash away a copy of the PAL address and the PTE
1806 * needed to map it.
1807 */
1808 pal_vaddr = efi_get_pal_addr();
1809 if (!pal_vaddr)
1810 return;
1811 __get_cpu_var(ia64_mca_pal_base) =
1812 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1813 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1814 PAGE_KERNEL));
1815 }
1816
1817 static void __cpuinit ia64_mca_cmc_vector_adjust(void *dummy)
1818 {
1819 unsigned long flags;
1820
1821 local_irq_save(flags);
1822 if (!cmc_polling_enabled)
1823 ia64_mca_cmc_vector_enable(NULL);
1824 local_irq_restore(flags);
1825 }
1826
1827 static int __cpuinit mca_cpu_callback(struct notifier_block *nfb,
1828 unsigned long action,
1829 void *hcpu)
1830 {
1831 int hotcpu = (unsigned long) hcpu;
1832
1833 switch (action) {
1834 case CPU_ONLINE:
1835 case CPU_ONLINE_FROZEN:
1836 smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
1837 NULL, 1, 0);
1838 break;
1839 }
1840 return NOTIFY_OK;
1841 }
1842
1843 static struct notifier_block mca_cpu_notifier __cpuinitdata = {
1844 .notifier_call = mca_cpu_callback
1845 };
1846
1847 /*
1848 * ia64_mca_init
1849 *
1850 * Do all the system level mca specific initialization.
1851 *
1852 * 1. Register spinloop and wakeup request interrupt vectors
1853 *
1854 * 2. Register OS_MCA handler entry point
1855 *
1856 * 3. Register OS_INIT handler entry point
1857 *
1858 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1859 *
1860 * Note that this initialization is done very early before some kernel
1861 * services are available.
1862 *
1863 * Inputs : None
1864 *
1865 * Outputs : None
1866 */
1867 void __init
1868 ia64_mca_init(void)
1869 {
1870 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1871 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1872 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1873 int i;
1874 s64 rc;
1875 struct ia64_sal_retval isrv;
1876 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1877 static struct notifier_block default_init_monarch_nb = {
1878 .notifier_call = default_monarch_init_process,
1879 .priority = 0/* we need to notified last */
1880 };
1881
1882 IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1883
1884 /* Clear the Rendez checkin flag for all cpus */
1885 for(i = 0 ; i < NR_CPUS; i++)
1886 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1887
1888 /*
1889 * Register the rendezvous spinloop and wakeup mechanism with SAL
1890 */
1891
1892 /* Register the rendezvous interrupt vector with SAL */
1893 while (1) {
1894 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1895 SAL_MC_PARAM_MECHANISM_INT,
1896 IA64_MCA_RENDEZ_VECTOR,
1897 timeout,
1898 SAL_MC_PARAM_RZ_ALWAYS);
1899 rc = isrv.status;
1900 if (rc == 0)
1901 break;
1902 if (rc == -2) {
1903 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1904 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1905 timeout = isrv.v0;
1906 (void) notify_die(DIE_MCA_NEW_TIMEOUT, "MCA", NULL, timeout, 0, 0);
1907 continue;
1908 }
1909 printk(KERN_ERR "Failed to register rendezvous interrupt "
1910 "with SAL (status %ld)\n", rc);
1911 return;
1912 }
1913
1914 /* Register the wakeup interrupt vector with SAL */
1915 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1916 SAL_MC_PARAM_MECHANISM_INT,
1917 IA64_MCA_WAKEUP_VECTOR,
1918 0, 0);
1919 rc = isrv.status;
1920 if (rc) {
1921 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1922 "(status %ld)\n", rc);
1923 return;
1924 }
1925
1926 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1927
1928 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1929 /*
1930 * XXX - disable SAL checksum by setting size to 0; should be
1931 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1932 */
1933 ia64_mc_info.imi_mca_handler_size = 0;
1934
1935 /* Register the os mca handler with SAL */
1936 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1937 ia64_mc_info.imi_mca_handler,
1938 ia64_tpa(mca_hldlr_ptr->gp),
1939 ia64_mc_info.imi_mca_handler_size,
1940 0, 0, 0)))
1941 {
1942 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1943 "(status %ld)\n", rc);
1944 return;
1945 }
1946
1947 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1948 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1949
1950 /*
1951 * XXX - disable SAL checksum by setting size to 0, should be
1952 * size of the actual init handler in mca_asm.S.
