Merge branch 'upstream-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[deliverable/linux.git] / arch / ia64 / kernel / perfmon.c
1 /*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
4 *
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
7 *
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
10 *
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
13 *
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
17 *
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
20 */
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/vmalloc.h>
30 #include <linux/mm.h>
31 #include <linux/sysctl.h>
32 #include <linux/list.h>
33 #include <linux/file.h>
34 #include <linux/poll.h>
35 #include <linux/vfs.h>
36 #include <linux/smp.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
43 #include <linux/tracehook.h>
44 #include <linux/slab.h>
45
46 #include <asm/errno.h>
47 #include <asm/intrinsics.h>
48 #include <asm/page.h>
49 #include <asm/perfmon.h>
50 #include <asm/processor.h>
51 #include <asm/signal.h>
52 #include <asm/uaccess.h>
53 #include <asm/delay.h>
54
55 #ifdef CONFIG_PERFMON
56 /*
57 * perfmon context state
58 */
59 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
60 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
61 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
62 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
63
64 #define PFM_INVALID_ACTIVATION (~0UL)
65
66 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
67 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
68
69 /*
70 * depth of message queue
71 */
72 #define PFM_MAX_MSGS 32
73 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
74
75 /*
76 * type of a PMU register (bitmask).
77 * bitmask structure:
78 * bit0 : register implemented
79 * bit1 : end marker
80 * bit2-3 : reserved
81 * bit4 : pmc has pmc.pm
82 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
83 * bit6-7 : register type
84 * bit8-31: reserved
85 */
86 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
87 #define PFM_REG_IMPL 0x1 /* register implemented */
88 #define PFM_REG_END 0x2 /* end marker */
89 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
90 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
91 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
92 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
93 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
94
95 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
96 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
97
98 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
99
100 /* i assumed unsigned */
101 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
102 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
103
104 /* XXX: these assume that register i is implemented */
105 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
106 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
108 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
109
110 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
111 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
112 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
113 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
114
115 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
116 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
117
118 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
119 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
120 #define PFM_CTX_TASK(h) (h)->ctx_task
121
122 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
123
124 /* XXX: does not support more than 64 PMDs */
125 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
126 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
127
128 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
129
130 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
131 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
132 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
133 #define PFM_CODE_RR 0 /* requesting code range restriction */
134 #define PFM_DATA_RR 1 /* requestion data range restriction */
135
136 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
137 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
138 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
139
140 #define RDEP(x) (1UL<<(x))
141
142 /*
143 * context protection macros
144 * in SMP:
145 * - we need to protect against CPU concurrency (spin_lock)
146 * - we need to protect against PMU overflow interrupts (local_irq_disable)
147 * in UP:
148 * - we need to protect against PMU overflow interrupts (local_irq_disable)
149 *
150 * spin_lock_irqsave()/spin_unlock_irqrestore():
151 * in SMP: local_irq_disable + spin_lock
152 * in UP : local_irq_disable
153 *
154 * spin_lock()/spin_lock():
155 * in UP : removed automatically
156 * in SMP: protect against context accesses from other CPU. interrupts
157 * are not masked. This is useful for the PMU interrupt handler
158 * because we know we will not get PMU concurrency in that code.
159 */
160 #define PROTECT_CTX(c, f) \
161 do { \
162 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
163 spin_lock_irqsave(&(c)->ctx_lock, f); \
164 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
165 } while(0)
166
167 #define UNPROTECT_CTX(c, f) \
168 do { \
169 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
170 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
171 } while(0)
172
173 #define PROTECT_CTX_NOPRINT(c, f) \
174 do { \
175 spin_lock_irqsave(&(c)->ctx_lock, f); \
176 } while(0)
177
178
179 #define UNPROTECT_CTX_NOPRINT(c, f) \
180 do { \
181 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
182 } while(0)
183
184
185 #define PROTECT_CTX_NOIRQ(c) \
186 do { \
187 spin_lock(&(c)->ctx_lock); \
188 } while(0)
189
190 #define UNPROTECT_CTX_NOIRQ(c) \
191 do { \
192 spin_unlock(&(c)->ctx_lock); \
193 } while(0)
194
195
196 #ifdef CONFIG_SMP
197
198 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
199 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
200 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
201
202 #else /* !CONFIG_SMP */
203 #define SET_ACTIVATION(t) do {} while(0)
204 #define GET_ACTIVATION(t) do {} while(0)
205 #define INC_ACTIVATION(t) do {} while(0)
206 #endif /* CONFIG_SMP */
207
208 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
209 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
210 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
211
212 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
213 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
214
215 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
216
217 /*
218 * cmp0 must be the value of pmc0
219 */
220 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
221
222 #define PFMFS_MAGIC 0xa0b4d889
223
224 /*
225 * debugging
226 */
227 #define PFM_DEBUGGING 1
228 #ifdef PFM_DEBUGGING
229 #define DPRINT(a) \
230 do { \
231 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
232 } while (0)
233
234 #define DPRINT_ovfl(a) \
235 do { \
236 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
237 } while (0)
238 #endif
239
240 /*
241 * 64-bit software counter structure
242 *
243 * the next_reset_type is applied to the next call to pfm_reset_regs()
244 */
245 typedef struct {
246 unsigned long val; /* virtual 64bit counter value */
247 unsigned long lval; /* last reset value */
248 unsigned long long_reset; /* reset value on sampling overflow */
249 unsigned long short_reset; /* reset value on overflow */
250 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
251 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
252 unsigned long seed; /* seed for random-number generator */
253 unsigned long mask; /* mask for random-number generator */
254 unsigned int flags; /* notify/do not notify */
255 unsigned long eventid; /* overflow event identifier */
256 } pfm_counter_t;
257
258 /*
259 * context flags
260 */
261 typedef struct {
262 unsigned int block:1; /* when 1, task will blocked on user notifications */
263 unsigned int system:1; /* do system wide monitoring */
264 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
265 unsigned int is_sampling:1; /* true if using a custom format */
266 unsigned int excl_idle:1; /* exclude idle task in system wide session */
267 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
268 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
269 unsigned int no_msg:1; /* no message sent on overflow */
270 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
271 unsigned int reserved:22;
272 } pfm_context_flags_t;
273
274 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
275 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
276 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
277
278
279 /*
280 * perfmon context: encapsulates all the state of a monitoring session
281 */
282
283 typedef struct pfm_context {
284 spinlock_t ctx_lock; /* context protection */
285
286 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
287 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
288
289 struct task_struct *ctx_task; /* task to which context is attached */
290
291 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
292
293 struct completion ctx_restart_done; /* use for blocking notification mode */
294
295 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
296 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
297 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
298
299 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
300 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
301 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
302
303 unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
304
305 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
306 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
307 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
308 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
309
310 pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
311
312 unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
313 unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
314
315 unsigned long ctx_saved_psr_up; /* only contains psr.up value */
316
317 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
318 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
319 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
320
321 int ctx_fd; /* file descriptor used my this context */
322 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
323
324 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
325 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
326 unsigned long ctx_smpl_size; /* size of sampling buffer */
327 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
328
329 wait_queue_head_t ctx_msgq_wait;
330 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
331 int ctx_msgq_head;
332 int ctx_msgq_tail;
333 struct fasync_struct *ctx_async_queue;
334
335 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
336 } pfm_context_t;
337
338 /*
339 * magic number used to verify that structure is really
340 * a perfmon context
341 */
342 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
343
344 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
345
346 #ifdef CONFIG_SMP
347 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
348 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
349 #else
350 #define SET_LAST_CPU(ctx, v) do {} while(0)
351 #define GET_LAST_CPU(ctx) do {} while(0)
352 #endif
353
354
355 #define ctx_fl_block ctx_flags.block
356 #define ctx_fl_system ctx_flags.system
357 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
358 #define ctx_fl_is_sampling ctx_flags.is_sampling
359 #define ctx_fl_excl_idle ctx_flags.excl_idle
360 #define ctx_fl_going_zombie ctx_flags.going_zombie
361 #define ctx_fl_trap_reason ctx_flags.trap_reason
362 #define ctx_fl_no_msg ctx_flags.no_msg
363 #define ctx_fl_can_restart ctx_flags.can_restart
364
365 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
366 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
367
368 /*
369 * global information about all sessions
370 * mostly used to synchronize between system wide and per-process
371 */
372 typedef struct {
373 spinlock_t pfs_lock; /* lock the structure */
374
375 unsigned int pfs_task_sessions; /* number of per task sessions */
376 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
377 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
378 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
379 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
380 } pfm_session_t;
381
382 /*
383 * information about a PMC or PMD.
384 * dep_pmd[]: a bitmask of dependent PMD registers
385 * dep_pmc[]: a bitmask of dependent PMC registers
386 */
387 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
388 typedef struct {
389 unsigned int type;
390 int pm_pos;
391 unsigned long default_value; /* power-on default value */
392 unsigned long reserved_mask; /* bitmask of reserved bits */
393 pfm_reg_check_t read_check;
394 pfm_reg_check_t write_check;
395 unsigned long dep_pmd[4];
396 unsigned long dep_pmc[4];
397 } pfm_reg_desc_t;
398
399 /* assume cnum is a valid monitor */
400 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
401
402 /*
403 * This structure is initialized at boot time and contains
404 * a description of the PMU main characteristics.
405 *
406 * If the probe function is defined, detection is based
407 * on its return value:
408 * - 0 means recognized PMU
409 * - anything else means not supported
410 * When the probe function is not defined, then the pmu_family field
411 * is used and it must match the host CPU family such that:
412 * - cpu->family & config->pmu_family != 0
413 */
414 typedef struct {
415 unsigned long ovfl_val; /* overflow value for counters */
416
417 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
418 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
419
420 unsigned int num_pmcs; /* number of PMCS: computed at init time */
421 unsigned int num_pmds; /* number of PMDS: computed at init time */
422 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
423 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
424
425 char *pmu_name; /* PMU family name */
426 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
427 unsigned int flags; /* pmu specific flags */
428 unsigned int num_ibrs; /* number of IBRS: computed at init time */
429 unsigned int num_dbrs; /* number of DBRS: computed at init time */
430 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
431 int (*probe)(void); /* customized probe routine */
432 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
433 } pmu_config_t;
434 /*
435 * PMU specific flags
436 */
437 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
438
439 /*
440 * debug register related type definitions
441 */
442 typedef struct {
443 unsigned long ibr_mask:56;
444 unsigned long ibr_plm:4;
445 unsigned long ibr_ig:3;
446 unsigned long ibr_x:1;
447 } ibr_mask_reg_t;
448
449 typedef struct {
450 unsigned long dbr_mask:56;
451 unsigned long dbr_plm:4;
452 unsigned long dbr_ig:2;
453 unsigned long dbr_w:1;
454 unsigned long dbr_r:1;
455 } dbr_mask_reg_t;
456
457 typedef union {
458 unsigned long val;
459 ibr_mask_reg_t ibr;
460 dbr_mask_reg_t dbr;
461 } dbreg_t;
462
463
464 /*
465 * perfmon command descriptions
466 */
467 typedef struct {
468 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
469 char *cmd_name;
470 int cmd_flags;
471 unsigned int cmd_narg;
472 size_t cmd_argsize;
473 int (*cmd_getsize)(void *arg, size_t *sz);
474 } pfm_cmd_desc_t;
475
476 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
477 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
478 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
479 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
480
481
482 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
483 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
484 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
485 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
486 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
487
488 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
