Pull nptcg into release branch
[deliverable/linux.git] / arch / ia64 / kernel / mca.c
1 /*
2 * File: mca.c
3 * Purpose: Generic MCA handling layer
4 *
5 * Copyright (C) 2003 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 *
8 * Copyright (C) 2002 Dell Inc.
9 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
10 *
11 * Copyright (C) 2002 Intel
12 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
13 *
14 * Copyright (C) 2001 Intel
15 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
16 *
17 * Copyright (C) 2000 Intel
18 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
19 *
20 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
21 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
22 *
23 * Copyright (C) 2006 FUJITSU LIMITED
24 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
25 *
26 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
27 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
28 * added min save state dump, added INIT handler.
29 *
30 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
31 * Added setup of CMCI and CPEI IRQs, logging of corrected platform
32 * errors, completed code for logging of corrected & uncorrected
33 * machine check errors, and updated for conformance with Nov. 2000
34 * revision of the SAL 3.0 spec.
35 *
36 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
37 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
38 * set SAL default return values, changed error record structure to
39 * linked list, added init call to sal_get_state_info_size().
40 *
41 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
42 * GUID cleanups.
43 *
44 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
45 * Added INIT backtrace support.
46 *
47 * 2003-12-08 Keith Owens <kaos@sgi.com>
48 * smp_call_function() must not be called from interrupt context
49 * (can deadlock on tasklist_lock).
50 * Use keventd to call smp_call_function().
51 *
52 * 2004-02-01 Keith Owens <kaos@sgi.com>
53 * Avoid deadlock when using printk() for MCA and INIT records.
54 * Delete all record printing code, moved to salinfo_decode in user
55 * space. Mark variables and functions static where possible.
56 * Delete dead variables and functions. Reorder to remove the need
57 * for forward declarations and to consolidate related code.
58 *
59 * 2005-08-12 Keith Owens <kaos@sgi.com>
60 * Convert MCA/INIT handlers to use per event stacks and SAL/OS
61 * state.
62 *
63 * 2005-10-07 Keith Owens <kaos@sgi.com>
64 * Add notify_die() hooks.
65 *
66 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
67 * Add printing support for MCA/INIT.
68 *
69 * 2007-04-27 Russ Anderson <rja@sgi.com>
70 * Support multiple cpus going through OS_MCA in the same event.
71 */
72 #include <linux/types.h>
73 #include <linux/init.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/irq.h>
77 #include <linux/bootmem.h>
78 #include <linux/acpi.h>
79 #include <linux/timer.h>
80 #include <linux/module.h>
81 #include <linux/kernel.h>
82 #include <linux/smp.h>
83 #include <linux/workqueue.h>
84 #include <linux/cpumask.h>
85 #include <linux/kdebug.h>
86 #include <linux/cpu.h>
87
88 #include <asm/delay.h>
89 #include <asm/machvec.h>
90 #include <asm/meminit.h>
91 #include <asm/page.h>
92 #include <asm/ptrace.h>
93 #include <asm/system.h>
94 #include <asm/sal.h>
95 #include <asm/mca.h>
96 #include <asm/kexec.h>
97
98 #include <asm/irq.h>
99 #include <asm/hw_irq.h>
100 #include <asm/tlb.h>
101
102 #include "mca_drv.h"
103 #include "entry.h"
104
105 #if defined(IA64_MCA_DEBUG_INFO)
106 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
107 #else
108 # define IA64_MCA_DEBUG(fmt...)
109 #endif
110
111 /* Used by mca_asm.S */
112 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
113 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
114 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
115 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
116 DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */
117
118 unsigned long __per_cpu_mca[NR_CPUS];
119
120 /* In mca_asm.S */
121 extern void ia64_os_init_dispatch_monarch (void);
122 extern void ia64_os_init_dispatch_slave (void);
123
124 static int monarch_cpu = -1;
125
126 static ia64_mc_info_t ia64_mc_info;
127
128 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
129 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
130 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
131 #define CPE_HISTORY_LENGTH 5
132 #define CMC_HISTORY_LENGTH 5
133
134 #ifdef CONFIG_ACPI
135 static struct timer_list cpe_poll_timer;
136 #endif
137 static struct timer_list cmc_poll_timer;
138 /*
139 * This variable tells whether we are currently in polling mode.
140 * Start with this in the wrong state so we won't play w/ timers
141 * before the system is ready.
142 */
143 static int cmc_polling_enabled = 1;
144
145 /*
146 * Clearing this variable prevents CPE polling from getting activated
147 * in mca_late_init. Use it if your system doesn't provide a CPEI,
148 * but encounters problems retrieving CPE logs. This should only be
149 * necessary for debugging.
150 */
151 static int cpe_poll_enabled = 1;
152
153 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
154
155 static int mca_init __initdata;
156
157 /*
158 * limited & delayed printing support for MCA/INIT handler
159 */
160
161 #define mprintk(fmt...) ia64_mca_printk(fmt)
162
163 #define MLOGBUF_SIZE (512+256*NR_CPUS)
164 #define MLOGBUF_MSGMAX 256
165 static char mlogbuf[MLOGBUF_SIZE];
166 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
167 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
168 static unsigned long mlogbuf_start;
169 static unsigned long mlogbuf_end;
170 static unsigned int mlogbuf_finished = 0;
171 static unsigned long mlogbuf_timestamp = 0;
172
173 static int loglevel_save = -1;
174 #define BREAK_LOGLEVEL(__console_loglevel) \
175 oops_in_progress = 1; \
176 if (loglevel_save < 0) \
177 loglevel_save = __console_loglevel; \
178 __console_loglevel = 15;
179
180 #define RESTORE_LOGLEVEL(__console_loglevel) \
181 if (loglevel_save >= 0) { \
182 __console_loglevel = loglevel_save; \
183 loglevel_save = -1; \
184 } \
185 mlogbuf_finished = 0; \
186 oops_in_progress = 0;
187
188 /*
189 * Push messages into buffer, print them later if not urgent.
190 */
191 void ia64_mca_printk(const char *fmt, ...)
192 {
193 va_list args;
194 int printed_len;
195 char temp_buf[MLOGBUF_MSGMAX];
196 char *p;
197
198 va_start(args, fmt);
199 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
200 va_end(args);
201
202 /* Copy the output into mlogbuf */
203 if (oops_in_progress) {
204 /* mlogbuf was abandoned, use printk directly instead. */
205 printk(temp_buf);
206 } else {
207 spin_lock(&mlogbuf_wlock);
208 for (p = temp_buf; *p; p++) {
209 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
210 if (next != mlogbuf_start) {
211 mlogbuf[mlogbuf_end] = *p;
212 mlogbuf_end = next;
213 } else {
214 /* buffer full */
215 break;
216 }
217 }
218 mlogbuf[mlogbuf_end] = '\0';
219 spin_unlock(&mlogbuf_wlock);
220 }
221 }
222 EXPORT_SYMBOL(ia64_mca_printk);
223
224 /*
225 * Print buffered messages.
226 * NOTE: call this after returning normal context. (ex. from salinfod)
227 */
228 void ia64_mlogbuf_dump(void)
229 {
230 char temp_buf[MLOGBUF_MSGMAX];
231 char *p;
232 unsigned long index;
233 unsigned long flags;
234 unsigned int printed_len;
235
236 /* Get output from mlogbuf */
237 while (mlogbuf_start != mlogbuf_end) {
238 temp_buf[0] = '\0';
239 p = temp_buf;
240 printed_len = 0;
241
242 spin_lock_irqsave(&mlogbuf_rlock, flags);
243
244 index = mlogbuf_start;
245 while (index != mlogbuf_end) {
246 *p = mlogbuf[index];
247 index = (index + 1) % MLOGBUF_SIZE;
248 if (!*p)
249 break;
250 p++;
251 if (++printed_len >= MLOGBUF_MSGMAX - 1)
252 break;
253 }
254 *p = '\0';
255 if (temp_buf[0])
256 printk(temp_buf);
257 mlogbuf_start = index;
258
259 mlogbuf_timestamp = 0;
260 spin_unlock_irqrestore(&mlogbuf_rlock, flags);
261 }
262 }
263 EXPORT_SYMBOL(ia64_mlogbuf_dump);
264
265 /*
266 * Call this if system is going to down or if immediate flushing messages to
267 * console is required. (ex. recovery was failed, crash dump is going to be
268 * invoked, long-wait rendezvous etc.)