1953 */
1954 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1955 ia64_mc_info.imi_monarch_init_handler_size = 0;
1956 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
1957 ia64_mc_info.imi_slave_init_handler_size = 0;
1958
1959 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1960 ia64_mc_info.imi_monarch_init_handler);
1961
1962 /* Register the os init handler with SAL */
1963 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1964 ia64_mc_info.imi_monarch_init_handler,
1965 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1966 ia64_mc_info.imi_monarch_init_handler_size,
1967 ia64_mc_info.imi_slave_init_handler,
1968 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1969 ia64_mc_info.imi_slave_init_handler_size)))
1970 {
1971 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1972 "(status %ld)\n", rc);
1973 return;
1974 }
1975 if (register_die_notifier(&default_init_monarch_nb)) {
1976 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1977 return;
1978 }
1979
1980 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1981
1982 /*
1983 * Configure the CMCI/P vector and handler. Interrupts for CMC are
1984 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1985 */
1986 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1987 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1988 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
1989
1990 /* Setup the MCA rendezvous interrupt vector */
1991 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1992
1993 /* Setup the MCA wakeup interrupt vector */
1994 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1995
1996 #ifdef CONFIG_ACPI
1997 /* Setup the CPEI/P handler */
1998 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1999 #endif
2000
2001 /* Initialize the areas set aside by the OS to buffer the
2002 * platform/processor error states for MCA/INIT/CMC
2003 * handling.
2004 */
2005 ia64_log_init(SAL_INFO_TYPE_MCA);
2006 ia64_log_init(SAL_INFO_TYPE_INIT);
2007 ia64_log_init(SAL_INFO_TYPE_CMC);
2008 ia64_log_init(SAL_INFO_TYPE_CPE);
2009
2010 mca_init = 1;
2011 printk(KERN_INFO "MCA related initialization done\n");
2012 }
2013
2014 /*
2015 * ia64_mca_late_init
2016 *
2017 * Opportunity to setup things that require initialization later
2018 * than ia64_mca_init. Setup a timer to poll for CPEs if the
2019 * platform doesn't support an interrupt driven mechanism.
2020 *
2021 * Inputs : None
2022 * Outputs : Status
2023 */
2024 static int __init
2025 ia64_mca_late_init(void)
2026 {
2027 if (!mca_init)
2028 return 0;
2029
2030 register_hotcpu_notifier(&mca_cpu_notifier);
2031
2032 /* Setup the CMCI/P vector and handler */
2033 init_timer(&cmc_poll_timer);
2034 cmc_poll_timer.function = ia64_mca_cmc_poll;
2035
2036 /* Unmask/enable the vector */
2037 cmc_polling_enabled = 0;
2038 schedule_work(&cmc_enable_work);
2039
2040 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
2041
2042 #ifdef CONFIG_ACPI
2043 /* Setup the CPEI/P vector and handler */
2044 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2045 init_timer(&cpe_poll_timer);
2046 cpe_poll_timer.function = ia64_mca_cpe_poll;
2047
2048 {
2049 irq_desc_t *desc;
2050 unsigned int irq;
2051
2052 if (cpe_vector >= 0) {
2053 /* If platform supports CPEI, enable the irq. */
2054 irq = local_vector_to_irq(cpe_vector);
2055 if (irq > 0) {
2056 cpe_poll_enabled = 0;
2057 desc = irq_desc + irq;
2058 desc->status |= IRQ_PER_CPU;
2059 setup_irq(irq, &mca_cpe_irqaction);
2060 ia64_cpe_irq = irq;
2061 ia64_mca_register_cpev(cpe_vector);
2062 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2063 __FUNCTION__);
2064 return 0;
2065 }
2066 printk(KERN_ERR "%s: Failed to find irq for CPE "
2067 "interrupt handler, vector %d\n",
2068 __FUNCTION__, cpe_vector);
2069 }
2070 /* If platform doesn't support CPEI, get the timer going. */
2071 if (cpe_poll_enabled) {
2072 ia64_mca_cpe_poll(0UL);
2073 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
2074 }
2075 }
2076 #endif
2077
2078 return 0;
2079 }
2080
2081 device_initcall(ia64_mca_late_init);
This page took 0.193486 seconds and 6 git commands to generate.