489
490 typedef struct {
491 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
492 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
493 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
494 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
496 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
497 unsigned long pfm_smpl_handler_calls;
498 unsigned long pfm_smpl_handler_cycles;
499 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
500 } pfm_stats_t;
501
502 /*
503 * perfmon internal variables
504 */
505 static pfm_stats_t pfm_stats[NR_CPUS];
506 static pfm_session_t pfm_sessions; /* global sessions information */
507
508 static DEFINE_SPINLOCK(pfm_alt_install_check);
509 static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
510
511 static struct proc_dir_entry *perfmon_dir;
512 static pfm_uuid_t pfm_null_uuid = {0,};
513
514 static spinlock_t pfm_buffer_fmt_lock;
515 static LIST_HEAD(pfm_buffer_fmt_list);
516
517 static pmu_config_t *pmu_conf;
518
519 /* sysctl() controls */
520 pfm_sysctl_t pfm_sysctl;
521 EXPORT_SYMBOL(pfm_sysctl);
522
523 static ctl_table pfm_ctl_table[]={
524 {
525 .procname = "debug",
526 .data = &pfm_sysctl.debug,
527 .maxlen = sizeof(int),
528 .mode = 0666,
529 .proc_handler = proc_dointvec,
530 },
531 {
532 .procname = "debug_ovfl",
533 .data = &pfm_sysctl.debug_ovfl,
534 .maxlen = sizeof(int),
535 .mode = 0666,
536 .proc_handler = proc_dointvec,
537 },
538 {
539 .procname = "fastctxsw",
540 .data = &pfm_sysctl.fastctxsw,
541 .maxlen = sizeof(int),
542 .mode = 0600,
543 .proc_handler = proc_dointvec,
544 },
545 {
546 .procname = "expert_mode",
547 .data = &pfm_sysctl.expert_mode,
548 .maxlen = sizeof(int),
549 .mode = 0600,
550 .proc_handler = proc_dointvec,
551 },
552 {}
553 };
554 static ctl_table pfm_sysctl_dir[] = {
555 {
556 .procname = "perfmon",
557 .mode = 0555,
558 .child = pfm_ctl_table,
559 },
560 {}
561 };
562 static ctl_table pfm_sysctl_root[] = {
563 {
564 .procname = "kernel",
565 .mode = 0555,
566 .child = pfm_sysctl_dir,
567 },
568 {}
569 };
570 static struct ctl_table_header *pfm_sysctl_header;
571
572 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
573
574 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
575 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
576
577 static inline void
578 pfm_put_task(struct task_struct *task)
579 {
580 if (task != current) put_task_struct(task);
581 }
582
583 static inline void
584 pfm_reserve_page(unsigned long a)
585 {
586 SetPageReserved(vmalloc_to_page((void *)a));
587 }
588 static inline void
589 pfm_unreserve_page(unsigned long a)
590 {
591 ClearPageReserved(vmalloc_to_page((void*)a));
592 }
593
594 static inline unsigned long
595 pfm_protect_ctx_ctxsw(pfm_context_t *x)
596 {
597 spin_lock(&(x)->ctx_lock);
598 return 0UL;
599 }
600
601 static inline void
602 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
603 {
604 spin_unlock(&(x)->ctx_lock);
605 }
606
607 /* forward declaration */
608 static const struct dentry_operations pfmfs_dentry_operations;
609
610 static struct dentry *
611 pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
612 {
613 return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
614 PFMFS_MAGIC);
615 }
616
617 static struct file_system_type pfm_fs_type = {
618 .name = "pfmfs",
619 .mount = pfmfs_mount,
620 .kill_sb = kill_anon_super,
621 };
622
623 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
624 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
625 DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
626 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
627 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
628
629
630 /* forward declaration */
631 static const struct file_operations pfm_file_ops;
632
633 /*
634 * forward declarations
635 */
636 #ifndef CONFIG_SMP
637 static void pfm_lazy_save_regs (struct task_struct *ta);
638 #endif
639
640 void dump_pmu_state(const char *);
641 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
642
643 #include "perfmon_itanium.h"
644 #include "perfmon_mckinley.h"
645 #include "perfmon_montecito.h"
646 #include "perfmon_generic.h"
647
648 static pmu_config_t *pmu_confs[]={
649 &pmu_conf_mont,
650 &pmu_conf_mck,
651 &pmu_conf_ita,
652 &pmu_conf_gen, /* must be last */
653 NULL
654 };
655
656
657 static int pfm_end_notify_user(pfm_context_t *ctx);
658
659 static inline void
660 pfm_clear_psr_pp(void)
661 {
662 ia64_rsm(IA64_PSR_PP);
663 ia64_srlz_i();
664 }
665
666 static inline void
667 pfm_set_psr_pp(void)
668 {
669 ia64_ssm(IA64_PSR_PP);
670 ia64_srlz_i();
671 }
672
673 static inline void
674 pfm_clear_psr_up(void)
675 {
676 ia64_rsm(IA64_PSR_UP);
677 ia64_srlz_i();
678 }
679
680 static inline void
681 pfm_set_psr_up(void)
682 {
683 ia64_ssm(IA64_PSR_UP);
684 ia64_srlz_i();
685 }
686
687 static inline unsigned long
688 pfm_get_psr(void)
689 {
690 unsigned long tmp;
691 tmp = ia64_getreg(_IA64_REG_PSR);
692 ia64_srlz_i();
693 return tmp;
694 }
695
696 static inline void
697 pfm_set_psr_l(unsigned long val)
698 {
699 ia64_setreg(_IA64_REG_PSR_L, val);
700 ia64_srlz_i();
701 }
702
703 static inline void
704 pfm_freeze_pmu(void)
705 {
706 ia64_set_pmc(0,1UL);
707 ia64_srlz_d();
708 }
709
710 static inline void
711 pfm_unfreeze_pmu(void)
712 {
713 ia64_set_pmc(0,0UL);
714 ia64_srlz_d();
715 }
716
717 static inline void
718 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
719 {
720 int i;
721
722 for (i=0; i < nibrs; i++) {
723 ia64_set_ibr(i, ibrs[i]);
724 ia64_dv_serialize_instruction();
725 }
726 ia64_srlz_i();
727 }
728
729 static inline void
730 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
731 {
732 int i;
733
734 for (i=0; i < ndbrs; i++) {
735 ia64_set_dbr(i, dbrs[i]);
736 ia64_dv_serialize_data();
737 }
738 ia64_srlz_d();
739 }
740
741 /*
742 * PMD[i] must be a counter. no check is made
743 */
744 static inline unsigned long
745 pfm_read_soft_counter(pfm_context_t *ctx, int i)
746 {
747 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
748 }
749
750 /*
751 * PMD[i] must be a counter. no check is made
752 */
753 static inline void
754 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
755 {
756 unsigned long ovfl_val = pmu_conf->ovfl_val;
757
758 ctx->ctx_pmds[i].val = val & ~ovfl_val;
759 /*
760 * writing to unimplemented part is ignore, so we do not need to
761 * mask off top part
762 */
763 ia64_set_pmd(i, val & ovfl_val);
764 }
765
766 static pfm_msg_t *
767 pfm_get_new_msg(pfm_context_t *ctx)
768 {
769 int idx, next;
770
771 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
772
773 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
774 if (next == ctx->ctx_msgq_head) return NULL;
775
776 idx = ctx->ctx_msgq_tail;
777 ctx->ctx_msgq_tail = next;
778
779 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
780
781 return ctx->ctx_msgq+idx;
782 }
783
784 static pfm_msg_t *
785 pfm_get_next_msg(pfm_context_t *ctx)
786 {
787 pfm_msg_t *msg;
788
789 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
790
791 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
792
793 /*
794 * get oldest message
795 */
796 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
797
798 /*
799 * and move forward
800 */
801 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
802
803 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
804
805 return msg;
806 }
807
808 static void
809 pfm_reset_msgq(pfm_context_t *ctx)
810 {
811 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
812 DPRINT(("ctx=%p msgq reset\n", ctx));
813 }
814
815 static void *
816 pfm_rvmalloc(unsigned long size)
817 {
818 void *mem;
819 unsigned long addr;
820
821 size = PAGE_ALIGN(size);
822 mem = vzalloc(size);
823 if (mem) {
824 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
825 addr = (unsigned long)mem;
826 while (size > 0) {
827 pfm_reserve_page(addr);
828 addr+=PAGE_SIZE;
829 size-=PAGE_SIZE;
830 }
831 }
832 return mem;
833 }
834
835 static void
836 pfm_rvfree(void *mem, unsigned long size)
837 {
838 unsigned long addr;
839
840 if (mem) {
841 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
842 addr = (unsigned long) mem;
843 while ((long) size > 0) {
844 pfm_unreserve_page(addr);
845 addr+=PAGE_SIZE;
846 size-=PAGE_SIZE;
847 }
848 vfree(mem);
849 }
850 return;
851 }
852
853 static pfm_context_t *
854 pfm_context_alloc(int ctx_flags)
855 {
856 pfm_context_t *ctx;
857
858 /*
859 * allocate context descriptor
860 * must be able to free with interrupts disabled
861 */
862 ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
863 if (ctx) {
864 DPRINT(("alloc ctx @%p\n", ctx));
865
866 /*
867 * init context protection lock
868 */
869 spin_lock_init(&ctx->ctx_lock);
870
871 /*
872 * context is unloaded
873 */
874 ctx->ctx_state = PFM_CTX_UNLOADED;
875
876 /*
877 * initialization of context's flags
878 */
879 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
880 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
881 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
882 /*
883 * will move to set properties
884 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
885 */
886
887 /*
888 * init restart semaphore to locked
889 */
890 init_completion(&ctx->ctx_restart_done);
891
892 /*
893 * activation is used in SMP only
894 */
895 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
896 SET_LAST_CPU(ctx, -1);
897
898 /*
899 * initialize notification message queue
900 */
901 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
902 init_waitqueue_head(&ctx->ctx_msgq_wait);
903 init_waitqueue_head(&ctx->ctx_zombieq);
904
905 }
906 return ctx;
907 }
908
909 static void
910 pfm_context_free(pfm_context_t *ctx)
911 {
912 if (ctx) {
913 DPRINT(("free ctx @%p\n", ctx));
914 kfree(ctx);
915 }
916 }
917
918 static void
919 pfm_mask_monitoring(struct task_struct *task)
920 {
921 pfm_context_t *ctx = PFM_GET_CTX(task);
922 unsigned long mask, val, ovfl_mask;
923 int i;
924
925 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
926
927 ovfl_mask = pmu_conf->ovfl_val;
928 /*
929 * monitoring can only be masked as a result of a valid
930 * counter overflow. In UP, it means that the PMU still
931 * has an owner. Note that the owner can be different
932 * from the current task. However the PMU state belongs
933 * to the owner.
934 * In SMP, a valid overflow only happens when task is
935 * current. Therefore if we come here, we know that
936 * the PMU state belongs to the current task, therefore
937 * we can access the live registers.
938 *
939 * So in both cases, the live register contains the owner's
940 * state. We can ONLY touch the PMU registers and NOT the PSR.
941 *
942 * As a consequence to this call, the ctx->th_pmds[] array
943 * contains stale information which must be ignored
944 * when context is reloaded AND monitoring is active (see
945 * pfm_restart).
946 */
947 mask = ctx->ctx_used_pmds[0];
948 for (i = 0; mask; i++, mask>>=1) {
949 /* skip non used pmds */
950 if ((mask & 0x1) == 0) continue;
951 val = ia64_get_pmd(i);
952
953 if (PMD_IS_COUNTING(i)) {
954 /*
955 * we rebuild the full 64 bit value of the counter
956 */
957 ctx->ctx_pmds[i].val += (val & ovfl_mask);
958 } else {
959 ctx->ctx_pmds[i].val = val;
960 }
961 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
962 i,
963 ctx->ctx_pmds[i].val,
964 val & ovfl_mask));
965 }
966 /*
967 * mask monitoring by setting the privilege level to 0
968 * we cannot use psr.pp/psr.up for this, it is controlled by
969 * the user
970 *
971 * if task is current, modify actual registers, otherwise modify
972 * thread save state, i.e., what will be restored in pfm_load_regs()
973 */
974 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
975 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
976 if ((mask & 0x1) == 0UL) continue;
977 ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
978 ctx->th_pmcs[i] &= ~0xfUL;
979 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
980 }
981 /*
982 * make all of this visible
983 */
984 ia64_srlz_d();
985 }
986
987 /*
988 * must always be done with task == current
989 *
990 * context must be in MASKED state when calling
991 */
992 static void
993 pfm_restore_monitoring(struct task_struct *task)
994 {
995 pfm_context_t *ctx = PFM_GET_CTX(task);
996 unsigned long mask, ovfl_mask;
997 unsigned long psr, val;
998 int i, is_system;
999
1000 is_system = ctx->ctx_fl_system;
1001 ovfl_mask = pmu_conf->ovfl_val;
1002
1003 if (task != current) {
1004 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1005 return;
1006 }
1007 if (ctx->ctx_state != PFM_CTX_MASKED) {
1008 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1009 task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1010 return;
1011 }
1012 psr = pfm_get_psr();
1013 /*
1014 * monitoring is masked via the PMC.
1015 * As we restore their value, we do not want each counter to
1016 * restart right away. We stop monitoring using the PSR,
1017 * restore the PMC (and PMD) and then re-establish the psr
1018 * as it was. Note that there can be no pending overflow at
1019 * this point, because monitoring was MASKED.
1020 *
1021 * system-wide session are pinned and self-monitoring
1022 */
1023 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1024 /* disable dcr pp */
1025 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1026 pfm_clear_psr_pp();
1027 } else {
1028 pfm_clear_psr_up();
1029 }
1030 /*
1031 * first, we restore the PMD
1032 */
1033 mask = ctx->ctx_used_pmds[0];
1034 for (i = 0; mask; i++, mask>>=1) {
1035 /* skip non used pmds */
1036 if ((mask & 0x1) == 0) continue;
1037
1038 if (PMD_IS_COUNTING(i)) {
1039 /*
1040 * we split the 64bit value according to
1041 * counter width
1042 */
1043 val = ctx->ctx_pmds[i].val & ovfl_mask;
1044 ctx->ctx_pmds[i].val &= ~ovfl_mask;
1045 } else {
1046 val = ctx->ctx_pmds[i].val;
1047 }
1048 ia64_set_pmd(i, val);
1049
1050 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1051 i,
1052 ctx->ctx_pmds[i].val,
1053 val));
1054 }
1055 /*
1056 * restore the PMCs
1057 */
1058 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1059 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1060 if ((mask & 0x1) == 0UL) continue;
1061 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1062 ia64_set_pmc(i, ctx->th_pmcs[i]);
1063 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1064 task_pid_nr(task), i, ctx->th_pmcs[i]));
1065 }
1066 ia64_srlz_d();
1067
1068 /*
1069 * must restore DBR/IBR because could be modified while masked
1070 * XXX: need to optimize
1071 */
1072 if (ctx->ctx_fl_using_dbreg) {
1073 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1074 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1075 }
1076
1077 /*
1078 * now restore PSR
1079 */
1080 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1081 /* enable dcr pp */
1082 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1083 ia64_srlz_i();
1084 }
1085 pfm_set_psr_l(psr);
1086 }
1087
1088 static inline void
1089 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1090 {
1091 int i;
1092
1093 ia64_srlz_d();
1094
1095 for (i=0; mask; i++, mask>>=1) {
1096 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1097 }
1098 }
1099
1100 /*
1101 * reload from thread state (used for ctxw only)
1102 */
1103 static inline void
1104 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1105 {
1106 int i;
1107 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1108
1109 for (i=0; mask; i++, mask>>=1) {
1110 if ((mask & 0x1) == 0) continue;
1111 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1112 ia64_set_pmd(i, val);
1113 }
1114 ia64_srlz_d();
1115 }
1116
1117 /*
1118 * propagate PMD from context to thread-state
1119 */
1120 static inline void
1121 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1122 {
1123 unsigned long ovfl_val = pmu_conf->ovfl_val;
1124 unsigned long mask = ctx->ctx_all_pmds[0];
1125 unsigned long val;
1126 int i;
1127
1128 DPRINT(("mask=0x%lx\n", mask));
1129
1130 for (i=0; mask; i++, mask>>=1) {
1131
1132 val = ctx->ctx_pmds[i].val;
1133
1134 /*
1135 * We break up the 64 bit value into 2 pieces
1136 * the lower bits go to the machine state in the
1137 * thread (will be reloaded on ctxsw in).
1138 * The upper part stays in the soft-counter.