269 * NOTE: this should be called from monarch.
270 */
271 static void ia64_mlogbuf_finish(int wait)
272 {
273 BREAK_LOGLEVEL(console_loglevel);
274
275 spin_lock_init(&mlogbuf_rlock);
276 ia64_mlogbuf_dump();
277 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
278 "MCA/INIT might be dodgy or fail.\n");
279
280 if (!wait)
281 return;
282
283 /* wait for console */
284 printk("Delaying for 5 seconds...\n");
285 udelay(5*1000000);
286
287 mlogbuf_finished = 1;
288 }
289
290 /*
291 * Print buffered messages from INIT context.
292 */
293 static void ia64_mlogbuf_dump_from_init(void)
294 {
295 if (mlogbuf_finished)
296 return;
297
298 if (mlogbuf_timestamp && (mlogbuf_timestamp + 30*HZ > jiffies)) {
299 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
300 " and the system seems to be messed up.\n");
301 ia64_mlogbuf_finish(0);
302 return;
303 }
304
305 if (!spin_trylock(&mlogbuf_rlock)) {
306 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
307 "Generated messages other than stack dump will be "
308 "buffered to mlogbuf and will be printed later.\n");
309 printk(KERN_ERR "INIT: If messages would not printed after "
310 "this INIT, wait 30sec and assert INIT again.\n");
311 if (!mlogbuf_timestamp)
312 mlogbuf_timestamp = jiffies;
313 return;
314 }
315 spin_unlock(&mlogbuf_rlock);
316 ia64_mlogbuf_dump();
317 }
318
319 static void inline
320 ia64_mca_spin(const char *func)
321 {
322 if (monarch_cpu == smp_processor_id())
323 ia64_mlogbuf_finish(0);
324 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
325 while (1)
326 cpu_relax();
327 }
328 /*
329 * IA64_MCA log support
330 */
331 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
332 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
333
334 typedef struct ia64_state_log_s
335 {
336 spinlock_t isl_lock;
337 int isl_index;
338 unsigned long isl_count;
339 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
340 } ia64_state_log_t;
341
342 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
343
344 #define IA64_LOG_ALLOCATE(it, size) \
345 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
346 (ia64_err_rec_t *)alloc_bootmem(size); \
347 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
348 (ia64_err_rec_t *)alloc_bootmem(size);}
349 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
350 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
351 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
352 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
353 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
354 #define IA64_LOG_INDEX_INC(it) \
355 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
356 ia64_state_log[it].isl_count++;}
357 #define IA64_LOG_INDEX_DEC(it) \
358 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
359 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
360 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
361 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
362
363 /*
364 * ia64_log_init
365 * Reset the OS ia64 log buffer
366 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
367 * Outputs : None
368 */
369 static void __init
370 ia64_log_init(int sal_info_type)
371 {
372 u64 max_size = 0;
373
374 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
375 IA64_LOG_LOCK_INIT(sal_info_type);
376
377 // SAL will tell us the maximum size of any error record of this type
378 max_size = ia64_sal_get_state_info_size(sal_info_type);
379 if (!max_size)
380 /* alloc_bootmem() doesn't like zero-sized allocations! */
381 return;
382
383 // set up OS data structures to hold error info
384 IA64_LOG_ALLOCATE(sal_info_type, max_size);
385 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
386 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
387 }
388
389 /*
390 * ia64_log_get
391 *
392 * Get the current MCA log from SAL and copy it into the OS log buffer.
393 *
394 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
395 * irq_safe whether you can use printk at this point
396 * Outputs : size (total record length)
397 * *buffer (ptr to error record)
398 *
399 */
400 static u64
401 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
402 {
403 sal_log_record_header_t *log_buffer;
404 u64 total_len = 0;
405 unsigned long s;
406
407 IA64_LOG_LOCK(sal_info_type);
408
409 /* Get the process state information */
410 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
411
412 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
413
414 if (total_len) {
415 IA64_LOG_INDEX_INC(sal_info_type);
416 IA64_LOG_UNLOCK(sal_info_type);
417 if (irq_safe) {
418 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
419 __func__, sal_info_type, total_len);
420 }
421 *buffer = (u8 *) log_buffer;
422 return total_len;
423 } else {
424 IA64_LOG_UNLOCK(sal_info_type);
425 return 0;
426 }
427 }
428
429 /*
430 * ia64_mca_log_sal_error_record
431 *
432 * This function retrieves a specified error record type from SAL
433 * and wakes up any processes waiting for error records.
434 *
435 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
436 * FIXME: remove MCA and irq_safe.
437 */
438 static void
439 ia64_mca_log_sal_error_record(int sal_info_type)
440 {
441 u8 *buffer;
442 sal_log_record_header_t *rh;
443 u64 size;
444 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
445 #ifdef IA64_MCA_DEBUG_INFO
446 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
447 #endif
448
449 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
450 if (!size)
451 return;
452
453 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
454
455 if (irq_safe)
456 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
457 smp_processor_id(),
458 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
459
460 /* Clear logs from corrected errors in case there's no user-level logger */
461 rh = (sal_log_record_header_t *)buffer;
462 if (rh->severity == sal_log_severity_corrected)
463 ia64_sal_clear_state_info(sal_info_type);
464 }
465
466 /*
467 * search_mca_table
468 * See if the MCA surfaced in an instruction range
469 * that has been tagged as recoverable.
470 *
471 * Inputs
472 * first First address range to check
473 * last Last address range to check
474 * ip Instruction pointer, address we are looking for
475 *
476 * Return value:
477 * 1 on Success (in the table)/ 0 on Failure (not in the table)
478 */
479 int
480 search_mca_table (const struct mca_table_entry *first,
481 const struct mca_table_entry *last,
482 unsigned long ip)
483 {
484 const struct mca_table_entry *curr;
485 u64 curr_start, curr_end;
486
487 curr = first;
488 while (curr <= last) {
489 curr_start = (u64) &curr->start_addr + curr->start_addr;
490 curr_end = (u64) &curr->end_addr + curr->end_addr;
491
492 if ((ip >= curr_start) && (ip <= curr_end)) {
493 return 1;
494 }
495 curr++;
496 }
497 return 0;
498 }
499
500 /* Given an address, look for it in the mca tables. */
501 int mca_recover_range(unsigned long addr)
502 {
503 extern struct mca_table_entry __start___mca_table[];
504 extern struct mca_table_entry __stop___mca_table[];
505
506 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
507 }
508 EXPORT_SYMBOL_GPL(mca_recover_range);
509
510 #ifdef CONFIG_ACPI
511
512 int cpe_vector = -1;
513 int ia64_cpe_irq = -1;
514
515 static irqreturn_t
516 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
517 {
518 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
519 static int index;
520 static DEFINE_SPINLOCK(cpe_history_lock);
521
522 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
523 __func__, cpe_irq, smp_processor_id());
524
525 /* SAL spec states this should run w/ interrupts enabled */
526 local_irq_enable();
527
528 spin_lock(&cpe_history_lock);
529 if (!cpe_poll_enabled && cpe_vector >= 0) {
530
531 int i, count = 1; /* we know 1 happened now */
532 unsigned long now = jiffies;
533
534 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
535 if (now - cpe_history[i] <= HZ)
536 count++;
537 }
538
539 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
540 if (count >= CPE_HISTORY_LENGTH) {
541
542 cpe_poll_enabled = 1;
543 spin_unlock(&cpe_history_lock);
544 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
545
546 /*
547 * Corrected errors will still be corrected, but
548 * make sure there's a log somewhere that indicates
549 * something is generating more than we can handle.