1139 */
1140 if (PMD_IS_COUNTING(i)) {
1141 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1142 val &= ovfl_val;
1143 }
1144 ctx->th_pmds[i] = val;
1145
1146 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1147 i,
1148 ctx->th_pmds[i],
1149 ctx->ctx_pmds[i].val));
1150 }
1151 }
1152
1153 /*
1154 * propagate PMC from context to thread-state
1155 */
1156 static inline void
1157 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1158 {
1159 unsigned long mask = ctx->ctx_all_pmcs[0];
1160 int i;
1161
1162 DPRINT(("mask=0x%lx\n", mask));
1163
1164 for (i=0; mask; i++, mask>>=1) {
1165 /* masking 0 with ovfl_val yields 0 */
1166 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1167 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1168 }
1169 }
1170
1171
1172
1173 static inline void
1174 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1175 {
1176 int i;
1177
1178 for (i=0; mask; i++, mask>>=1) {
1179 if ((mask & 0x1) == 0) continue;
1180 ia64_set_pmc(i, pmcs[i]);
1181 }
1182 ia64_srlz_d();
1183 }
1184
1185 static inline int
1186 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1187 {
1188 return memcmp(a, b, sizeof(pfm_uuid_t));
1189 }
1190
1191 static inline int
1192 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1193 {
1194 int ret = 0;
1195 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1196 return ret;
1197 }
1198
1199 static inline int
1200 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1201 {
1202 int ret = 0;
1203 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1204 return ret;
1205 }
1206
1207
1208 static inline int
1209 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1210 int cpu, void *arg)
1211 {
1212 int ret = 0;
1213 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1214 return ret;
1215 }
1216
1217 static inline int
1218 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1219 int cpu, void *arg)
1220 {
1221 int ret = 0;
1222 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1223 return ret;
1224 }
1225
1226 static inline int
1227 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1228 {
1229 int ret = 0;
1230 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1231 return ret;
1232 }
1233
1234 static inline int
1235 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1236 {
1237 int ret = 0;
1238 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1239 return ret;
1240 }
1241
1242 static pfm_buffer_fmt_t *
1243 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1244 {
1245 struct list_head * pos;
1246 pfm_buffer_fmt_t * entry;
1247
1248 list_for_each(pos, &pfm_buffer_fmt_list) {
1249 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1250 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1251 return entry;
1252 }
1253 return NULL;
1254 }
1255
1256 /*
1257 * find a buffer format based on its uuid
1258 */
1259 static pfm_buffer_fmt_t *
1260 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1261 {
1262 pfm_buffer_fmt_t * fmt;
1263 spin_lock(&pfm_buffer_fmt_lock);
1264 fmt = __pfm_find_buffer_fmt(uuid);
1265 spin_unlock(&pfm_buffer_fmt_lock);
1266 return fmt;
1267 }
1268
1269 int
1270 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1271 {
1272 int ret = 0;
1273
1274 /* some sanity checks */
1275 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1276
1277 /* we need at least a handler */
1278 if (fmt->fmt_handler == NULL) return -EINVAL;
1279
1280 /*
1281 * XXX: need check validity of fmt_arg_size
1282 */
1283
1284 spin_lock(&pfm_buffer_fmt_lock);
1285
1286 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1287 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1288 ret = -EBUSY;
1289 goto out;
1290 }
1291 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1292 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1293
1294 out:
1295 spin_unlock(&pfm_buffer_fmt_lock);
1296 return ret;
1297 }
1298 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1299
1300 int
1301 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1302 {
1303 pfm_buffer_fmt_t *fmt;
1304 int ret = 0;
1305
1306 spin_lock(&pfm_buffer_fmt_lock);
1307
1308 fmt = __pfm_find_buffer_fmt(uuid);
1309 if (!fmt) {
1310 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1311 ret = -EINVAL;
1312 goto out;
1313 }
1314 list_del_init(&fmt->fmt_list);
1315 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1316
1317 out:
1318 spin_unlock(&pfm_buffer_fmt_lock);
1319 return ret;
1320
1321 }
1322 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1323
1324 extern void update_pal_halt_status(int);
1325
1326 static int
1327 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1328 {
1329 unsigned long flags;
1330 /*
1331 * validity checks on cpu_mask have been done upstream
1332 */
1333 LOCK_PFS(flags);
1334
1335 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1336 pfm_sessions.pfs_sys_sessions,
1337 pfm_sessions.pfs_task_sessions,
1338 pfm_sessions.pfs_sys_use_dbregs,
1339 is_syswide,
1340 cpu));
1341
1342 if (is_syswide) {
1343 /*
1344 * cannot mix system wide and per-task sessions
1345 */
1346 if (pfm_sessions.pfs_task_sessions > 0UL) {
1347 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1348 pfm_sessions.pfs_task_sessions));
1349 goto abort;
1350 }
1351
1352 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1353
1354 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1355
1356 pfm_sessions.pfs_sys_session[cpu] = task;
1357
1358 pfm_sessions.pfs_sys_sessions++ ;
1359
1360 } else {
1361 if (pfm_sessions.pfs_sys_sessions) goto abort;
1362 pfm_sessions.pfs_task_sessions++;
1363 }
1364
1365 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1366 pfm_sessions.pfs_sys_sessions,
1367 pfm_sessions.pfs_task_sessions,
1368 pfm_sessions.pfs_sys_use_dbregs,
1369 is_syswide,
1370 cpu));
1371
1372 /*
1373 * disable default_idle() to go to PAL_HALT
1374 */
1375 update_pal_halt_status(0);
1376
1377 UNLOCK_PFS(flags);
1378
1379 return 0;
1380
1381 error_conflict:
1382 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1383 task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1384 cpu));
1385 abort:
1386 UNLOCK_PFS(flags);
1387
1388 return -EBUSY;
1389
1390 }
1391
1392 static int
1393 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1394 {
1395 unsigned long flags;
1396 /*
1397 * validity checks on cpu_mask have been done upstream
1398 */
1399 LOCK_PFS(flags);
1400
1401 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1402 pfm_sessions.pfs_sys_sessions,
1403 pfm_sessions.pfs_task_sessions,
1404 pfm_sessions.pfs_sys_use_dbregs,
1405 is_syswide,
1406 cpu));
1407
1408
1409 if (is_syswide) {
1410 pfm_sessions.pfs_sys_session[cpu] = NULL;
1411 /*
1412 * would not work with perfmon+more than one bit in cpu_mask
1413 */
1414 if (ctx && ctx->ctx_fl_using_dbreg) {
1415 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1416 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1417 } else {
1418 pfm_sessions.pfs_sys_use_dbregs--;
1419 }
1420 }
1421 pfm_sessions.pfs_sys_sessions--;
1422 } else {
1423 pfm_sessions.pfs_task_sessions--;
1424 }
1425 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1426 pfm_sessions.pfs_sys_sessions,
1427 pfm_sessions.pfs_task_sessions,
1428 pfm_sessions.pfs_sys_use_dbregs,
1429 is_syswide,
1430 cpu));
1431
1432 /*
1433 * if possible, enable default_idle() to go into PAL_HALT
1434 */
1435 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1436 update_pal_halt_status(1);
1437
1438 UNLOCK_PFS(flags);
1439
1440 return 0;
1441 }
1442
1443 /*
1444 * removes virtual mapping of the sampling buffer.
1445 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1446 * a PROTECT_CTX() section.
1447 */
1448 static int
1449 pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1450 {
1451 struct task_struct *task = current;
1452 int r;
1453
1454 /* sanity checks */
1455 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1456 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1457 return -EINVAL;
1458 }
1459
1460 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1461
1462 /*
1463 * does the actual unmapping
1464 */
1465 r = vm_munmap((unsigned long)vaddr, size);
1466
1467 if (r !=0) {
1468 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1469 }
1470
1471 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1472
1473 return 0;
1474 }
1475
1476 /*
1477 * free actual physical storage used by sampling buffer
1478 */
1479 #if 0
1480 static int
1481 pfm_free_smpl_buffer(pfm_context_t *ctx)
1482 {
1483 pfm_buffer_fmt_t *fmt;
1484
1485 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1486
1487 /*
1488 * we won't use the buffer format anymore
1489 */
1490 fmt = ctx->ctx_buf_fmt;
1491
1492 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1493 ctx->ctx_smpl_hdr,
1494 ctx->ctx_smpl_size,
1495 ctx->ctx_smpl_vaddr));
1496
1497 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1498
1499 /*
1500 * free the buffer
1501 */
1502 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1503
1504 ctx->ctx_smpl_hdr = NULL;
1505 ctx->ctx_smpl_size = 0UL;
1506
1507 return 0;
1508
1509 invalid_free:
1510 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1511 return -EINVAL;
1512 }
1513 #endif
1514
1515 static inline void
1516 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1517 {
1518 if (fmt == NULL) return;
1519
1520 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1521
1522 }
1523
1524 /*
1525 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1526 * no real gain from having the whole whorehouse mounted. So we don't need
1527 * any operations on the root directory. However, we need a non-trivial
1528 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1529 */
1530 static struct vfsmount *pfmfs_mnt __read_mostly;
1531
1532 static int __init
1533 init_pfm_fs(void)
1534 {
1535 int err = register_filesystem(&pfm_fs_type);
1536 if (!err) {
1537 pfmfs_mnt = kern_mount(&pfm_fs_type);
1538 err = PTR_ERR(pfmfs_mnt);
1539 if (IS_ERR(pfmfs_mnt))
1540 unregister_filesystem(&pfm_fs_type);
1541 else
1542 err = 0;
1543 }
1544 return err;
1545 }
1546
1547 static ssize_t
1548 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1549 {
1550 pfm_context_t *ctx;
1551 pfm_msg_t *msg;
1552 ssize_t ret;
1553 unsigned long flags;
1554 DECLARE_WAITQUEUE(wait, current);
1555 if (PFM_IS_FILE(filp) == 0) {
1556 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1557 return -EINVAL;
1558 }
1559
1560 ctx = filp->private_data;
1561 if (ctx == NULL) {
1562 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1563 return -EINVAL;
1564 }
1565
1566 /*
1567 * check even when there is no message
1568 */
1569 if (size < sizeof(pfm_msg_t)) {
1570 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1571 return -EINVAL;
1572 }
1573
1574 PROTECT_CTX(ctx, flags);
1575
1576 /*
1577 * put ourselves on the wait queue
1578 */
1579 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1580
1581
1582 for(;;) {
1583 /*
1584 * check wait queue
1585 */
1586
1587 set_current_state(TASK_INTERRUPTIBLE);
1588
1589 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1590
1591 ret = 0;
1592 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1593
1594 UNPROTECT_CTX(ctx, flags);
1595
1596 /*
1597 * check non-blocking read
1598 */
1599 ret = -EAGAIN;
1600 if(filp->f_flags & O_NONBLOCK) break;
1601
1602 /*
1603 * check pending signals
1604 */
1605 if(signal_pending(current)) {
1606 ret = -EINTR;
1607 break;
1608 }
1609 /*
1610 * no message, so wait
1611 */
1612 schedule();
1613
1614 PROTECT_CTX(ctx, flags);
1615 }
1616 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1617 set_current_state(TASK_RUNNING);
1618 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1619
1620 if (ret < 0) goto abort;
1621
1622 ret = -EINVAL;
1623 msg = pfm_get_next_msg(ctx);
1624 if (msg == NULL) {
1625 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1626 goto abort_locked;
1627 }
1628
1629 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1630
1631 ret = -EFAULT;
1632 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1633
1634 abort_locked:
1635 UNPROTECT_CTX(ctx, flags);
1636 abort:
1637 return ret;
1638 }
1639
1640 static ssize_t
1641 pfm_write(struct file *file, const char __user *ubuf,
1642 size_t size, loff_t *ppos)
1643 {
1644 DPRINT(("pfm_write called\n"));
1645 return -EINVAL;
1646 }
1647
1648 static unsigned int
1649 pfm_poll(struct file *filp, poll_table * wait)
1650 {
1651 pfm_context_t *ctx;
1652 unsigned long flags;
1653 unsigned int mask = 0;
1654
1655 if (PFM_IS_FILE(filp) == 0) {
1656 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1657 return 0;
1658 }
1659
1660 ctx = filp->private_data;
1661 if (ctx == NULL) {
1662 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1663 return 0;
1664 }
1665
1666
1667 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1668
1669 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1670
1671 PROTECT_CTX(ctx, flags);
1672
1673 if (PFM_CTXQ_EMPTY(ctx) == 0)
1674 mask = POLLIN | POLLRDNORM;
1675
1676 UNPROTECT_CTX(ctx, flags);
1677
1678 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1679
1680 return mask;
1681 }
1682
1683 static long
1684 pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1685 {
1686 DPRINT(("pfm_ioctl called\n"));
1687 return -EINVAL;
1688 }
1689
1690 /*
1691 * interrupt cannot be masked when coming here
1692 */
1693 static inline int
1694 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1695 {
1696 int ret;
1697
1698 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1699
1700 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1701 task_pid_nr(current),
1702 fd,
1703 on,
1704 ctx->ctx_async_queue, ret));
1705
1706 return ret;
1707 }
1708
1709 static int
1710 pfm_fasync(int fd, struct file *filp, int on)
1711 {
1712 pfm_context_t *ctx;
1713 int ret;
1714
1715 if (PFM_IS_FILE(filp) == 0) {
1716 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1717 return -EBADF;
1718 }
1719
1720 ctx = filp->private_data;
1721 if (ctx == NULL) {
1722 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1723 return -EBADF;
1724 }
1725 /*
1726 * we cannot mask interrupts during this call because this may
1727 * may go to sleep if memory is not readily avalaible.
1728 *
1729 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1730 * done in caller. Serialization of this function is ensured by caller.
1731 */
1732 ret = pfm_do_fasync(fd, filp, ctx, on);
1733
1734
1735 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1736 fd,
1737 on,
1738 ctx->ctx_async_queue, ret));
1739
1740 return ret;
1741 }
1742
1743 #ifdef CONFIG_SMP
1744 /*
1745 * this function is exclusively called from pfm_close().
1746 * The context is not protected at that time, nor are interrupts
1747 * on the remote CPU. That's necessary to avoid deadlocks.
1748 */
1749 static void
1750 pfm_syswide_force_stop(void *info)
1751 {
1752 pfm_context_t *ctx = (pfm_context_t *)info;
1753 struct pt_regs *regs = task_pt_regs(current);
1754 struct task_struct *owner;
1755 unsigned long flags;
1756 int ret;
1757
1758 if (ctx->ctx_cpu != smp_processor_id()) {
1759 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1760 ctx->ctx_cpu,
1761 smp_processor_id());
1762 return;
1763 }
1764 owner = GET_PMU_OWNER();
1765 if (owner != ctx->ctx_task) {
1766 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1767 smp_processor_id(),
1768 task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1769 return;
1770 }
1771 if (GET_PMU_CTX() != ctx) {
1772 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1773 smp_processor_id(),
1774 GET_PMU_CTX(), ctx);
1775 return;
1776 }
1777
1778 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1779 /*
1780 * the context is already protected in pfm_close(), we simply
1781 * need to mask interrupts to avoid a PMU interrupt race on
1782 * this CPU
1783 */
1784 local_irq_save(flags);
1785
1786 ret = pfm_context_unload(ctx, NULL, 0, regs);
1787 if (ret) {
1788 DPRINT(("context_unload returned %d\n", ret));
1789 }
1790
1791 /*
1792 * unmask interrupts, PMU interrupts are now spurious here
1793 */
1794 local_irq_restore(flags);
1795 }
1796
1797 static void
1798 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1799 {
1800 int ret;
1801
1802 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1803 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1804 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1805 }
1806 #endif /* CONFIG_SMP */
1807
1808 /*
1809 * called for each close(). Partially free resources.