550 */
551 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
552
553 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
554
555 /* lock already released, get out now */
556 goto out;
557 } else {
558 cpe_history[index++] = now;
559 if (index == CPE_HISTORY_LENGTH)
560 index = 0;
561 }
562 }
563 spin_unlock(&cpe_history_lock);
564 out:
565 /* Get the CPE error record and log it */
566 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
567
568 return IRQ_HANDLED;
569 }
570
571 #endif /* CONFIG_ACPI */
572
573 #ifdef CONFIG_ACPI
574 /*
575 * ia64_mca_register_cpev
576 *
577 * Register the corrected platform error vector with SAL.
578 *
579 * Inputs
580 * cpev Corrected Platform Error Vector number
581 *
582 * Outputs
583 * None
584 */
585 void
586 ia64_mca_register_cpev (int cpev)
587 {
588 /* Register the CPE interrupt vector with SAL */
589 struct ia64_sal_retval isrv;
590
591 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
592 if (isrv.status) {
593 printk(KERN_ERR "Failed to register Corrected Platform "
594 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
595 return;
596 }
597
598 IA64_MCA_DEBUG("%s: corrected platform error "
599 "vector %#x registered\n", __func__, cpev);
600 }
601 #endif /* CONFIG_ACPI */
602
603 /*
604 * ia64_mca_cmc_vector_setup
605 *
606 * Setup the corrected machine check vector register in the processor.
607 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
608 * This function is invoked on a per-processor basis.
609 *
610 * Inputs
611 * None
612 *
613 * Outputs
614 * None
615 */
616 void __cpuinit
617 ia64_mca_cmc_vector_setup (void)
618 {
619 cmcv_reg_t cmcv;
620
621 cmcv.cmcv_regval = 0;
622 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
623 cmcv.cmcv_vector = IA64_CMC_VECTOR;
624 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
625
626 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
627 __func__, smp_processor_id(), IA64_CMC_VECTOR);
628
629 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
630 __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
631 }
632
633 /*
634 * ia64_mca_cmc_vector_disable
635 *
636 * Mask the corrected machine check vector register in the processor.
637 * This function is invoked on a per-processor basis.
638 *
639 * Inputs
640 * dummy(unused)
641 *
642 * Outputs
643 * None
644 */
645 static void
646 ia64_mca_cmc_vector_disable (void *dummy)
647 {
648 cmcv_reg_t cmcv;
649
650 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
651
652 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
653 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
654
655 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
656 __func__, smp_processor_id(), cmcv.cmcv_vector);
657 }
658
659 /*
660 * ia64_mca_cmc_vector_enable
661 *
662 * Unmask the corrected machine check vector register in the processor.
663 * This function is invoked on a per-processor basis.
664 *
665 * Inputs
666 * dummy(unused)
667 *
668 * Outputs
669 * None
670 */
671 static void
672 ia64_mca_cmc_vector_enable (void *dummy)
673 {
674 cmcv_reg_t cmcv;
675
676 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
677
678 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
679 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
680
681 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
682 __func__, smp_processor_id(), cmcv.cmcv_vector);
683 }
684
685 /*
686 * ia64_mca_cmc_vector_disable_keventd
687 *
688 * Called via keventd (smp_call_function() is not safe in interrupt context) to
689 * disable the cmc interrupt vector.
690 */
691 static void
692 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
693 {
694 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
695 }
696
697 /*
698 * ia64_mca_cmc_vector_enable_keventd
699 *
700 * Called via keventd (smp_call_function() is not safe in interrupt context) to
701 * enable the cmc interrupt vector.
702 */
703 static void
704 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
705 {
706 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
707 }
708
709 /*
710 * ia64_mca_wakeup
711 *
712 * Send an inter-cpu interrupt to wake-up a particular cpu.
713 *
714 * Inputs : cpuid
715 * Outputs : None
716 */
717 static void
718 ia64_mca_wakeup(int cpu)
719 {
720 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
721 }
722
723 /*
724 * ia64_mca_wakeup_all
725 *
726 * Wakeup all the slave cpus which have rendez'ed previously.
727 *
728 * Inputs : None
729 * Outputs : None
730 */
731 static void
732 ia64_mca_wakeup_all(void)
733 {
734 int cpu;
735
736 /* Clear the Rendez checkin flag for all cpus */
737 for_each_online_cpu(cpu) {
738 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
739 ia64_mca_wakeup(cpu);
740 }
741
742 }
743
744 /*
745 * ia64_mca_rendez_interrupt_handler
746 *
747 * This is handler used to put slave processors into spinloop
748 * while the monarch processor does the mca handling and later
749 * wake each slave up once the monarch is done. The state
750 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
751 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
752 * the cpu has come out of OS rendezvous.
753 *
754 * Inputs : None
755 * Outputs : None
756 */
757 static irqreturn_t
758 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
759 {
760 unsigned long flags;
761 int cpu = smp_processor_id();
762 struct ia64_mca_notify_die nd =
763 { .sos = NULL, .monarch_cpu = &monarch_cpu };
764
765 /* Mask all interrupts */
766 local_irq_save(flags);
767 if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", get_irq_regs(),
768 (long)&nd, 0, 0) == NOTIFY_STOP)
769 ia64_mca_spin(__func__);
770
771 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
772 /* Register with the SAL monarch that the slave has
773 * reached SAL
774 */
775 ia64_sal_mc_rendez();
776
777 if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", get_irq_regs(),
778 (long)&nd, 0, 0) == NOTIFY_STOP)
779 ia64_mca_spin(__func__);
780
781 /* Wait for the monarch cpu to exit. */
782 while (monarch_cpu != -1)
783 cpu_relax(); /* spin until monarch leaves */
784
785 if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", get_irq_regs(),
786 (long)&nd, 0, 0) == NOTIFY_STOP)
787 ia64_mca_spin(__func__);
788
789 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
790 /* Enable all interrupts */
791 local_irq_restore(flags);
792 return IRQ_HANDLED;
793 }
794
795 /*
796 * ia64_mca_wakeup_int_handler
797 *
798 * The interrupt handler for processing the inter-cpu interrupt to the
799 * slave cpu which was spinning in the rendez loop.
800 * Since this spinning is done by turning off the interrupts and
801 * polling on the wakeup-interrupt bit in the IRR, there is
802 * nothing useful to be done in the handler.
803 *
804 * Inputs : wakeup_irq (Wakeup-interrupt bit)
805 * arg (Interrupt handler specific argument)
806 * Outputs : None
807 *
808 */
809 static irqreturn_t
810 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
811 {
812 return IRQ_HANDLED;
813 }
814
815 /* Function pointer for extra MCA recovery */
816 int (*ia64_mca_ucmc_extension)
817 (void*,struct ia64_sal_os_state*)
818 = NULL;
819
820 int
821 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
822 {
823 if (ia64_mca_ucmc_extension)
824 return 1;
825
826 ia64_mca_ucmc_extension = fn;
827 return 0;
828 }
829
830 void
831 ia64_unreg_MCA_extension(void)
832 {
833 if (ia64_mca_ucmc_extension)
834 ia64_mca_ucmc_extension = NULL;
835 }
836
837 EXPORT_SYMBOL(ia64_reg_MCA_extension);
838 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
839
840
841 static inline void
842 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
843 {
844 u64 fslot, tslot, nat;
845 *tr = *fr;
846 fslot = ((unsigned long)fr >> 3) & 63;
847 tslot = ((unsigned long)tr >> 3) & 63;
848 *tnat &= ~(1UL << tslot);
849 nat = (fnat >> fslot) & 1;
850 *tnat |= (nat << tslot);
851 }
852
853 /* Change the comm field on the MCA/INT task to include the pid that
854 * was interrupted, it makes for easier debugging. If that pid was 0
855 * (swapper or nested MCA/INIT) then use the start of the previous comm
856 * field suffixed with its cpu.
857 */
858
859 static void
860 ia64_mca_modify_comm(const struct task_struct *previous_current)
861 {
862 char *p, comm[sizeof(current->comm)];
863 if (previous_current->pid)
864 snprintf(comm, sizeof(comm), "%s %d",
865 current->comm, previous_current->pid);
866 else {
867 int l;
868 if ((p = strchr(previous_current->comm, ' ')))
869 l = p - previous_current->comm;
870 else
871 l = strlen(previous_current->comm);
872 snprintf(comm, sizeof(comm), "%s %*s %d",
873 current->comm, l, previous_current->comm,
874 task_thread_info(previous_current)->cpu);
875 }
876 memcpy(current->comm, comm, sizeof(current->comm));
877 }
878
879 /* On entry to this routine, we are running on the per cpu stack, see
880 * mca_asm.h. The original stack has not been touched by this event. Some of
881 * the original stack's registers will be in the RBS on this stack. This stack
882 * also contains a partial pt_regs and switch_stack, the rest of the data is in
883 * PAL minstate.
884 *
885 * The first thing to do is modify the original stack to look like a blocked
886 * task so we can run backtrace on the original task. Also mark the per cpu
887 * stack as current to ensure that we use the correct task state, it also means
888 * that we can do backtrace on the MCA/INIT handler code itself.
889 */
890
891 static struct task_struct *
892 ia64_mca_modify_original_stack(struct pt_regs *regs,
893 const struct switch_stack *sw,
894 struct ia64_sal_os_state *sos,
895 const char *type)
896 {
897 char *p;
898 ia64_va va;
899 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
900 const pal_min_state_area_t *ms = sos->pal_min_state;
901 struct task_struct *previous_current;
902 struct pt_regs *old_regs;
903 struct switch_stack *old_sw;
904 unsigned size = sizeof(struct pt_regs) +
905 sizeof(struct switch_stack) + 16;
906 u64 *old_bspstore, *old_bsp;
907 u64 *new_bspstore, *new_bsp;
908 u64 old_unat, old_rnat, new_rnat, nat;
909 u64 slots, loadrs = regs->loadrs;
910 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
911 u64 ar_bspstore = regs->ar_bspstore;
912 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
913 const u64 *bank;
914 const char *msg;
915 int cpu = smp_processor_id();
916
917 previous_current = curr_task(cpu);
918 set_curr_task(cpu, current);
919 if ((p = strchr(current->comm, ' ')))
920 *p = '\0';
921
922 /* Best effort attempt to cope with MCA/INIT delivered while in
923 * physical mode.
924 */
925 regs->cr_ipsr = ms->pmsa_ipsr;
926 if (ia64_psr(regs)->dt == 0) {
927 va.l = r12;
928 if (va.f.reg == 0) {
929 va.f.reg = 7;
930 r12 = va.l;
931 }
932 va.l = r13;
933 if (va.f.reg == 0) {
934 va.f.reg = 7;
935 r13 = va.l;
936 }
937 }
938 if (ia64_psr(regs)->rt == 0) {
939 va.l = ar_bspstore;
940 if (va.f.reg == 0) {
941 va.f.reg = 7;
942 ar_bspstore = va.l;
943 }
944 va.l = ar_bsp;
945 if (va.f.reg == 0) {
946 va.f.reg = 7;
947 ar_bsp = va.l;
948 }
949 }
950
951 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
952 * have been copied to the old stack, the old stack may fail the
953 * validation tests below. So ia64_old_stack() must restore the dirty
954 * registers from the new stack. The old and new bspstore probably
955 * have different alignments, so loadrs calculated on the old bsp
956 * cannot be used to restore from the new bsp. Calculate a suitable
957 * loadrs for the new stack and save it in the new pt_regs, where
958 * ia64_old_stack() can get it.
959 */
960 old_bspstore = (u64 *)ar_bspstore;
961 old_bsp = (u64 *)ar_bsp;
962 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
963 new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
964 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
965 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
966
967 /* Verify the previous stack state before we change it */
968 if (user_mode(regs)) {
969 msg = "occurred in user space";
970 /* previous_current is guaranteed to be valid when the task was
971 * in user space, so ...
972 */
973 ia64_mca_modify_comm(previous_current);
974 goto no_mod;
975 }
976
977 if (r13 != sos->prev_IA64_KR_CURRENT) {
978 msg = "inconsistent previous current and r13";
979 goto no_mod;
980 }
981
982 if (!mca_recover_range(ms->pmsa_iip)) {
983 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
984 msg = "inconsistent r12 and r13";
985 goto no_mod;
986 }
987 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
988 msg = "inconsistent ar.bspstore and r13";
989 goto no_mod;
990 }
991 va.p = old_bspstore;
992 if (va.f.reg < 5) {
993 msg = "old_bspstore is in the wrong region";
994 goto no_mod;
995 }
996 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
997 msg = "inconsistent ar.bsp and r13";
998 goto no_mod;
999 }
1000 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1001 if (ar_bspstore + size > r12) {
1002 msg = "no room for blocked state";
1003 goto no_mod;
1004 }
1005 }
1006
1007 ia64_mca_modify_comm(previous_current);
1008
1009 /* Make the original task look blocked. First stack a struct pt_regs,
1010 * describing the state at the time of interrupt. mca_asm.S built a
1011 * partial pt_regs, copy it and fill in the blanks using minstate.
1012 */
1013 p = (char *)r12 - sizeof(*regs);
1014 old_regs = (struct pt_regs *)p;
1015 memcpy(old_regs, regs, sizeof(*regs));
1016 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1017 * pmsa_{xip,xpsr,xfs}
1018 */
1019 if (ia64_psr(regs)->ic) {
1020 old_regs->cr_iip = ms->pmsa_iip;
1021 old_regs->cr_ipsr = ms->pmsa_ipsr;
1022 old_regs->cr_ifs = ms->pmsa_ifs;
1023 } else {
1024 old_regs->cr_iip = ms->pmsa_xip;
1025 old_regs->cr_ipsr = ms->pmsa_xpsr;
1026 old_regs->cr_ifs = ms->pmsa_xfs;
1027 }
1028 old_regs->pr = ms->pmsa_pr;
1029 old_regs->b0 = ms->pmsa_br0;
1030 old_regs->loadrs = loadrs;
1031 old_regs->ar_rsc = ms->pmsa_rsc;
1032 old_unat = old_regs->ar_unat;
1033 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
1034 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
1035 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
1036 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
1037 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
1038 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
1039 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
1040 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
1041 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
1042 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
1043 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
1044 if (ia64_psr(old_regs)->bn)
1045 bank = ms->pmsa_bank1_gr;
1046 else
1047 bank = ms->pmsa_bank0_gr;
1048 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
1049 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
1050 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
1051 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
1052 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
1053 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
1054 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
1055 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
1056 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
1057 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
1058 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
1059 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
1060 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
1061 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
1062 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
1063 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
1064
1065 /* Next stack a struct switch_stack. mca_asm.S built a partial
1066 * switch_stack, copy it and fill in the blanks using pt_regs and
1067 * minstate.
1068 *
1069 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1070 * ar.pfs is set to 0.
1071 *
1072 * unwind.c::unw_unwind() does special processing for interrupt frames.
1073 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1074 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1075 * that this is documented, of course. Set PRED_NON_SYSCALL in the
1076 * switch_stack on the original stack so it will unwind correctly when
1077 * unwind.c reads pt_regs.
1078 *
1079 * thread.ksp is updated to point to the synthesized switch_stack.
1080 */
1081 p -= sizeof(struct switch_stack);
1082 old_sw = (struct switch_stack *)p;
1083 memcpy(old_sw, sw, sizeof(*sw));
1084 old_sw->caller_unat = old_unat;
1085 old_sw->ar_fpsr = old_regs->ar_fpsr;
1086 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1087 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1088 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1089 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1090 old_sw->b0 = (u64)ia64_leave_kernel;
1091 old_sw->b1 = ms->pmsa_br1;
1092 old_sw->ar_pfs = 0;
1093 old_sw->ar_unat = old_unat;
1094 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1095 previous_current->thread.ksp = (u64)p - 16;
1096
1097 /* Finally copy the original stack's registers back to its RBS.
1098 * Registers from ar.bspstore through ar.bsp at the time of the event
1099 * are in the current RBS, copy them back to the original stack. The
1100 * copy must be done register by register because the original bspstore
1101 * and the current one have different alignments, so the saved RNAT
1102 * data occurs at different places.
1103 *
1104 * mca_asm does cover, so the old_bsp already includes all registers at
1105 * the time of MCA/INIT. It also does flushrs, so all registers before
1106 * this function have been written to backing store on the MCA/INIT
1107 * stack.