1810 * When caller is self-monitoring, the context is unloaded.
1811 */
1812 static int
1813 pfm_flush(struct file *filp, fl_owner_t id)
1814 {
1815 pfm_context_t *ctx;
1816 struct task_struct *task;
1817 struct pt_regs *regs;
1818 unsigned long flags;
1819 unsigned long smpl_buf_size = 0UL;
1820 void *smpl_buf_vaddr = NULL;
1821 int state, is_system;
1822
1823 if (PFM_IS_FILE(filp) == 0) {
1824 DPRINT(("bad magic for\n"));
1825 return -EBADF;
1826 }
1827
1828 ctx = filp->private_data;
1829 if (ctx == NULL) {
1830 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1831 return -EBADF;
1832 }
1833
1834 /*
1835 * remove our file from the async queue, if we use this mode.
1836 * This can be done without the context being protected. We come
1837 * here when the context has become unreachable by other tasks.
1838 *
1839 * We may still have active monitoring at this point and we may
1840 * end up in pfm_overflow_handler(). However, fasync_helper()
1841 * operates with interrupts disabled and it cleans up the
1842 * queue. If the PMU handler is called prior to entering
1843 * fasync_helper() then it will send a signal. If it is
1844 * invoked after, it will find an empty queue and no
1845 * signal will be sent. In both case, we are safe
1846 */
1847 PROTECT_CTX(ctx, flags);
1848
1849 state = ctx->ctx_state;
1850 is_system = ctx->ctx_fl_system;
1851
1852 task = PFM_CTX_TASK(ctx);
1853 regs = task_pt_regs(task);
1854
1855 DPRINT(("ctx_state=%d is_current=%d\n",
1856 state,
1857 task == current ? 1 : 0));
1858
1859 /*
1860 * if state == UNLOADED, then task is NULL
1861 */
1862
1863 /*
1864 * we must stop and unload because we are losing access to the context.
1865 */
1866 if (task == current) {
1867 #ifdef CONFIG_SMP
1868 /*
1869 * the task IS the owner but it migrated to another CPU: that's bad
1870 * but we must handle this cleanly. Unfortunately, the kernel does
1871 * not provide a mechanism to block migration (while the context is loaded).
1872 *
1873 * We need to release the resource on the ORIGINAL cpu.
1874 */
1875 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1876
1877 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1878 /*
1879 * keep context protected but unmask interrupt for IPI
1880 */
1881 local_irq_restore(flags);
1882
1883 pfm_syswide_cleanup_other_cpu(ctx);
1884
1885 /*
1886 * restore interrupt masking
1887 */
1888 local_irq_save(flags);
1889
1890 /*
1891 * context is unloaded at this point
1892 */
1893 } else
1894 #endif /* CONFIG_SMP */
1895 {
1896
1897 DPRINT(("forcing unload\n"));
1898 /*
1899 * stop and unload, returning with state UNLOADED
1900 * and session unreserved.
1901 */
1902 pfm_context_unload(ctx, NULL, 0, regs);
1903
1904 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1905 }
1906 }
1907
1908 /*
1909 * remove virtual mapping, if any, for the calling task.
1910 * cannot reset ctx field until last user is calling close().
1911 *
1912 * ctx_smpl_vaddr must never be cleared because it is needed
1913 * by every task with access to the context
1914 *
1915 * When called from do_exit(), the mm context is gone already, therefore
1916 * mm is NULL, i.e., the VMA is already gone and we do not have to
1917 * do anything here
1918 */
1919 if (ctx->ctx_smpl_vaddr && current->mm) {
1920 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1921 smpl_buf_size = ctx->ctx_smpl_size;
1922 }
1923
1924 UNPROTECT_CTX(ctx, flags);
1925
1926 /*
1927 * if there was a mapping, then we systematically remove it
1928 * at this point. Cannot be done inside critical section
1929 * because some VM function reenables interrupts.
1930 *
1931 */
1932 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1933
1934 return 0;
1935 }
1936 /*
1937 * called either on explicit close() or from exit_files().
1938 * Only the LAST user of the file gets to this point, i.e., it is
1939 * called only ONCE.
1940 *
1941 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1942 * (fput()),i.e, last task to access the file. Nobody else can access the
1943 * file at this point.
1944 *
1945 * When called from exit_files(), the VMA has been freed because exit_mm()
1946 * is executed before exit_files().
1947 *
1948 * When called from exit_files(), the current task is not yet ZOMBIE but we
1949 * flush the PMU state to the context.
1950 */
1951 static int
1952 pfm_close(struct inode *inode, struct file *filp)
1953 {
1954 pfm_context_t *ctx;
1955 struct task_struct *task;
1956 struct pt_regs *regs;
1957 DECLARE_WAITQUEUE(wait, current);
1958 unsigned long flags;
1959 unsigned long smpl_buf_size = 0UL;
1960 void *smpl_buf_addr = NULL;
1961 int free_possible = 1;
1962 int state, is_system;
1963
1964 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1965
1966 if (PFM_IS_FILE(filp) == 0) {
1967 DPRINT(("bad magic\n"));
1968 return -EBADF;
1969 }
1970
1971 ctx = filp->private_data;
1972 if (ctx == NULL) {
1973 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1974 return -EBADF;
1975 }
1976
1977 PROTECT_CTX(ctx, flags);
1978
1979 state = ctx->ctx_state;
1980 is_system = ctx->ctx_fl_system;
1981
1982 task = PFM_CTX_TASK(ctx);
1983 regs = task_pt_regs(task);
1984
1985 DPRINT(("ctx_state=%d is_current=%d\n",
1986 state,
1987 task == current ? 1 : 0));
1988
1989 /*
1990 * if task == current, then pfm_flush() unloaded the context
1991 */
1992 if (state == PFM_CTX_UNLOADED) goto doit;
1993
1994 /*
1995 * context is loaded/masked and task != current, we need to
1996 * either force an unload or go zombie
1997 */
1998
1999 /*
2000 * The task is currently blocked or will block after an overflow.
2001 * we must force it to wakeup to get out of the
2002 * MASKED state and transition to the unloaded state by itself.
2003 *
2004 * This situation is only possible for per-task mode
2005 */
2006 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2007
2008 /*
2009 * set a "partial" zombie state to be checked
2010 * upon return from down() in pfm_handle_work().
2011 *
2012 * We cannot use the ZOMBIE state, because it is checked
2013 * by pfm_load_regs() which is called upon wakeup from down().
2014 * In such case, it would free the context and then we would
2015 * return to pfm_handle_work() which would access the
2016 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2017 * but visible to pfm_handle_work().
2018 *
2019 * For some window of time, we have a zombie context with
2020 * ctx_state = MASKED and not ZOMBIE
2021 */
2022 ctx->ctx_fl_going_zombie = 1;
2023
2024 /*
2025 * force task to wake up from MASKED state
2026 */
2027 complete(&ctx->ctx_restart_done);
2028
2029 DPRINT(("waking up ctx_state=%d\n", state));
2030
2031 /*
2032 * put ourself to sleep waiting for the other
2033 * task to report completion
2034 *
2035 * the context is protected by mutex, therefore there
2036 * is no risk of being notified of completion before
2037 * begin actually on the waitq.
2038 */
2039 set_current_state(TASK_INTERRUPTIBLE);
2040 add_wait_queue(&ctx->ctx_zombieq, &wait);
2041
2042 UNPROTECT_CTX(ctx, flags);
2043
2044 /*
2045 * XXX: check for signals :
2046 * - ok for explicit close
2047 * - not ok when coming from exit_files()
2048 */
2049 schedule();
2050
2051
2052 PROTECT_CTX(ctx, flags);
2053
2054
2055 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2056 set_current_state(TASK_RUNNING);
2057
2058 /*
2059 * context is unloaded at this point
2060 */
2061 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2062 }
2063 else if (task != current) {
2064 #ifdef CONFIG_SMP
2065 /*
2066 * switch context to zombie state
2067 */
2068 ctx->ctx_state = PFM_CTX_ZOMBIE;
2069
2070 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2071 /*
2072 * cannot free the context on the spot. deferred until
2073 * the task notices the ZOMBIE state
2074 */
2075 free_possible = 0;
2076 #else
2077 pfm_context_unload(ctx, NULL, 0, regs);
2078 #endif
2079 }
2080
2081 doit:
2082 /* reload state, may have changed during opening of critical section */
2083 state = ctx->ctx_state;
2084
2085 /*
2086 * the context is still attached to a task (possibly current)
2087 * we cannot destroy it right now
2088 */
2089
2090 /*
2091 * we must free the sampling buffer right here because
2092 * we cannot rely on it being cleaned up later by the
2093 * monitored task. It is not possible to free vmalloc'ed
2094 * memory in pfm_load_regs(). Instead, we remove the buffer
2095 * now. should there be subsequent PMU overflow originally
2096 * meant for sampling, the will be converted to spurious
2097 * and that's fine because the monitoring tools is gone anyway.
2098 */
2099 if (ctx->ctx_smpl_hdr) {
2100 smpl_buf_addr = ctx->ctx_smpl_hdr;
2101 smpl_buf_size = ctx->ctx_smpl_size;
2102 /* no more sampling */
2103 ctx->ctx_smpl_hdr = NULL;
2104 ctx->ctx_fl_is_sampling = 0;
2105 }
2106
2107 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2108 state,
2109 free_possible,
2110 smpl_buf_addr,
2111 smpl_buf_size));
2112
2113 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2114
2115 /*
2116 * UNLOADED that the session has already been unreserved.
2117 */
2118 if (state == PFM_CTX_ZOMBIE) {
2119 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2120 }
2121
2122 /*
2123 * disconnect file descriptor from context must be done
2124 * before we unlock.
2125 */
2126 filp->private_data = NULL;
2127
2128 /*
2129 * if we free on the spot, the context is now completely unreachable
2130 * from the callers side. The monitored task side is also cut, so we
2131 * can freely cut.
2132 *
2133 * If we have a deferred free, only the caller side is disconnected.
2134 */
2135 UNPROTECT_CTX(ctx, flags);
2136
2137 /*
2138 * All memory free operations (especially for vmalloc'ed memory)
2139 * MUST be done with interrupts ENABLED.
2140 */
2141 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2142
2143 /*
2144 * return the memory used by the context
2145 */
2146 if (free_possible) pfm_context_free(ctx);
2147
2148 return 0;
2149 }
2150
2151 static int
2152 pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2153 {
2154 DPRINT(("pfm_no_open called\n"));
2155 return -ENXIO;
2156 }
2157
2158
2159
2160 static const struct file_operations pfm_file_ops = {
2161 .llseek = no_llseek,
2162 .read = pfm_read,
2163 .write = pfm_write,
2164 .poll = pfm_poll,
2165 .unlocked_ioctl = pfm_ioctl,
2166 .open = pfm_no_open, /* special open code to disallow open via /proc */
2167 .fasync = pfm_fasync,
2168 .release = pfm_close,
2169 .flush = pfm_flush
2170 };
2171
2172 static int
2173 pfmfs_delete_dentry(const struct dentry *dentry)
2174 {
2175 return 1;
2176 }
2177
2178 static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2179 {
2180 return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2181 dentry->d_inode->i_ino);
2182 }
2183
2184 static const struct dentry_operations pfmfs_dentry_operations = {
2185 .d_delete = pfmfs_delete_dentry,
2186 .d_dname = pfmfs_dname,
2187 };
2188
2189
2190 static struct file *
2191 pfm_alloc_file(pfm_context_t *ctx)
2192 {
2193 struct file *file;
2194 struct inode *inode;
2195 struct path path;
2196 struct qstr this = { .name = "" };
2197
2198 /*
2199 * allocate a new inode
2200 */
2201 inode = new_inode(pfmfs_mnt->mnt_sb);
2202 if (!inode)
2203 return ERR_PTR(-ENOMEM);
2204
2205 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2206
2207 inode->i_mode = S_IFCHR|S_IRUGO;
2208 inode->i_uid = current_fsuid();
2209 inode->i_gid = current_fsgid();
2210
2211 /*
2212 * allocate a new dcache entry
2213 */
2214 path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2215 if (!path.dentry) {
2216 iput(inode);
2217 return ERR_PTR(-ENOMEM);
2218 }
2219 path.mnt = mntget(pfmfs_mnt);
2220
2221 d_add(path.dentry, inode);
2222
2223 file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2224 if (!file) {
2225 path_put(&path);
2226 return ERR_PTR(-ENFILE);
2227 }
2228
2229 file->f_flags = O_RDONLY;
2230 file->private_data = ctx;
2231
2232 return file;
2233 }
2234
2235 static int
2236 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2237 {
2238 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2239
2240 while (size > 0) {
2241 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2242
2243
2244 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2245 return -ENOMEM;
2246
2247 addr += PAGE_SIZE;
2248 buf += PAGE_SIZE;
2249 size -= PAGE_SIZE;
2250 }
2251 return 0;
2252 }
2253
2254 /*
2255 * allocate a sampling buffer and remaps it into the user address space of the task
2256 */
2257 static int
2258 pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2259 {
2260 struct mm_struct *mm = task->mm;
2261 struct vm_area_struct *vma = NULL;
2262 unsigned long size;
2263 void *smpl_buf;
2264
2265
2266 /*
2267 * the fixed header + requested size and align to page boundary
2268 */
2269 size = PAGE_ALIGN(rsize);
2270
2271 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2272
2273 /*
2274 * check requested size to avoid Denial-of-service attacks
2275 * XXX: may have to refine this test
2276 * Check against address space limit.
2277 *
2278 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2279 * return -ENOMEM;
2280 */
2281 if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2282 return -ENOMEM;
2283
2284 /*
2285 * We do the easy to undo allocations first.
2286 *
2287 * pfm_rvmalloc(), clears the buffer, so there is no leak
2288 */
2289 smpl_buf = pfm_rvmalloc(size);
2290 if (smpl_buf == NULL) {
2291 DPRINT(("Can't allocate sampling buffer\n"));
2292 return -ENOMEM;
2293 }
2294
2295 DPRINT(("smpl_buf @%p\n", smpl_buf));
2296
2297 /* allocate vma */
2298 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2299 if (!vma) {
2300 DPRINT(("Cannot allocate vma\n"));
2301 goto error_kmem;
2302 }
2303 INIT_LIST_HEAD(&vma->anon_vma_chain);
2304
2305 /*
2306 * partially initialize the vma for the sampling buffer
2307 */
2308 vma->vm_mm = mm;
2309 vma->vm_file = filp;
2310 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2311 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2312
2313 /*
2314 * Now we have everything we need and we can initialize
2315 * and connect all the data structures
2316 */
2317
2318 ctx->ctx_smpl_hdr = smpl_buf;
2319 ctx->ctx_smpl_size = size; /* aligned size */
2320
2321 /*
2322 * Let's do the difficult operations next.
2323 *
2324 * now we atomically find some area in the address space and
2325 * remap the buffer in it.
2326 */
2327 down_write(&task->mm->mmap_sem);
2328
2329 /* find some free area in address space, must have mmap sem held */
2330 vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2331 if (IS_ERR_VALUE(vma->vm_start)) {
2332 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2333 up_write(&task->mm->mmap_sem);
2334 goto error;
2335 }
2336 vma->vm_end = vma->vm_start + size;
2337 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2338
2339 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2340
2341 /* can only be applied to current task, need to have the mm semaphore held when called */
2342 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2343 DPRINT(("Can't remap buffer\n"));
2344 up_write(&task->mm->mmap_sem);
2345 goto error;
2346 }
2347
2348 get_file(filp);
2349
2350 /*
2351 * now insert the vma in the vm list for the process, must be
2352 * done with mmap lock held
2353 */
2354 insert_vm_struct(mm, vma);
2355
2356 mm->total_vm += size >> PAGE_SHIFT;
2357 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2358 vma_pages(vma));
2359 up_write(&task->mm->mmap_sem);
2360
2361 /*
2362 * keep track of user level virtual address
2363 */
2364 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2365 *(unsigned long *)user_vaddr = vma->vm_start;
2366
2367 return 0;
2368
2369 error:
2370 kmem_cache_free(vm_area_cachep, vma);
2371 error_kmem:
2372 pfm_rvfree(smpl_buf, size);
2373
2374 return -ENOMEM;
2375 }
2376
2377 /*
2378 * XXX: do something better here
2379 */
2380 static int
2381 pfm_bad_permissions(struct task_struct *task)
2382 {
2383 const struct cred *tcred;
2384 uid_t uid = current_uid();
2385 gid_t gid = current_gid();
2386 int ret;
2387
2388 rcu_read_lock();
2389 tcred = __task_cred(task);
2390
2391 /* inspired by ptrace_attach() */
2392 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2393 uid,
2394 gid,
2395 tcred->euid,
2396 tcred->suid,
2397 tcred->uid,
2398 tcred->egid,
2399 tcred->sgid));
2400
2401 ret = ((uid != tcred->euid)
2402 || (uid != tcred->suid)
2403 || (uid != tcred->uid)
2404 || (gid != tcred->egid)
2405 || (gid != tcred->sgid)
2406 || (gid != tcred->gid)) && !capable(CAP_SYS_PTRACE);
2407
2408 rcu_read_unlock();
2409 return ret;
2410 }
2411
2412 static int
2413 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2414 {
2415 int ctx_flags;
2416
2417 /* valid signal */
2418
2419 ctx_flags = pfx->ctx_flags;
2420
2421 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2422
2423 /*
2424 * cannot block in this mode
2425 */
2426 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2427 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2428 return -EINVAL;
2429 }
2430 } else {
2431 }
2432 /* probably more to add here */
2433
2434 return 0;
2435 }
2436
2437 static int
2438 pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2439 unsigned int cpu, pfarg_context_t *arg)
2440 {
2441 pfm_buffer_fmt_t *fmt = NULL;
2442 unsigned long size = 0UL;
2443 void *uaddr = NULL;
2444 void *fmt_arg = NULL;
2445 int ret = 0;
2446 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2447
2448 /* invoke and lock buffer format, if found */
2449 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2450 if (fmt == NULL) {
2451 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2452 return -EINVAL;
2453 }
2454
2455 /*
2456 * buffer argument MUST be contiguous to pfarg_context_t
2457 */
2458 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2459
2460 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2461
2462 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2463
2464 if (ret) goto error;
2465
2466 /* link buffer format and context */
2467 ctx->ctx_buf_fmt = fmt;
2468 ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2469
2470 /*
2471 * check if buffer format wants to use perfmon buffer allocation/mapping service
2472 */
2473 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2474 if (ret) goto error;
2475
2476 if (size) {
2477 /*
2478 * buffer is always remapped into the caller's address space
2479 */
2480 ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2481 if (ret) goto error;
2482
2483 /* keep track of user address of buffer */
2484 arg->ctx_smpl_vaddr = uaddr;
2485 }
2486 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2487
2488 error:
2489 return ret;
2490 }
2491
2492 static void
2493 pfm_reset_pmu_state(pfm_context_t *ctx)
2494 {
2495 int i;
2496
2497 /*
2498 * install reset values for PMC.
2499 */
2500 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2501 if (PMC_IS_IMPL(i) == 0) continue;
2502 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2503 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2504 }
2505 /*
2506 * PMD registers are set to 0UL when the context in memset()
2507 */
2508
2509 /*
2510 * On context switched restore, we must restore ALL pmc and ALL pmd even
2511 * when they are not actively used by the task. In UP, the incoming process
2512 * may otherwise pick up left over PMC, PMD state from the previous process.
2513 * As opposed to PMD, stale PMC can cause harm to the incoming
2514 * process because they may change what is being measured.
2515 * Therefore, we must systematically reinstall the entire
2516 * PMC state. In SMP, the same thing is possible on the
2517 * same CPU but also on between 2 CPUs.
2518 *
2519 * The problem with PMD is information leaking especially
2520 * to user level when psr.sp=0
2521 *
2522 * There is unfortunately no easy way to avoid this problem
2523 * on either UP or SMP. This definitively slows down the
2524 * pfm_load_regs() function.
2525 */
2526
2527 /*
2528 * bitmask of all PMCs accessible to this context
2529 *
2530 * PMC0 is treated differently.
2531 */
2532 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2533
2534 /*
2535 * bitmask of all PMDs that are accessible to this context
2536 */
2537 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2538
2539 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2540
2541 /*
2542 * useful in case of re-enable after disable
2543 */
2544 ctx->ctx_used_ibrs[0] = 0UL;
2545 ctx->ctx_used_dbrs[0] = 0UL;
2546 }
2547
2548 static int
2549 pfm_ctx_getsize(void *arg, size_t *sz)
2550 {
2551 pfarg_context_t *req = (pfarg_context_t *)arg;
2552 pfm_buffer_fmt_t *fmt;
2553
2554 *sz = 0;
2555
2556 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2557
2558 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2559 if (fmt == NULL) {
2560 DPRINT(("cannot find buffer format\n"));
2561 return -EINVAL;
2562 }
2563 /* get just enough to copy in user parameters */
2564 *sz = fmt->fmt_arg_size;
2565 DPRINT(("arg_size=%lu\n", *sz));
2566
2567 return 0;
2568 }
2569
2570
2571
2572 /*
2573 * cannot attach if :
2574 * - kernel task
2575 * - task not owned by caller
2576 * - task incompatible with context mode
2577 */
2578 static int
2579 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2580 {
2581 /*
2582 * no kernel task or task not owner by caller
2583 */
2584 if (task->mm == NULL) {
2585 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2586 return -EPERM;
2587 }
2588 if (pfm_bad_permissions(task)) {
2589 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task)));
2590 return -EPERM;
2591 }
2592 /*
2593 * cannot block in self-monitoring mode
2594 */
2595 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2596 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2597 return -EINVAL;
2598 }
2599
2600 if (task->exit_state == EXIT_ZOMBIE) {
2601 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task)));
2602 return -EBUSY;
2603 }
2604
2605 /*
2606 * always ok for self
2607 */
2608 if (task == current) return 0;
2609
2610 if (!task_is_stopped_or_traced(task)) {
2611 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2612 return -EBUSY;
2613 }
2614 /*
2615 * make sure the task is off any CPU
2616 */
2617 wait_task_inactive(task, 0);
2618
2619 /* more to come... */
2620
2621 return 0;
2622 }
2623
2624 static int
2625 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2626 {
2627 struct task_struct *p = current;
2628 int ret;
2629
2630 /* XXX: need to add more checks here */
2631 if (pid < 2) return -EPERM;
2632
2633 if (pid != task_pid_vnr(current)) {
2634
2635 read_lock(&tasklist_lock);
2636
2637 p = find_task_by_vpid(pid);
2638
2639 /* make sure task cannot go away while we operate on it */
2640 if (p) get_task_struct(p);
2641
2642 read_unlock(&tasklist_lock);
2643
2644 if (p == NULL) return -ESRCH;
2645 }
2646
2647 ret = pfm_task_incompatible(ctx, p);
2648 if (ret == 0) {
2649 *task = p;
2650 } else if (p != current) {
2651 pfm_put_task(p);
2652 }
2653 return ret;
2654 }
2655
2656
2657
2658 static int
2659 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2660 {
2661 pfarg_context_t *req = (pfarg_context_t *)arg;
2662 struct file *filp;
2663 struct path path;
2664 int ctx_flags;
2665 int fd;
2666 int ret;
2667
2668 /* let's check the arguments first */
2669 ret = pfarg_is_sane(current, req);
2670 if (ret < 0)
2671 return ret;
2672
2673 ctx_flags = req->ctx_flags;
2674
2675 ret = -ENOMEM;
2676
2677 fd = get_unused_fd();
2678 if (fd < 0)
2679 return fd;
2680
2681 ctx = pfm_context_alloc(ctx_flags);
2682 if (!ctx)
2683 goto error;
2684
2685 filp = pfm_alloc_file(ctx);
2686 if (IS_ERR(filp)) {
2687 ret = PTR_ERR(filp);
2688 goto error_file;
2689 }
2690
2691 req->ctx_fd = ctx->ctx_fd = fd;
2692
2693 /*
2694 * does the user want to sample?
2695 */
2696 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2697 ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2698 if (ret)
2699 goto buffer_error;
2700 }
2701
2702 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2703 ctx,
2704 ctx_flags,
2705 ctx->ctx_fl_system,
2706 ctx->ctx_fl_block,
2707 ctx->ctx_fl_excl_idle,
2708 ctx->ctx_fl_no_msg,
2709 ctx->ctx_fd));
2710
2711 /*
2712 * initialize soft PMU state
2713 */
2714 pfm_reset_pmu_state(ctx);
2715
2716 fd_install(fd, filp);
2717
2718 return 0;
2719
2720 buffer_error:
2721 path = filp->f_path;
2722 put_filp(filp);
2723 path_put(&path);
2724
2725 if (ctx->ctx_buf_fmt) {
2726 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2727 }
2728 error_file:
2729 pfm_context_free(ctx);
2730
2731 error:
2732 put_unused_fd(fd);
2733 return ret;
2734 }
2735
2736 static inline unsigned long
2737 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2738 {
2739 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2740 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2741 extern unsigned long carta_random32 (unsigned long seed);
2742
2743 if (reg->flags & PFM_REGFL_RANDOM) {
2744 new_seed = carta_random32(old_seed);
2745 val -= (old_seed & mask); /* counter values are negative numbers! */
2746 if ((mask >> 32) != 0)
2747 /* construct a full 64-bit random value: */
2748 new_seed |= carta_random32(old_seed >> 32) << 32;
2749 reg->seed = new_seed;
2750 }
2751 reg->lval = val;
2752 return val;
2753 }
2754
2755 static void
2756 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2757 {
2758 unsigned long mask = ovfl_regs[0];
2759 unsigned long reset_others = 0UL;
2760 unsigned long val;
2761 int i;
2762
2763 /*
2764 * now restore reset value on sampling overflowed counters
2765 */
2766 mask >>= PMU_FIRST_COUNTER;
2767 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2768
2769 if ((mask & 0x1UL) == 0UL) continue;
2770
2771 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2772 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2773
2774 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2775 }
2776
2777 /*
2778 * Now take care of resetting the other registers
2779 */
2780 for(i = 0; reset_others; i++, reset_others >>= 1) {
2781
2782 if ((reset_others & 0x1) == 0) continue;
2783
2784 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2785
2786 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2787 is_long_reset ? "long" : "short", i, val));
2788 }
2789 }
2790
2791 static void
2792 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2793 {
2794 unsigned long mask = ovfl_regs[0];
2795 unsigned long reset_others = 0UL;
2796 unsigned long val;
2797 int i;
2798
2799 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2800
2801 if (ctx->ctx_state == PFM_CTX_MASKED) {
2802 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2803 return;
2804 }
2805
2806 /*
2807 * now restore reset value on sampling overflowed counters
2808 */
2809 mask >>= PMU_FIRST_COUNTER;
2810 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2811
2812 if ((mask & 0x1UL) == 0UL) continue;
2813
2814 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2815 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2816
2817 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2818
2819 pfm_write_soft_counter(ctx, i, val);
2820 }
2821
2822 /*
2823 * Now take care of resetting the other registers
2824 */
2825 for(i = 0; reset_others; i++, reset_others >>= 1) {
2826
2827 if ((reset_others & 0x1) == 0) continue;
2828
2829 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2830
2831 if (PMD_IS_COUNTING(i)) {
2832 pfm_write_soft_counter(ctx, i, val);
2833 } else {
2834 ia64_set_pmd(i, val);
2835 }
2836 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2837 is_long_reset ? "long" : "short", i, val));
2838 }
2839 ia64_srlz_d();
2840 }
2841
2842 static int
2843 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2844 {
2845 struct task_struct *task;
2846 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2847 unsigned long value, pmc_pm;
2848 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2849 unsigned int cnum, reg_flags, flags, pmc_type;
2850 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2851 int is_monitor, is_counting, state;
2852 int ret = -EINVAL;
2853 pfm_reg_check_t wr_func;
2854 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2855
2856 state = ctx->ctx_state;
2857 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2858 is_system = ctx->ctx_fl_system;
2859 task = ctx->ctx_task;
2860 impl_pmds = pmu_conf->impl_pmds[0];
2861
2862 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2863
2864 if (is_loaded) {
2865 /*
2866 * In system wide and when the context is loaded, access can only happen
2867 * when the caller is running on the CPU being monitored by the session.