1108 */
1109 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1110 old_rnat = regs->ar_rnat;
1111 while (slots--) {
1112 if (ia64_rse_is_rnat_slot(new_bspstore)) {
1113 new_rnat = ia64_get_rnat(new_bspstore++);
1114 }
1115 if (ia64_rse_is_rnat_slot(old_bspstore)) {
1116 *old_bspstore++ = old_rnat;
1117 old_rnat = 0;
1118 }
1119 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1120 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1121 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1122 *old_bspstore++ = *new_bspstore++;
1123 }
1124 old_sw->ar_bspstore = (unsigned long)old_bspstore;
1125 old_sw->ar_rnat = old_rnat;
1126
1127 sos->prev_task = previous_current;
1128 return previous_current;
1129
1130 no_mod:
1131 printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1132 smp_processor_id(), type, msg);
1133 return previous_current;
1134 }
1135
1136 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1137 * slaves have entered rendezvous before the monarch leaves. If any cpu has
1138 * not entered rendezvous yet then wait a bit. The assumption is that any
1139 * slave that has not rendezvoused after a reasonable time is never going to do
1140 * so. In this context, slave includes cpus that respond to the MCA rendezvous
1141 * interrupt, as well as cpus that receive the INIT slave event.
1142 */
1143
1144 static void
1145 ia64_wait_for_slaves(int monarch, const char *type)
1146 {
1147 int c, i , wait;
1148
1149 /*
1150 * wait 5 seconds total for slaves (arbitrary)
1151 */
1152 for (i = 0; i < 5000; i++) {
1153 wait = 0;
1154 for_each_online_cpu(c) {
1155 if (c == monarch)
1156 continue;
1157 if (ia64_mc_info.imi_rendez_checkin[c]
1158 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1159 udelay(1000); /* short wait */
1160 wait = 1;
1161 break;
1162 }
1163 }
1164 if (!wait)
1165 goto all_in;
1166 }
1167
1168 /*
1169 * Maybe slave(s) dead. Print buffered messages immediately.
1170 */
1171 ia64_mlogbuf_finish(0);
1172 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1173 for_each_online_cpu(c) {
1174 if (c == monarch)
1175 continue;
1176 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1177 mprintk(" %d", c);
1178 }
1179 mprintk("\n");
1180 return;
1181
1182 all_in:
1183 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1184 return;
1185 }
1186
1187 /* mca_insert_tr
1188 *
1189 * Switch rid when TR reload and needed!
1190 * iord: 1: itr, 2: itr;
1191 *
1192 */
1193 static void mca_insert_tr(u64 iord)
1194 {
1195
1196 int i;
1197 u64 old_rr;
1198 struct ia64_tr_entry *p;
1199 unsigned long psr;
1200 int cpu = smp_processor_id();
1201
1202 psr = ia64_clear_ic();
1203 for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1204 p = &__per_cpu_idtrs[cpu][iord-1][i];
1205 if (p->pte & 0x1) {
1206 old_rr = ia64_get_rr(p->ifa);
1207 if (old_rr != p->rr) {
1208 ia64_set_rr(p->ifa, p->rr);
1209 ia64_srlz_d();
1210 }
1211 ia64_ptr(iord, p->ifa, p->itir >> 2);
1212 ia64_srlz_i();
1213 if (iord & 0x1) {
1214 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1215 ia64_srlz_i();
1216 }
1217 if (iord & 0x2) {
1218 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1219 ia64_srlz_i();
1220 }
1221 if (old_rr != p->rr) {
1222 ia64_set_rr(p->ifa, old_rr);
1223 ia64_srlz_d();
1224 }
1225 }
1226 }
1227 ia64_set_psr(psr);
1228 }
1229
1230 /*
1231 * ia64_mca_handler
1232 *
1233 * This is uncorrectable machine check handler called from OS_MCA
1234 * dispatch code which is in turn called from SAL_CHECK().
1235 * This is the place where the core of OS MCA handling is done.
1236 * Right now the logs are extracted and displayed in a well-defined
1237 * format. This handler code is supposed to be run only on the
1238 * monarch processor. Once the monarch is done with MCA handling
1239 * further MCA logging is enabled by clearing logs.
1240 * Monarch also has the duty of sending wakeup-IPIs to pull the
1241 * slave processors out of rendezvous spinloop.
1242 *
1243 * If multiple processors call into OS_MCA, the first will become
1244 * the monarch. Subsequent cpus will be recorded in the mca_cpu
1245 * bitmask. After the first monarch has processed its MCA, it
1246 * will wake up the next cpu in the mca_cpu bitmask and then go
1247 * into the rendezvous loop. When all processors have serviced
1248 * their MCA, the last monarch frees up the rest of the processors.
1249 */
1250 void
1251 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1252 struct ia64_sal_os_state *sos)
1253 {
1254 int recover, cpu = smp_processor_id();
1255 struct task_struct *previous_current;
1256 struct ia64_mca_notify_die nd =
1257 { .sos = sos, .monarch_cpu = &monarch_cpu };
1258 static atomic_t mca_count;
1259 static cpumask_t mca_cpu;
1260
1261 if (atomic_add_return(1, &mca_count) == 1) {
1262 monarch_cpu = cpu;
1263 sos->monarch = 1;
1264 } else {
1265 cpu_set(cpu, mca_cpu);
1266 sos->monarch = 0;
1267 }
1268 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1269 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1270
1271 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1272
1273 if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, (long)&nd, 0, 0)
1274 == NOTIFY_STOP)
1275 ia64_mca_spin(__func__);
1276
1277 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1278 if (sos->monarch) {
1279 ia64_wait_for_slaves(cpu, "MCA");
1280
1281 /* Wakeup all the processors which are spinning in the
1282 * rendezvous loop. They will leave SAL, then spin in the OS
1283 * with interrupts disabled until this monarch cpu leaves the
1284 * MCA handler. That gets control back to the OS so we can
1285 * backtrace the other cpus, backtrace when spinning in SAL
1286 * does not work.
1287 */
1288 ia64_mca_wakeup_all();
1289 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, (long)&nd, 0, 0)
1290 == NOTIFY_STOP)
1291 ia64_mca_spin(__func__);
1292 } else {
1293 while (cpu_isset(cpu, mca_cpu))
1294 cpu_relax(); /* spin until monarch wakes us */
1295 }
1296
1297 /* Get the MCA error record and log it */
1298 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1299
1300 /* MCA error recovery */
1301 recover = (ia64_mca_ucmc_extension
1302 && ia64_mca_ucmc_extension(
1303 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1304 sos));
1305
1306 if (recover) {
1307 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1308 rh->severity = sal_log_severity_corrected;
1309 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1310 sos->os_status = IA64_MCA_CORRECTED;
1311 } else {
1312 /* Dump buffered message to console */
1313 ia64_mlogbuf_finish(1);
1314 #ifdef CONFIG_KEXEC
1315 atomic_set(&kdump_in_progress, 1);
1316 monarch_cpu = -1;
1317 #endif
1318 }
1319 if (__get_cpu_var(ia64_mca_tr_reload)) {
1320 mca_insert_tr(0x1); /*Reload dynamic itrs*/
1321 mca_insert_tr(0x2); /*Reload dynamic itrs*/
1322 }
1323 if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, (long)&nd, 0, recover)
1324 == NOTIFY_STOP)
1325 ia64_mca_spin(__func__);
1326
1327
1328 if (atomic_dec_return(&mca_count) > 0) {
1329 int i;
1330
1331 /* wake up the next monarch cpu,
1332 * and put this cpu in the rendez loop.
1333 */
1334 for_each_online_cpu(i) {
1335 if (cpu_isset(i, mca_cpu)) {
1336 monarch_cpu = i;
1337 cpu_clear(i, mca_cpu); /* wake next cpu */
1338 while (monarch_cpu != -1)
1339 cpu_relax(); /* spin until last cpu leaves */
1340 set_curr_task(cpu, previous_current);
1341 ia64_mc_info.imi_rendez_checkin[cpu]
1342 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1343 return;
1344 }
1345 }
1346 }
1347 set_curr_task(cpu, previous_current);
1348 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1349 monarch_cpu = -1; /* This frees the slaves and previous monarchs */
1350 }
1351
1352 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1353 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1354
1355 /*
1356 * ia64_mca_cmc_int_handler
1357 *
1358 * This is corrected machine check interrupt handler.