2868 * It does not have to be the owner (ctx_task) of the context per se.
2869 */
2870 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2871 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2872 return -EBUSY;
2873 }
2874 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2875 }
2876 expert_mode = pfm_sysctl.expert_mode;
2877
2878 for (i = 0; i < count; i++, req++) {
2879
2880 cnum = req->reg_num;
2881 reg_flags = req->reg_flags;
2882 value = req->reg_value;
2883 smpl_pmds = req->reg_smpl_pmds[0];
2884 reset_pmds = req->reg_reset_pmds[0];
2885 flags = 0;
2886
2887
2888 if (cnum >= PMU_MAX_PMCS) {
2889 DPRINT(("pmc%u is invalid\n", cnum));
2890 goto error;
2891 }
2892
2893 pmc_type = pmu_conf->pmc_desc[cnum].type;
2894 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2895 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2896 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2897
2898 /*
2899 * we reject all non implemented PMC as well
2900 * as attempts to modify PMC[0-3] which are used
2901 * as status registers by the PMU
2902 */
2903 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2904 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2905 goto error;
2906 }
2907 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2908 /*
2909 * If the PMC is a monitor, then if the value is not the default:
2910 * - system-wide session: PMCx.pm=1 (privileged monitor)
2911 * - per-task : PMCx.pm=0 (user monitor)
2912 */
2913 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2914 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2915 cnum,
2916 pmc_pm,
2917 is_system));
2918 goto error;
2919 }
2920
2921 if (is_counting) {
2922 /*
2923 * enforce generation of overflow interrupt. Necessary on all
2924 * CPUs.
2925 */
2926 value |= 1 << PMU_PMC_OI;
2927
2928 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2929 flags |= PFM_REGFL_OVFL_NOTIFY;
2930 }
2931
2932 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2933
2934 /* verify validity of smpl_pmds */
2935 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2936 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2937 goto error;
2938 }
2939
2940 /* verify validity of reset_pmds */
2941 if ((reset_pmds & impl_pmds) != reset_pmds) {
2942 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2943 goto error;
2944 }
2945 } else {
2946 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2947 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2948 goto error;
2949 }
2950 /* eventid on non-counting monitors are ignored */
2951 }
2952
2953 /*
2954 * execute write checker, if any
2955 */
2956 if (likely(expert_mode == 0 && wr_func)) {
2957 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2958 if (ret) goto error;
2959 ret = -EINVAL;
2960 }
2961
2962 /*
2963 * no error on this register
2964 */
2965 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2966
2967 /*
2968 * Now we commit the changes to the software state
2969 */
2970
2971 /*
2972 * update overflow information
2973 */
2974 if (is_counting) {
2975 /*
2976 * full flag update each time a register is programmed
2977 */
2978 ctx->ctx_pmds[cnum].flags = flags;
2979
2980 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2981 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2982 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
2983
2984 /*
2985 * Mark all PMDS to be accessed as used.
2986 *
2987 * We do not keep track of PMC because we have to
2988 * systematically restore ALL of them.
2989 *
2990 * We do not update the used_monitors mask, because
2991 * if we have not programmed them, then will be in
2992 * a quiescent state, therefore we will not need to
2993 * mask/restore then when context is MASKED.
2994 */
2995 CTX_USED_PMD(ctx, reset_pmds);
2996 CTX_USED_PMD(ctx, smpl_pmds);
2997 /*
2998 * make sure we do not try to reset on
2999 * restart because we have established new values
3000 */
3001 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3002 }
3003 /*
3004 * Needed in case the user does not initialize the equivalent
3005 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3006 * possible leak here.
3007 */
3008 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3009
3010 /*
3011 * keep track of the monitor PMC that we are using.
3012 * we save the value of the pmc in ctx_pmcs[] and if
3013 * the monitoring is not stopped for the context we also
3014 * place it in the saved state area so that it will be
3015 * picked up later by the context switch code.
3016 *
3017 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3018 *
3019 * The value in th_pmcs[] may be modified on overflow, i.e., when
3020 * monitoring needs to be stopped.
3021 */
3022 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3023
3024 /*
3025 * update context state
3026 */
3027 ctx->ctx_pmcs[cnum] = value;
3028
3029 if (is_loaded) {
3030 /*
3031 * write thread state
3032 */
3033 if (is_system == 0) ctx->th_pmcs[cnum] = value;
3034
3035 /*
3036 * write hardware register if we can
3037 */
3038 if (can_access_pmu) {
3039 ia64_set_pmc(cnum, value);
3040 }
3041 #ifdef CONFIG_SMP
3042 else {
3043 /*
3044 * per-task SMP only here
3045 *
3046 * we are guaranteed that the task is not running on the other CPU,
3047 * we indicate that this PMD will need to be reloaded if the task
3048 * is rescheduled on the CPU it ran last on.
3049 */
3050 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3051 }
3052 #endif
3053 }
3054
3055 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3056 cnum,
3057 value,
3058 is_loaded,
3059 can_access_pmu,
3060 flags,
3061 ctx->ctx_all_pmcs[0],
3062 ctx->ctx_used_pmds[0],
3063 ctx->ctx_pmds[cnum].eventid,
3064 smpl_pmds,
3065 reset_pmds,
3066 ctx->ctx_reload_pmcs[0],
3067 ctx->ctx_used_monitors[0],
3068 ctx->ctx_ovfl_regs[0]));
3069 }
3070
3071 /*
3072 * make sure the changes are visible
3073 */
3074 if (can_access_pmu) ia64_srlz_d();
3075
3076 return 0;
3077 error:
3078 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3079 return ret;
3080 }
3081
3082 static int
3083 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3084 {
3085 struct task_struct *task;
3086 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3087 unsigned long value, hw_value, ovfl_mask;
3088 unsigned int cnum;
3089 int i, can_access_pmu = 0, state;
3090 int is_counting, is_loaded, is_system, expert_mode;
3091 int ret = -EINVAL;
3092 pfm_reg_check_t wr_func;
3093
3094
3095 state = ctx->ctx_state;
3096 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3097 is_system = ctx->ctx_fl_system;
3098 ovfl_mask = pmu_conf->ovfl_val;
3099 task = ctx->ctx_task;
3100
3101 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3102
3103 /*
3104 * on both UP and SMP, we can only write to the PMC when the task is
3105 * the owner of the local PMU.
3106 */
3107 if (likely(is_loaded)) {
3108 /*
3109 * In system wide and when the context is loaded, access can only happen
3110 * when the caller is running on the CPU being monitored by the session.
3111 * It does not have to be the owner (ctx_task) of the context per se.
3112 */
3113 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3114 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3115 return -EBUSY;
3116 }
3117 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3118 }
3119 expert_mode = pfm_sysctl.expert_mode;
3120
3121 for (i = 0; i < count; i++, req++) {
3122
3123 cnum = req->reg_num;
3124 value = req->reg_value;
3125
3126 if (!PMD_IS_IMPL(cnum)) {
3127 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3128 goto abort_mission;
3129 }
3130 is_counting = PMD_IS_COUNTING(cnum);
3131 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3132
3133 /*
3134 * execute write checker, if any
3135 */
3136 if (unlikely(expert_mode == 0 && wr_func)) {
3137 unsigned long v = value;
3138
3139 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3140 if (ret) goto abort_mission;
3141
3142 value = v;
3143 ret = -EINVAL;
3144 }
3145
3146 /*
3147 * no error on this register
3148 */
3149 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3150
3151 /*
3152 * now commit changes to software state
3153 */
3154 hw_value = value;
3155
3156 /*
3157 * update virtualized (64bits) counter
3158 */
3159 if (is_counting) {
3160 /*
3161 * write context state
3162 */
3163 ctx->ctx_pmds[cnum].lval = value;
3164
3165 /*
3166 * when context is load we use the split value
3167 */
3168 if (is_loaded) {
3169 hw_value = value & ovfl_mask;
3170 value = value & ~ovfl_mask;
3171 }
3172 }
3173 /*
3174 * update reset values (not just for counters)
3175 */
3176 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3177 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3178
3179 /*
3180 * update randomization parameters (not just for counters)
3181 */
3182 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3183 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3184
3185 /*
3186 * update context value
3187 */
3188 ctx->ctx_pmds[cnum].val = value;
3189
3190 /*
3191 * Keep track of what we use
3192 *
3193 * We do not keep track of PMC because we have to
3194 * systematically restore ALL of them.
3195 */
3196 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3197
3198 /*
3199 * mark this PMD register used as well
3200 */
3201 CTX_USED_PMD(ctx, RDEP(cnum));
3202
3203 /*
3204 * make sure we do not try to reset on
3205 * restart because we have established new values
3206 */
3207 if (is_counting && state == PFM_CTX_MASKED) {
3208 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3209 }
3210
3211 if (is_loaded) {
3212 /*
3213 * write thread state
3214 */
3215 if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3216
3217 /*
3218 * write hardware register if we can
3219 */
3220 if (can_access_pmu) {
3221 ia64_set_pmd(cnum, hw_value);
3222 } else {
3223 #ifdef CONFIG_SMP
3224 /*
3225 * we are guaranteed that the task is not running on the other CPU,
3226 * we indicate that this PMD will need to be reloaded if the task
3227 * is rescheduled on the CPU it ran last on.
3228 */
3229 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3230 #endif
3231 }
3232 }
3233
3234 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3235 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3236 cnum,
3237 value,
3238 is_loaded,
3239 can_access_pmu,
3240 hw_value,
3241 ctx->ctx_pmds[cnum].val,
3242 ctx->ctx_pmds[cnum].short_reset,
3243 ctx->ctx_pmds[cnum].long_reset,
3244 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3245 ctx->ctx_pmds[cnum].seed,
3246 ctx->ctx_pmds[cnum].mask,
3247 ctx->ctx_used_pmds[0],
3248 ctx->ctx_pmds[cnum].reset_pmds[0],
3249 ctx->ctx_reload_pmds[0],
3250 ctx->ctx_all_pmds[0],
3251 ctx->ctx_ovfl_regs[0]));
3252 }
3253
3254 /*
3255 * make changes visible
3256 */
3257 if (can_access_pmu) ia64_srlz_d();
3258
3259 return 0;
3260
3261 abort_mission:
3262 /*
3263 * for now, we have only one possibility for error
3264 */
3265 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3266 return ret;
3267 }
3268
3269 /*
3270 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3271 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3272 * interrupt is delivered during the call, it will be kept pending until we leave, making
3273 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3274 * guaranteed to return consistent data to the user, it may simply be old. It is not
3275 * trivial to treat the overflow while inside the call because you may end up in
3276 * some module sampling buffer code causing deadlocks.
3277 */
3278 static int
3279 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3280 {
3281 struct task_struct *task;
3282 unsigned long val = 0UL, lval, ovfl_mask, sval;
3283 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3284 unsigned int cnum, reg_flags = 0;
3285 int i, can_access_pmu = 0, state;
3286 int is_loaded, is_system, is_counting, expert_mode;
3287 int ret = -EINVAL;
3288 pfm_reg_check_t rd_func;
3289
3290 /*
3291 * access is possible when loaded only for
3292 * self-monitoring tasks or in UP mode
3293 */
3294
3295 state = ctx->ctx_state;
3296 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3297 is_system = ctx->ctx_fl_system;
3298 ovfl_mask = pmu_conf->ovfl_val;
3299 task = ctx->ctx_task;
3300
3301 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3302
3303 if (likely(is_loaded)) {
3304 /*
3305 * In system wide and when the context is loaded, access can only happen
3306 * when the caller is running on the CPU being monitored by the session.
3307 * It does not have to be the owner (ctx_task) of the context per se.
3308 */
3309 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3310 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3311 return -EBUSY;
3312 }
3313 /*
3314 * this can be true when not self-monitoring only in UP
3315 */
3316 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3317
3318 if (can_access_pmu) ia64_srlz_d();
3319 }
3320 expert_mode = pfm_sysctl.expert_mode;
3321
3322 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3323 is_loaded,
3324 can_access_pmu,
3325 state));
3326
3327 /*
3328 * on both UP and SMP, we can only read the PMD from the hardware register when
3329 * the task is the owner of the local PMU.
3330 */
3331
3332 for (i = 0; i < count; i++, req++) {
3333
3334 cnum = req->reg_num;
3335 reg_flags = req->reg_flags;
3336
3337 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3338 /*
3339 * we can only read the register that we use. That includes
3340 * the one we explicitly initialize AND the one we want included
3341 * in the sampling buffer (smpl_regs).
3342 *
3343 * Having this restriction allows optimization in the ctxsw routine
3344 * without compromising security (leaks)
3345 */
3346 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3347
3348 sval = ctx->ctx_pmds[cnum].val;
3349 lval = ctx->ctx_pmds[cnum].lval;
3350 is_counting = PMD_IS_COUNTING(cnum);
3351
3352 /*
3353 * If the task is not the current one, then we check if the
3354 * PMU state is still in the local live register due to lazy ctxsw.
3355 * If true, then we read directly from the registers.
3356 */
3357 if (can_access_pmu){
3358 val = ia64_get_pmd(cnum);
3359 } else {
3360 /*
3361 * context has been saved
3362 * if context is zombie, then task does not exist anymore.
3363 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3364 */
3365 val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3366 }
3367 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3368
3369 if (is_counting) {
3370 /*
3371 * XXX: need to check for overflow when loaded
3372 */
3373 val &= ovfl_mask;
3374 val += sval;
3375 }
3376
3377 /*
3378 * execute read checker, if any
3379 */
3380 if (unlikely(expert_mode == 0 && rd_func)) {
3381 unsigned long v = val;
3382 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3383 if (ret) goto error;
3384 val = v;
3385 ret = -EINVAL;
3386 }
3387
3388 PFM_REG_RETFLAG_SET(reg_flags, 0);
3389
3390 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3391
3392 /*
3393 * update register return value, abort all if problem during copy.