1359 * Right now the logs are extracted and displayed in a well-defined
1360 * format.
1361 *
1362 * Inputs
1363 * interrupt number
1364 * client data arg ptr
1365 *
1366 * Outputs
1367 * None
1368 */
1369 static irqreturn_t
1370 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1371 {
1372 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1373 static int index;
1374 static DEFINE_SPINLOCK(cmc_history_lock);
1375
1376 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1377 __func__, cmc_irq, smp_processor_id());
1378
1379 /* SAL spec states this should run w/ interrupts enabled */
1380 local_irq_enable();
1381
1382 spin_lock(&cmc_history_lock);
1383 if (!cmc_polling_enabled) {
1384 int i, count = 1; /* we know 1 happened now */
1385 unsigned long now = jiffies;
1386
1387 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1388 if (now - cmc_history[i] <= HZ)
1389 count++;
1390 }
1391
1392 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1393 if (count >= CMC_HISTORY_LENGTH) {
1394
1395 cmc_polling_enabled = 1;
1396 spin_unlock(&cmc_history_lock);
1397 /* If we're being hit with CMC interrupts, we won't
1398 * ever execute the schedule_work() below. Need to
1399 * disable CMC interrupts on this processor now.
1400 */
1401 ia64_mca_cmc_vector_disable(NULL);
1402 schedule_work(&cmc_disable_work);
1403
1404 /*
1405 * Corrected errors will still be corrected, but
1406 * make sure there's a log somewhere that indicates
1407 * something is generating more than we can handle.
1408 */
1409 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1410
1411 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1412
1413 /* lock already released, get out now */
1414 goto out;
1415 } else {
1416 cmc_history[index++] = now;
1417 if (index == CMC_HISTORY_LENGTH)
1418 index = 0;
1419 }
1420 }
1421 spin_unlock(&cmc_history_lock);
1422 out:
1423 /* Get the CMC error record and log it */
1424 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1425
1426 return IRQ_HANDLED;
1427 }
1428
1429 /*
1430 * ia64_mca_cmc_int_caller
1431 *
1432 * Triggered by sw interrupt from CMC polling routine. Calls
1433 * real interrupt handler and either triggers a sw interrupt
1434 * on the next cpu or does cleanup at the end.
1435 *
1436 * Inputs
1437 * interrupt number
1438 * client data arg ptr
1439 * Outputs
1440 * handled
1441 */
1442 static irqreturn_t
1443 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1444 {
1445 static int start_count = -1;
1446 unsigned int cpuid;
1447
1448 cpuid = smp_processor_id();
1449
1450 /* If first cpu, update count */
1451 if (start_count == -1)
1452 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1453
1454 ia64_mca_cmc_int_handler(cmc_irq, arg);
1455
1456 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1457
1458 if (cpuid < NR_CPUS) {
1459 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1460 } else {
1461 /* If no log record, switch out of polling mode */
1462 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1463
1464 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1465 schedule_work(&cmc_enable_work);
1466 cmc_polling_enabled = 0;
1467
1468 } else {
1469
1470 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1471 }
1472
1473 start_count = -1;
1474 }
1475
1476 return IRQ_HANDLED;
1477 }
1478
1479 /*
1480 * ia64_mca_cmc_poll
1481 *
1482 * Poll for Corrected Machine Checks (CMCs)
1483 *
1484 * Inputs : dummy(unused)
1485 * Outputs : None
1486 *
1487 */
1488 static void
1489 ia64_mca_cmc_poll (unsigned long dummy)
1490 {
1491 /* Trigger a CMC interrupt cascade */
1492 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1493 }
1494
1495 /*
1496 * ia64_mca_cpe_int_caller
1497 *
1498 * Triggered by sw interrupt from CPE polling routine. Calls
1499 * real interrupt handler and either triggers a sw interrupt
1500 * on the next cpu or does cleanup at the end.
1501 *
1502 * Inputs
1503 * interrupt number
1504 * client data arg ptr
1505 * Outputs
1506 * handled
1507 */
1508 #ifdef CONFIG_ACPI
1509
1510 static irqreturn_t
1511 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1512 {
1513 static int start_count = -1;
1514 static int poll_time = MIN_CPE_POLL_INTERVAL;
1515 unsigned int cpuid;
1516
1517 cpuid = smp_processor_id();
1518
1519 /* If first cpu, update count */
1520 if (start_count == -1)
1521 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1522
1523 ia64_mca_cpe_int_handler(cpe_irq, arg);
1524
1525 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1526
1527 if (cpuid < NR_CPUS) {
1528 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1529 } else {
1530 /*
1531 * If a log was recorded, increase our polling frequency,
1532 * otherwise, backoff or return to interrupt mode.
1533 */
1534 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1535 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1536 } else if (cpe_vector < 0) {
1537 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1538 } else {
1539 poll_time = MIN_CPE_POLL_INTERVAL;
1540
1541 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1542 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1543 cpe_poll_enabled = 0;
1544 }
1545
1546 if (cpe_poll_enabled)
1547 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1548 start_count = -1;
1549 }
1550
1551 return IRQ_HANDLED;
1552 }
1553
1554 /*
1555 * ia64_mca_cpe_poll
1556 *
1557 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1558 * on first cpu, from there it will trickle through all the cpus.
1559 *
1560 * Inputs : dummy(unused)
1561 * Outputs : None
1562 *
1563 */
1564 static void
1565 ia64_mca_cpe_poll (unsigned long dummy)
1566 {
1567 /* Trigger a CPE interrupt cascade */
1568 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1569 }
1570
1571 #endif /* CONFIG_ACPI */
1572
1573 static int
1574 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1575 {
1576 int c;
1577 struct task_struct *g, *t;
1578 if (val != DIE_INIT_MONARCH_PROCESS)
1579 return NOTIFY_DONE;
1580 #ifdef CONFIG_KEXEC
1581 if (atomic_read(&kdump_in_progress))
1582 return NOTIFY_DONE;
1583 #endif
1584
1585 /*
1586 * FIXME: mlogbuf will brim over with INIT stack dumps.
1587 * To enable show_stack from INIT, we use oops_in_progress which should
1588 * be used in real oops. This would cause something wrong after INIT.
1589 */
1590 BREAK_LOGLEVEL(console_loglevel);
1591 ia64_mlogbuf_dump_from_init();
1592
1593 printk(KERN_ERR "Processes interrupted by INIT -");
1594 for_each_online_cpu(c) {
1595 struct ia64_sal_os_state *s;
1596 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1597 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1598 g = s->prev_task;
1599 if (g) {
1600 if (g->pid)
1601 printk(" %d", g->pid);
1602 else
1603 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1604 }
1605 }
1606 printk("\n\n");
1607 if (read_trylock(&tasklist_lock)) {
1608 do_each_thread (g, t) {
1609 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1610 show_stack(t, NULL);
1611 } while_each_thread (g, t);
1612 read_unlock(&tasklist_lock);
1613 }
1614 /* FIXME: This will not restore zapped printk locks. */
1615 RESTORE_LOGLEVEL(console_loglevel);
1616 return NOTIFY_DONE;
1617 }
1618
1619 /*
1620 * C portion of the OS INIT handler
1621 *
1622 * Called from ia64_os_init_dispatch
1623 *
1624 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1625 * this event. This code is used for both monarch and slave INIT events, see
1626 * sos->monarch.
1627 *
1628 * All INIT events switch to the INIT stack and change the previous process to
1629 * blocked status. If one of the INIT events is the monarch then we are
1630 * probably processing the nmi button/command. Use the monarch cpu to dump all
1631 * the processes. The slave INIT events all spin until the monarch cpu
1632 * returns. We can also get INIT slave events for MCA, in which case the MCA
1633 * process is the monarch.
1634 */
1635
1636 void
1637 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1638 struct ia64_sal_os_state *sos)
1639 {
1640 static atomic_t slaves;
1641 static atomic_t monarchs;
1642 struct task_struct *previous_current;
1643 int cpu = smp_processor_id();
1644 struct ia64_mca_notify_die nd =
1645 { .sos = sos, .monarch_cpu = &monarch_cpu };
1646
1647 (void) notify_die(DIE_INIT_ENTER, "INIT", regs, (long)&nd, 0, 0);
1648
1649 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1650 sos->proc_state_param, cpu, sos->monarch);
1651 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1652
1653 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1654 sos->os_status = IA64_INIT_RESUME;
1655
1656 /* FIXME: Workaround for broken proms that drive all INIT events as
1657 * slaves. The last slave that enters is promoted to be a monarch.
1658 * Remove this code in September 2006, that gives platforms a year to
1659 * fix their proms and get their customers updated.
1660 */
1661 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1662 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1663 __func__, cpu);
1664 atomic_dec(&slaves);
1665 sos->monarch = 1;
1666 }
1667
1668 /* FIXME: Workaround for broken proms that drive all INIT events as
1669 * monarchs. Second and subsequent monarchs are demoted to slaves.
1670 * Remove this code in September 2006, that gives platforms a year to
1671 * fix their proms and get their customers updated.
1672 */
1673 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1674 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1675 __func__, cpu);
1676 atomic_dec(&monarchs);
1677 sos->monarch = 0;
1678 }
1679
1680 if (!sos->monarch) {
1681 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1682 while (monarch_cpu == -1)
1683 cpu_relax(); /* spin until monarch enters */
1684 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, (long)&nd, 0, 0)
1685 == NOTIFY_STOP)
1686 ia64_mca_spin(__func__);
1687 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1688 == NOTIFY_STOP)
1689 ia64_mca_spin(__func__);
1690 while (monarch_cpu != -1)
1691 cpu_relax(); /* spin until monarch leaves */
1692 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1693 == NOTIFY_STOP)
1694 ia64_mca_spin(__func__);
1695 mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1696 set_curr_task(cpu, previous_current);
1697 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1698 atomic_dec(&slaves);
1699 return;
1700 }
1701
1702 monarch_cpu = cpu;
1703 if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, (long)&nd, 0, 0)
1704 == NOTIFY_STOP)
1705 ia64_mca_spin(__func__);
1706
1707 /*
1708 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1709 * generated via the BMC's command-line interface, but since the console is on the
1710 * same serial line, the user will need some time to switch out of the BMC before
1711 * the dump begins.
1712 */
1713 mprintk("Delaying for 5 seconds...\n");
1714 udelay(5*1000000);
1715 ia64_wait_for_slaves(cpu, "INIT");
1716 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1717 * to default_monarch_init_process() above and just print all the
1718 * tasks.
1719 */
1720 if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, (long)&nd, 0, 0)
1721 == NOTIFY_STOP)
1722 ia64_mca_spin(__func__);
1723 if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, (long)&nd, 0, 0)
1724 == NOTIFY_STOP)
1725 ia64_mca_spin(__func__);
1726 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1727 atomic_dec(&monarchs);
1728 set_curr_task(cpu, previous_current);
1729 monarch_cpu = -1;
1730 return;
1731 }
1732
1733 static int __init
1734 ia64_mca_disable_cpe_polling(char *str)
1735 {
1736 cpe_poll_enabled = 0;
1737 return 1;
1738 }
1739
1740 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1741
1742 static struct irqaction cmci_irqaction = {
1743 .handler = ia64_mca_cmc_int_handler,
1744 .flags = IRQF_DISABLED,
1745 .name = "cmc_hndlr"
1746 };
1747
1748 static struct irqaction cmcp_irqaction = {
1749 .handler = ia64_mca_cmc_int_caller,
1750 .flags = IRQF_DISABLED,
1751 .name = "cmc_poll"
1752 };
1753
1754 static struct irqaction mca_rdzv_irqaction = {
1755 .handler = ia64_mca_rendez_int_handler,
1756 .flags = IRQF_DISABLED,
1757 .name = "mca_rdzv"
1758 };
1759
1760 static struct irqaction mca_wkup_irqaction = {
1761 .handler = ia64_mca_wakeup_int_handler,
1762 .flags = IRQF_DISABLED,
1763 .name = "mca_wkup"
1764 };
1765
1766 #ifdef CONFIG_ACPI
1767 static struct irqaction mca_cpe_irqaction = {
1768 .handler = ia64_mca_cpe_int_handler,
1769 .flags = IRQF_DISABLED,
1770 .name = "cpe_hndlr"
1771 };
1772
1773 static struct irqaction mca_cpep_irqaction = {
1774 .handler = ia64_mca_cpe_int_caller,
1775 .flags = IRQF_DISABLED,
1776 .name = "cpe_poll"
1777 };
1778 #endif /* CONFIG_ACPI */
1779
1780 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1781 * these stacks can never sleep, they cannot return from the kernel to user
1782 * space, they do not appear in a normal ps listing. So there is no need to
1783 * format most of the fields.
1784 */
1785
1786 static void __cpuinit
1787 format_mca_init_stack(void *mca_data, unsigned long offset,
1788 const char *type, int cpu)
1789 {
1790 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1791 struct thread_info *ti;
1792 memset(p, 0, KERNEL_STACK_SIZE);
1793 ti = task_thread_info(p);
1794 ti->flags = _TIF_MCA_INIT;
1795 ti->preempt_count = 1;
1796 ti->task = p;
1797 ti->cpu = cpu;
1798 p->stack = ti;
1799 p->state = TASK_UNINTERRUPTIBLE;
1800 cpu_set(cpu, p->cpus_allowed);
1801 INIT_LIST_HEAD(&p->tasks);
1802 p->parent = p->real_parent = p->group_leader = p;
1803 INIT_LIST_HEAD(&p->children);
1804 INIT_LIST_HEAD(&p->sibling);
1805 strncpy(p->comm, type, sizeof(p->comm)-1);
1806 }
1807
1808 /* Caller prevents this from being called after init */
1809 static void * __init_refok mca_bootmem(void)
1810 {
1811 return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
1812 KERNEL_STACK_SIZE, 0);
1813 }
1814
1815 /* Do per-CPU MCA-related initialization. */
1816 void __cpuinit
1817 ia64_mca_cpu_init(void *cpu_data)
1818 {
1819 void *pal_vaddr;
1820 void *data;
1821 long sz = sizeof(struct ia64_mca_cpu);
1822 int cpu = smp_processor_id();
1823 static int first_time = 1;
1824
1825 /*
1826 * Structure will already be allocated if cpu has been online,
1827 * then offlined.
1828 */
1829 if (__per_cpu_mca[cpu]) {
1830 data = __va(__per_cpu_mca[cpu]);
1831 } else {
1832 if (first_time) {
1833 data = mca_bootmem();
1834 first_time = 0;
1835 } else
1836 data = page_address(alloc_pages_node(numa_node_id(),
1837 GFP_KERNEL, get_order(sz)));
1838 if (!data)
1839 panic("Could not allocate MCA memory for cpu %d\n",
1840 cpu);
1841 }
1842 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1843 "MCA", cpu);
1844 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1845 "INIT", cpu);
1846 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[cpu] = __pa(data);
1847
1848 /*
1849 * Stash away a copy of the PTE needed to map the per-CPU page.
1850 * We may need it during MCA recovery.
1851 */
1852 __get_cpu_var(ia64_mca_per_cpu_pte) =
1853 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1854
1855 /*
1856 * Also, stash away a copy of the PAL address and the PTE
1857 * needed to map it.