3394 * we only modify the reg_flags field. no check mode is fine because
3395 * access has been verified upfront in sys_perfmonctl().
3396 */
3397 req->reg_value = val;
3398 req->reg_flags = reg_flags;
3399 req->reg_last_reset_val = lval;
3400 }
3401
3402 return 0;
3403
3404 error:
3405 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3406 return ret;
3407 }
3408
3409 int
3410 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3411 {
3412 pfm_context_t *ctx;
3413
3414 if (req == NULL) return -EINVAL;
3415
3416 ctx = GET_PMU_CTX();
3417
3418 if (ctx == NULL) return -EINVAL;
3419
3420 /*
3421 * for now limit to current task, which is enough when calling
3422 * from overflow handler
3423 */
3424 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3425
3426 return pfm_write_pmcs(ctx, req, nreq, regs);
3427 }
3428 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3429
3430 int
3431 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3432 {
3433 pfm_context_t *ctx;
3434
3435 if (req == NULL) return -EINVAL;
3436
3437 ctx = GET_PMU_CTX();
3438
3439 if (ctx == NULL) return -EINVAL;
3440
3441 /*
3442 * for now limit to current task, which is enough when calling
3443 * from overflow handler
3444 */
3445 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3446
3447 return pfm_read_pmds(ctx, req, nreq, regs);
3448 }
3449 EXPORT_SYMBOL(pfm_mod_read_pmds);
3450
3451 /*
3452 * Only call this function when a process it trying to
3453 * write the debug registers (reading is always allowed)
3454 */
3455 int
3456 pfm_use_debug_registers(struct task_struct *task)
3457 {
3458 pfm_context_t *ctx = task->thread.pfm_context;
3459 unsigned long flags;
3460 int ret = 0;
3461
3462 if (pmu_conf->use_rr_dbregs == 0) return 0;
3463
3464 DPRINT(("called for [%d]\n", task_pid_nr(task)));
3465
3466 /*
3467 * do it only once
3468 */
3469 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3470
3471 /*
3472 * Even on SMP, we do not need to use an atomic here because
3473 * the only way in is via ptrace() and this is possible only when the
3474 * process is stopped. Even in the case where the ctxsw out is not totally
3475 * completed by the time we come here, there is no way the 'stopped' process
3476 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3477 * So this is always safe.
3478 */
3479 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3480
3481 LOCK_PFS(flags);
3482
3483 /*
3484 * We cannot allow setting breakpoints when system wide monitoring
3485 * sessions are using the debug registers.
3486 */
3487 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3488 ret = -1;
3489 else
3490 pfm_sessions.pfs_ptrace_use_dbregs++;
3491
3492 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3493 pfm_sessions.pfs_ptrace_use_dbregs,
3494 pfm_sessions.pfs_sys_use_dbregs,
3495 task_pid_nr(task), ret));
3496
3497 UNLOCK_PFS(flags);
3498
3499 return ret;
3500 }
3501
3502 /*
3503 * This function is called for every task that exits with the
3504 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3505 * able to use the debug registers for debugging purposes via
3506 * ptrace(). Therefore we know it was not using them for
3507 * performance monitoring, so we only decrement the number
3508 * of "ptraced" debug register users to keep the count up to date
3509 */
3510 int
3511 pfm_release_debug_registers(struct task_struct *task)
3512 {
3513 unsigned long flags;
3514 int ret;
3515
3516 if (pmu_conf->use_rr_dbregs == 0) return 0;
3517
3518 LOCK_PFS(flags);
3519 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3520 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3521 ret = -1;
3522 } else {
3523 pfm_sessions.pfs_ptrace_use_dbregs--;
3524 ret = 0;
3525 }
3526 UNLOCK_PFS(flags);
3527
3528 return ret;
3529 }
3530
3531 static int
3532 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3533 {
3534 struct task_struct *task;
3535 pfm_buffer_fmt_t *fmt;
3536 pfm_ovfl_ctrl_t rst_ctrl;
3537 int state, is_system;
3538 int ret = 0;
3539
3540 state = ctx->ctx_state;
3541 fmt = ctx->ctx_buf_fmt;
3542 is_system = ctx->ctx_fl_system;
3543 task = PFM_CTX_TASK(ctx);
3544
3545 switch(state) {
3546 case PFM_CTX_MASKED:
3547 break;
3548 case PFM_CTX_LOADED:
3549 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3550 /* fall through */
3551 case PFM_CTX_UNLOADED:
3552 case PFM_CTX_ZOMBIE:
3553 DPRINT(("invalid state=%d\n", state));
3554 return -EBUSY;
3555 default:
3556 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3557 return -EINVAL;
3558 }
3559
3560 /*
3561 * In system wide and when the context is loaded, access can only happen
3562 * when the caller is running on the CPU being monitored by the session.
3563 * It does not have to be the owner (ctx_task) of the context per se.
3564 */
3565 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3566 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3567 return -EBUSY;
3568 }
3569
3570 /* sanity check */
3571 if (unlikely(task == NULL)) {
3572 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3573 return -EINVAL;
3574 }
3575
3576 if (task == current || is_system) {
3577
3578 fmt = ctx->ctx_buf_fmt;
3579
3580 DPRINT(("restarting self %d ovfl=0x%lx\n",
3581 task_pid_nr(task),
3582 ctx->ctx_ovfl_regs[0]));
3583
3584 if (CTX_HAS_SMPL(ctx)) {
3585
3586 prefetch(ctx->ctx_smpl_hdr);
3587
3588 rst_ctrl.bits.mask_monitoring = 0;
3589 rst_ctrl.bits.reset_ovfl_pmds = 0;
3590
3591 if (state == PFM_CTX_LOADED)
3592 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3593 else
3594 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3595 } else {
3596 rst_ctrl.bits.mask_monitoring = 0;
3597 rst_ctrl.bits.reset_ovfl_pmds = 1;
3598 }
3599
3600 if (ret == 0) {
3601 if (rst_ctrl.bits.reset_ovfl_pmds)
3602 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3603
3604 if (rst_ctrl.bits.mask_monitoring == 0) {
3605 DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3606
3607 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3608 } else {
3609 DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3610
3611 // cannot use pfm_stop_monitoring(task, regs);
3612 }
3613 }
3614 /*
3615 * clear overflowed PMD mask to remove any stale information
3616 */
3617 ctx->ctx_ovfl_regs[0] = 0UL;
3618
3619 /*
3620 * back to LOADED state
3621 */
3622 ctx->ctx_state = PFM_CTX_LOADED;
3623
3624 /*
3625 * XXX: not really useful for self monitoring
3626 */
3627 ctx->ctx_fl_can_restart = 0;
3628
3629 return 0;
3630 }
3631
3632 /*
3633 * restart another task
3634 */
3635
3636 /*
3637 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3638 * one is seen by the task.
3639 */
3640 if (state == PFM_CTX_MASKED) {
3641 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3642 /*
3643 * will prevent subsequent restart before this one is
3644 * seen by other task
3645 */
3646 ctx->ctx_fl_can_restart = 0;
3647 }
3648
3649 /*
3650 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3651 * the task is blocked or on its way to block. That's the normal
3652 * restart path. If the monitoring is not masked, then the task
3653 * can be actively monitoring and we cannot directly intervene.
3654 * Therefore we use the trap mechanism to catch the task and
3655 * force it to reset the buffer/reset PMDs.
3656 *
3657 * if non-blocking, then we ensure that the task will go into
3658 * pfm_handle_work() before returning to user mode.
3659 *
3660 * We cannot explicitly reset another task, it MUST always
3661 * be done by the task itself. This works for system wide because
3662 * the tool that is controlling the session is logically doing
3663 * "self-monitoring".
3664 */
3665 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3666 DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3667 complete(&ctx->ctx_restart_done);
3668 } else {
3669 DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3670
3671 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3672
3673 PFM_SET_WORK_PENDING(task, 1);
3674
3675 set_notify_resume(task);
3676
3677 /*
3678 * XXX: send reschedule if task runs on another CPU
3679 */
3680 }
3681 return 0;
3682 }
3683
3684 static int
3685 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3686 {
3687 unsigned int m = *(unsigned int *)arg;
3688
3689 pfm_sysctl.debug = m == 0 ? 0 : 1;
3690
3691 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3692
3693 if (m == 0) {
3694 memset(pfm_stats, 0, sizeof(pfm_stats));
3695 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3696 }
3697 return 0;
3698 }
3699
3700 /*
3701 * arg can be NULL and count can be zero for this function
3702 */
3703 static int
3704 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3705 {
3706 struct thread_struct *thread = NULL;
3707 struct task_struct *task;
3708 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3709 unsigned long flags;
3710 dbreg_t dbreg;
3711 unsigned int rnum;
3712 int first_time;
3713 int ret = 0, state;
3714 int i, can_access_pmu = 0;
3715 int is_system, is_loaded;
3716
3717 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3718
3719 state = ctx->ctx_state;
3720 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3721 is_system = ctx->ctx_fl_system;
3722 task = ctx->ctx_task;
3723
3724 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3725
3726 /*
3727 * on both UP and SMP, we can only write to the PMC when the task is
3728 * the owner of the local PMU.
3729 */
3730 if (is_loaded) {
3731 thread = &task->thread;
3732 /*
3733 * In system wide and when the context is loaded, access can only happen
3734 * when the caller is running on the CPU being monitored by the session.
3735 * It does not have to be the owner (ctx_task) of the context per se.
3736 */
3737 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3738 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3739 return -EBUSY;
3740 }
3741 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3742 }
3743
3744 /*
3745 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3746 * ensuring that no real breakpoint can be installed via this call.
3747 *
3748 * IMPORTANT: regs can be NULL in this function
3749 */
3750
3751 first_time = ctx->ctx_fl_using_dbreg == 0;
3752
3753 /*
3754 * don't bother if we are loaded and task is being debugged
3755 */
3756 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3757 DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3758 return -EBUSY;
3759 }
3760
3761 /*
3762 * check for debug registers in system wide mode
3763 *
3764 * If though a check is done in pfm_context_load(),
3765 * we must repeat it here, in case the registers are
3766 * written after the context is loaded
3767 */
3768 if (is_loaded) {
3769 LOCK_PFS(flags);
3770
3771 if (first_time && is_system) {
3772 if (pfm_sessions.pfs_ptrace_use_dbregs)
3773 ret = -EBUSY;
3774 else
3775 pfm_sessions.pfs_sys_use_dbregs++;
3776 }
3777 UNLOCK_PFS(flags);
3778 }
3779
3780 if (ret != 0) return ret;
3781
3782 /*
3783 * mark ourself as user of the debug registers for
3784 * perfmon purposes.
3785 */
3786 ctx->ctx_fl_using_dbreg = 1;
3787
3788 /*
3789 * clear hardware registers to make sure we don't
3790 * pick up stale state.
3791 *
3792 * for a system wide session, we do not use
3793 * thread.dbr, thread.ibr because this process
3794 * never leaves the current CPU and the state
3795 * is shared by all processes running on it
3796 */
3797 if (first_time && can_access_pmu) {
3798 DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3799 for (i=0; i < pmu_conf->num_ibrs; i++) {
3800 ia64_set_ibr(i, 0UL);
3801 ia64_dv_serialize_instruction();
3802 }
3803 ia64_srlz_i();
3804 for (i=0; i < pmu_conf->num_dbrs; i++) {
3805 ia64_set_dbr(i, 0UL);
3806 ia64_dv_serialize_data();
3807 }
3808 ia64_srlz_d();
3809 }
3810
3811 /*
3812 * Now install the values into the registers
3813 */
3814 for (i = 0; i < count; i++, req++) {
3815
3816 rnum = req->dbreg_num;
3817 dbreg.val = req->dbreg_value;
3818
3819 ret = -EINVAL;
3820
3821 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3822 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3823 rnum, dbreg.val, mode, i, count));
3824
3825 goto abort_mission;
3826 }
3827
3828 /*
3829 * make sure we do not install enabled breakpoint
3830 */
3831 if (rnum & 0x1) {
3832 if (mode == PFM_CODE_RR)
3833 dbreg.ibr.ibr_x = 0;
3834 else
3835 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3836 }
3837
3838 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3839
3840 /*
3841 * Debug registers, just like PMC, can only be modified
3842 * by a kernel call. Moreover, perfmon() access to those
3843 * registers are centralized in this routine. The hardware
3844 * does not modify the value of these registers, therefore,
3845 * if we save them as they are written, we can avoid having
3846 * to save them on context switch out. This is made possible
3847 * by the fact that when perfmon uses debug registers, ptrace()
3848 * won't be able to modify them concurrently.
3849 */
3850 if (mode == PFM_CODE_RR) {
3851 CTX_USED_IBR(ctx, rnum);
3852
3853 if (can_access_pmu) {
3854 ia64_set_ibr(rnum, dbreg.val);
3855 ia64_dv_serialize_instruction();
3856 }
3857
3858 ctx->ctx_ibrs[rnum] = dbreg.val;
3859
3860 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3861 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3862 } else {
3863 CTX_USED_DBR(ctx, rnum);
3864
3865 if (can_access_pmu) {
3866 ia64_set_dbr(rnum, dbreg.val);
3867 ia64_dv_serialize_data();
3868 }
3869 ctx->ctx_dbrs[rnum] = dbreg.val;
3870
3871 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3872 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3873 }
3874 }
3875
3876 return 0;
3877
3878 abort_mission:
3879 /*
3880 * in case it was our first attempt, we undo the global modifications
3881 */
3882 if (first_time) {
3883 LOCK_PFS(flags);
3884 if (ctx->ctx_fl_system) {
3885 pfm_sessions.pfs_sys_use_dbregs--;
3886 }
3887 UNLOCK_PFS(flags);
3888 ctx->ctx_fl_using_dbreg = 0;
3889 }
3890 /*
3891 * install error return flag
3892 */
3893 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3894
3895 return ret;
3896 }
3897
3898 static int
3899 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3900 {
3901 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3902 }
3903
3904 static int
3905 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3906 {
3907 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3908 }
3909
3910 int
3911 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3912 {
3913 pfm_context_t *ctx;
3914
3915 if (req == NULL) return -EINVAL;
3916
3917 ctx = GET_PMU_CTX();
3918
3919 if (ctx == NULL) return -EINVAL;
3920
3921 /*
3922 * for now limit to current task, which is enough when calling
3923 * from overflow handler
3924 */
3925 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3926
3927 return pfm_write_ibrs(ctx, req, nreq, regs);
3928 }
3929 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3930
3931 int
3932 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3933 {
3934 pfm_context_t *ctx;
3935
3936 if (req == NULL) return -EINVAL;
3937
3938 ctx = GET_PMU_CTX();
3939
3940 if (ctx == NULL) return -EINVAL;
3941
3942 /*
3943 * for now limit to current task, which is enough when calling
3944 * from overflow handler
3945 */
3946 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3947
3948 return pfm_write_dbrs(ctx, req, nreq, regs);
3949 }
3950 EXPORT_SYMBOL(pfm_mod_write_dbrs);
3951
3952
3953 static int
3954 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3955 {
3956 pfarg_features_t *req = (pfarg_features_t *)arg;
3957
3958 req->ft_version = PFM_VERSION;
3959 return 0;
3960 }
3961
3962 static int
3963 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3964 {
3965 struct pt_regs *tregs;
3966 struct task_struct *task = PFM_CTX_TASK(ctx);
3967 int state, is_system;
3968
3969 state = ctx->ctx_state;
3970 is_system = ctx->ctx_fl_system;
3971
3972 /*
3973 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3974 */
3975 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3976
3977 /*
3978 * In system wide and when the context is loaded, access can only happen
3979 * when the caller is running on the CPU being monitored by the session.