1858 */
1859 pal_vaddr = efi_get_pal_addr();
1860 if (!pal_vaddr)
1861 return;
1862 __get_cpu_var(ia64_mca_pal_base) =
1863 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1864 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1865 PAGE_KERNEL));
1866 }
1867
1868 static void __cpuinit ia64_mca_cmc_vector_adjust(void *dummy)
1869 {
1870 unsigned long flags;
1871
1872 local_irq_save(flags);
1873 if (!cmc_polling_enabled)
1874 ia64_mca_cmc_vector_enable(NULL);
1875 local_irq_restore(flags);
1876 }
1877
1878 static int __cpuinit mca_cpu_callback(struct notifier_block *nfb,
1879 unsigned long action,
1880 void *hcpu)
1881 {
1882 int hotcpu = (unsigned long) hcpu;
1883
1884 switch (action) {
1885 case CPU_ONLINE:
1886 case CPU_ONLINE_FROZEN:
1887 smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
1888 NULL, 1, 0);
1889 break;
1890 }
1891 return NOTIFY_OK;
1892 }
1893
1894 static struct notifier_block mca_cpu_notifier __cpuinitdata = {
1895 .notifier_call = mca_cpu_callback
1896 };
1897
1898 /*
1899 * ia64_mca_init
1900 *
1901 * Do all the system level mca specific initialization.
1902 *
1903 * 1. Register spinloop and wakeup request interrupt vectors
1904 *
1905 * 2. Register OS_MCA handler entry point
1906 *
1907 * 3. Register OS_INIT handler entry point
1908 *
1909 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1910 *
1911 * Note that this initialization is done very early before some kernel
1912 * services are available.
1913 *
1914 * Inputs : None
1915 *
1916 * Outputs : None
1917 */
1918 void __init
1919 ia64_mca_init(void)
1920 {
1921 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1922 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1923 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1924 int i;
1925 s64 rc;
1926 struct ia64_sal_retval isrv;
1927 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1928 static struct notifier_block default_init_monarch_nb = {
1929 .notifier_call = default_monarch_init_process,
1930 .priority = 0/* we need to notified last */
1931 };
1932
1933 IA64_MCA_DEBUG("%s: begin\n", __func__);
1934
1935 /* Clear the Rendez checkin flag for all cpus */
1936 for(i = 0 ; i < NR_CPUS; i++)
1937 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1938
1939 /*
1940 * Register the rendezvous spinloop and wakeup mechanism with SAL
1941 */
1942
1943 /* Register the rendezvous interrupt vector with SAL */
1944 while (1) {
1945 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1946 SAL_MC_PARAM_MECHANISM_INT,
1947 IA64_MCA_RENDEZ_VECTOR,
1948 timeout,
1949 SAL_MC_PARAM_RZ_ALWAYS);
1950 rc = isrv.status;
1951 if (rc == 0)
1952 break;
1953 if (rc == -2) {
1954 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1955 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1956 timeout = isrv.v0;
1957 (void) notify_die(DIE_MCA_NEW_TIMEOUT, "MCA", NULL, timeout, 0, 0);
1958 continue;
1959 }
1960 printk(KERN_ERR "Failed to register rendezvous interrupt "
1961 "with SAL (status %ld)\n", rc);
1962 return;
1963 }
1964
1965 /* Register the wakeup interrupt vector with SAL */
1966 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1967 SAL_MC_PARAM_MECHANISM_INT,
1968 IA64_MCA_WAKEUP_VECTOR,
1969 0, 0);
1970 rc = isrv.status;
1971 if (rc) {
1972 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1973 "(status %ld)\n", rc);
1974 return;
1975 }
1976
1977 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1978
1979 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1980 /*
1981 * XXX - disable SAL checksum by setting size to 0; should be
1982 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1983 */
1984 ia64_mc_info.imi_mca_handler_size = 0;
1985
1986 /* Register the os mca handler with SAL */
1987 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1988 ia64_mc_info.imi_mca_handler,
1989 ia64_tpa(mca_hldlr_ptr->gp),
1990 ia64_mc_info.imi_mca_handler_size,
1991 0, 0, 0)))
1992 {
1993 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1994 "(status %ld)\n", rc);
1995 return;
1996 }
1997
1998 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
1999 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
2000
2001 /*
2002 * XXX - disable SAL checksum by setting size to 0, should be
2003 * size of the actual init handler in mca_asm.S.
2004 */
2005 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
2006 ia64_mc_info.imi_monarch_init_handler_size = 0;
2007 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
2008 ia64_mc_info.imi_slave_init_handler_size = 0;
2009
2010 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
2011 ia64_mc_info.imi_monarch_init_handler);
2012
2013 /* Register the os init handler with SAL */
2014 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2015 ia64_mc_info.imi_monarch_init_handler,
2016 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2017 ia64_mc_info.imi_monarch_init_handler_size,
2018 ia64_mc_info.imi_slave_init_handler,
2019 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2020 ia64_mc_info.imi_slave_init_handler_size)))
2021 {
2022 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2023 "(status %ld)\n", rc);
2024 return;
2025 }
2026 if (register_die_notifier(&default_init_monarch_nb)) {
2027 printk(KERN_ERR "Failed to register default monarch INIT process\n");
2028 return;
2029 }
2030
2031 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2032
2033 /*
2034 * Configure the CMCI/P vector and handler. Interrupts for CMC are
2035 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2036 */
2037 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2038 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
2039 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
2040
2041 /* Setup the MCA rendezvous interrupt vector */
2042 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
2043
2044 /* Setup the MCA wakeup interrupt vector */
2045 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2046
2047 #ifdef CONFIG_ACPI
2048 /* Setup the CPEI/P handler */
2049 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2050 #endif
2051
2052 /* Initialize the areas set aside by the OS to buffer the
2053 * platform/processor error states for MCA/INIT/CMC
2054 * handling.
2055 */
2056 ia64_log_init(SAL_INFO_TYPE_MCA);
2057 ia64_log_init(SAL_INFO_TYPE_INIT);
2058 ia64_log_init(SAL_INFO_TYPE_CMC);
2059 ia64_log_init(SAL_INFO_TYPE_CPE);
2060
2061 mca_init = 1;
2062 printk(KERN_INFO "MCA related initialization done\n");
2063 }
2064
2065 /*
2066 * ia64_mca_late_init
2067 *
2068 * Opportunity to setup things that require initialization later
2069 * than ia64_mca_init. Setup a timer to poll for CPEs if the
2070 * platform doesn't support an interrupt driven mechanism.
2071 *
2072 * Inputs : None
2073 * Outputs : Status
2074 */
2075 static int __init
2076 ia64_mca_late_init(void)
2077 {
2078 if (!mca_init)
2079 return 0;
2080
2081 register_hotcpu_notifier(&mca_cpu_notifier);
2082
2083 /* Setup the CMCI/P vector and handler */
2084 init_timer(&cmc_poll_timer);
2085 cmc_poll_timer.function = ia64_mca_cmc_poll;
2086
2087 /* Unmask/enable the vector */
2088 cmc_polling_enabled = 0;
2089 schedule_work(&cmc_enable_work);
2090
2091 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2092
2093 #ifdef CONFIG_ACPI
2094 /* Setup the CPEI/P vector and handler */
2095 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2096 init_timer(&cpe_poll_timer);
2097 cpe_poll_timer.function = ia64_mca_cpe_poll;
2098
2099 {
2100 irq_desc_t *desc;
2101 unsigned int irq;
2102
2103 if (cpe_vector >= 0) {
2104 /* If platform supports CPEI, enable the irq. */
2105 irq = local_vector_to_irq(cpe_vector);
2106 if (irq > 0) {
2107 cpe_poll_enabled = 0;
2108 desc = irq_desc + irq;
2109 desc->status |= IRQ_PER_CPU;
2110 setup_irq(irq, &mca_cpe_irqaction);
2111 ia64_cpe_irq = irq;
2112 ia64_mca_register_cpev(cpe_vector);
2113 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2114 __func__);
2115 return 0;
2116 }
2117 printk(KERN_ERR "%s: Failed to find irq for CPE "
2118 "interrupt handler, vector %d\n",
2119 __func__, cpe_vector);
2120 }
2121 /* If platform doesn't support CPEI, get the timer going. */
2122 if (cpe_poll_enabled) {
2123 ia64_mca_cpe_poll(0UL);
2124 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2125 }
2126 }
2127 #endif
2128
2129 return 0;
2130 }
2131
2132 device_initcall(ia64_mca_late_init);
This page took 0.099031 seconds and 6 git commands to generate.