3980 * It does not have to be the owner (ctx_task) of the context per se.
3981 */
3982 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3983 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3984 return -EBUSY;
3985 }
3986 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3987 task_pid_nr(PFM_CTX_TASK(ctx)),
3988 state,
3989 is_system));
3990 /*
3991 * in system mode, we need to update the PMU directly
3992 * and the user level state of the caller, which may not
3993 * necessarily be the creator of the context.
3994 */
3995 if (is_system) {
3996 /*
3997 * Update local PMU first
3998 *
3999 * disable dcr pp
4000 */
4001 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4002 ia64_srlz_i();
4003
4004 /*
4005 * update local cpuinfo
4006 */
4007 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4008
4009 /*
4010 * stop monitoring, does srlz.i
4011 */
4012 pfm_clear_psr_pp();
4013
4014 /*
4015 * stop monitoring in the caller
4016 */
4017 ia64_psr(regs)->pp = 0;
4018
4019 return 0;
4020 }
4021 /*
4022 * per-task mode
4023 */
4024
4025 if (task == current) {
4026 /* stop monitoring at kernel level */
4027 pfm_clear_psr_up();
4028
4029 /*
4030 * stop monitoring at the user level
4031 */
4032 ia64_psr(regs)->up = 0;
4033 } else {
4034 tregs = task_pt_regs(task);
4035
4036 /*
4037 * stop monitoring at the user level
4038 */
4039 ia64_psr(tregs)->up = 0;
4040
4041 /*
4042 * monitoring disabled in kernel at next reschedule
4043 */
4044 ctx->ctx_saved_psr_up = 0;
4045 DPRINT(("task=[%d]\n", task_pid_nr(task)));
4046 }
4047 return 0;
4048 }
4049
4050
4051 static int
4052 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4053 {
4054 struct pt_regs *tregs;
4055 int state, is_system;
4056
4057 state = ctx->ctx_state;
4058 is_system = ctx->ctx_fl_system;
4059
4060 if (state != PFM_CTX_LOADED) return -EINVAL;
4061
4062 /*
4063 * In system wide and when the context is loaded, access can only happen
4064 * when the caller is running on the CPU being monitored by the session.
4065 * It does not have to be the owner (ctx_task) of the context per se.
4066 */
4067 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4068 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4069 return -EBUSY;
4070 }
4071
4072 /*
4073 * in system mode, we need to update the PMU directly
4074 * and the user level state of the caller, which may not
4075 * necessarily be the creator of the context.
4076 */
4077 if (is_system) {
4078
4079 /*
4080 * set user level psr.pp for the caller
4081 */
4082 ia64_psr(regs)->pp = 1;
4083
4084 /*
4085 * now update the local PMU and cpuinfo
4086 */
4087 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4088
4089 /*
4090 * start monitoring at kernel level
4091 */
4092 pfm_set_psr_pp();
4093
4094 /* enable dcr pp */
4095 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4096 ia64_srlz_i();
4097
4098 return 0;
4099 }
4100
4101 /*
4102 * per-process mode
4103 */
4104
4105 if (ctx->ctx_task == current) {
4106
4107 /* start monitoring at kernel level */
4108 pfm_set_psr_up();
4109
4110 /*
4111 * activate monitoring at user level
4112 */
4113 ia64_psr(regs)->up = 1;
4114
4115 } else {
4116 tregs = task_pt_regs(ctx->ctx_task);
4117
4118 /*
4119 * start monitoring at the kernel level the next
4120 * time the task is scheduled
4121 */
4122 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4123
4124 /*
4125 * activate monitoring at user level
4126 */
4127 ia64_psr(tregs)->up = 1;
4128 }
4129 return 0;
4130 }
4131
4132 static int
4133 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4134 {
4135 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4136 unsigned int cnum;
4137 int i;
4138 int ret = -EINVAL;
4139
4140 for (i = 0; i < count; i++, req++) {
4141
4142 cnum = req->reg_num;
4143
4144 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4145
4146 req->reg_value = PMC_DFL_VAL(cnum);
4147
4148 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4149
4150 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4151 }
4152 return 0;
4153
4154 abort_mission:
4155 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4156 return ret;
4157 }
4158
4159 static int
4160 pfm_check_task_exist(pfm_context_t *ctx)
4161 {
4162 struct task_struct *g, *t;
4163 int ret = -ESRCH;
4164
4165 read_lock(&tasklist_lock);
4166
4167 do_each_thread (g, t) {
4168 if (t->thread.pfm_context == ctx) {
4169 ret = 0;
4170 goto out;
4171 }
4172 } while_each_thread (g, t);
4173 out:
4174 read_unlock(&tasklist_lock);
4175
4176 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4177
4178 return ret;
4179 }
4180
4181 static int
4182 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4183 {
4184 struct task_struct *task;
4185 struct thread_struct *thread;
4186 struct pfm_context_t *old;
4187 unsigned long flags;
4188 #ifndef CONFIG_SMP
4189 struct task_struct *owner_task = NULL;
4190 #endif
4191 pfarg_load_t *req = (pfarg_load_t *)arg;
4192 unsigned long *pmcs_source, *pmds_source;
4193 int the_cpu;
4194 int ret = 0;
4195 int state, is_system, set_dbregs = 0;
4196
4197 state = ctx->ctx_state;
4198 is_system = ctx->ctx_fl_system;
4199 /*
4200 * can only load from unloaded or terminated state
4201 */
4202 if (state != PFM_CTX_UNLOADED) {
4203 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4204 req->load_pid,
4205 ctx->ctx_state));
4206 return -EBUSY;
4207 }
4208
4209 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4210
4211 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4212 DPRINT(("cannot use blocking mode on self\n"));
4213 return -EINVAL;
4214 }
4215
4216 ret = pfm_get_task(ctx, req->load_pid, &task);
4217 if (ret) {
4218 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4219 return ret;
4220 }
4221
4222 ret = -EINVAL;
4223
4224 /*
4225 * system wide is self monitoring only
4226 */
4227 if (is_system && task != current) {
4228 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4229 req->load_pid));
4230 goto error;
4231 }
4232
4233 thread = &task->thread;
4234
4235 ret = 0;
4236 /*
4237 * cannot load a context which is using range restrictions,
4238 * into a task that is being debugged.
4239 */
4240 if (ctx->ctx_fl_using_dbreg) {
4241 if (thread->flags & IA64_THREAD_DBG_VALID) {
4242 ret = -EBUSY;
4243 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4244 goto error;
4245 }
4246 LOCK_PFS(flags);
4247
4248 if (is_system) {
4249 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4250 DPRINT(("cannot load [%d] dbregs in use\n",
4251 task_pid_nr(task)));
4252 ret = -EBUSY;
4253 } else {
4254 pfm_sessions.pfs_sys_use_dbregs++;
4255 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4256 set_dbregs = 1;
4257 }
4258 }
4259
4260 UNLOCK_PFS(flags);
4261
4262 if (ret) goto error;
4263 }
4264
4265 /*
4266 * SMP system-wide monitoring implies self-monitoring.
4267 *
4268 * The programming model expects the task to
4269 * be pinned on a CPU throughout the session.
4270 * Here we take note of the current CPU at the
4271 * time the context is loaded. No call from
4272 * another CPU will be allowed.
4273 *
4274 * The pinning via shed_setaffinity()
4275 * must be done by the calling task prior
4276 * to this call.
4277 *
4278 * systemwide: keep track of CPU this session is supposed to run on
4279 */
4280 the_cpu = ctx->ctx_cpu = smp_processor_id();
4281
4282 ret = -EBUSY;
4283 /*
4284 * now reserve the session
4285 */
4286 ret = pfm_reserve_session(current, is_system, the_cpu);
4287 if (ret) goto error;
4288
4289 /*
4290 * task is necessarily stopped at this point.
4291 *
4292 * If the previous context was zombie, then it got removed in
4293 * pfm_save_regs(). Therefore we should not see it here.
4294 * If we see a context, then this is an active context
4295 *
4296 * XXX: needs to be atomic
4297 */
4298 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4299 thread->pfm_context, ctx));
4300
4301 ret = -EBUSY;
4302 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4303 if (old != NULL) {
4304 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4305 goto error_unres;
4306 }
4307
4308 pfm_reset_msgq(ctx);
4309
4310 ctx->ctx_state = PFM_CTX_LOADED;
4311
4312 /*
4313 * link context to task
4314 */
4315 ctx->ctx_task = task;
4316
4317 if (is_system) {
4318 /*
4319 * we load as stopped
4320 */
4321 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4322 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4323
4324 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4325 } else {
4326 thread->flags |= IA64_THREAD_PM_VALID;
4327 }
4328
4329 /*
4330 * propagate into thread-state
4331 */
4332 pfm_copy_pmds(task, ctx);
4333 pfm_copy_pmcs(task, ctx);
4334
4335 pmcs_source = ctx->th_pmcs;
4336 pmds_source = ctx->th_pmds;
4337
4338 /*
4339 * always the case for system-wide
4340 */
4341 if (task == current) {
4342
4343 if (is_system == 0) {
4344
4345 /* allow user level control */
4346 ia64_psr(regs)->sp = 0;
4347 DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4348
4349 SET_LAST_CPU(ctx, smp_processor_id());
4350 INC_ACTIVATION();
4351 SET_ACTIVATION(ctx);
4352 #ifndef CONFIG_SMP
4353 /*
4354 * push the other task out, if any
4355 */
4356 owner_task = GET_PMU_OWNER();
4357 if (owner_task) pfm_lazy_save_regs(owner_task);
4358 #endif
4359 }
4360 /*
4361 * load all PMD from ctx to PMU (as opposed to thread state)
4362 * restore all PMC from ctx to PMU
4363 */
4364 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4365 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4366
4367 ctx->ctx_reload_pmcs[0] = 0UL;
4368 ctx->ctx_reload_pmds[0] = 0UL;
4369
4370 /*
4371 * guaranteed safe by earlier check against DBG_VALID
4372 */
4373 if (ctx->ctx_fl_using_dbreg) {
4374 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4375 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4376 }
4377 /*
4378 * set new ownership
4379 */
4380 SET_PMU_OWNER(task, ctx);
4381
4382 DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4383 } else {
4384 /*
4385 * when not current, task MUST be stopped, so this is safe
4386 */
4387 regs = task_pt_regs(task);
4388
4389 /* force a full reload */
4390 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4391 SET_LAST_CPU(ctx, -1);
4392
4393 /* initial saved psr (stopped) */
4394 ctx->ctx_saved_psr_up = 0UL;
4395 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4396 }
4397
4398 ret = 0;
4399
4400 error_unres:
4401 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4402 error:
4403 /*
4404 * we must undo the dbregs setting (for system-wide)
4405 */
4406 if (ret && set_dbregs) {
4407 LOCK_PFS(flags);
4408 pfm_sessions.pfs_sys_use_dbregs--;
4409 UNLOCK_PFS(flags);
4410 }
4411 /*
4412 * release task, there is now a link with the context
4413 */
4414 if (is_system == 0 && task != current) {
4415 pfm_put_task(task);
4416
4417 if (ret == 0) {
4418 ret = pfm_check_task_exist(ctx);
4419 if (ret) {
4420 ctx->ctx_state = PFM_CTX_UNLOADED;
4421 ctx->ctx_task = NULL;
4422 }
4423 }
4424 }
4425 return ret;
4426 }
4427
4428 /*
4429 * in this function, we do not need to increase the use count
4430 * for the task via get_task_struct(), because we hold the
4431 * context lock. If the task were to disappear while having
4432 * a context attached, it would go through pfm_exit_thread()
4433 * which also grabs the context lock and would therefore be blocked
4434 * until we are here.
4435 */
4436 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4437
4438 static int
4439 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4440 {
4441 struct task_struct *task = PFM_CTX_TASK(ctx);
4442 struct pt_regs *tregs;
4443 int prev_state, is_system;
4444 int ret;
4445
4446 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4447
4448 prev_state = ctx->ctx_state;
4449 is_system = ctx->ctx_fl_system;
4450
4451 /*
4452 * unload only when necessary
4453 */
4454 if (prev_state == PFM_CTX_UNLOADED) {
4455 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4456 return 0;
4457 }
4458
4459 /*
4460 * clear psr and dcr bits
4461 */
4462 ret = pfm_stop(ctx, NULL, 0, regs);
4463 if (ret) return ret;
4464
4465 ctx->ctx_state = PFM_CTX_UNLOADED;
4466
4467 /*
4468 * in system mode, we need to update the PMU directly
4469 * and the user level state of the caller, which may not
4470 * necessarily be the creator of the context.
4471 */
4472 if (is_system) {
4473
4474 /*
4475 * Update cpuinfo
4476 *
4477 * local PMU is taken care of in pfm_stop()
4478 */
4479 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4480 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4481
4482 /*
4483 * save PMDs in context
4484 * release ownership
4485 */
4486 pfm_flush_pmds(current, ctx);
4487
4488 /*
4489 * at this point we are done with the PMU
4490 * so we can unreserve the resource.
4491 */
4492 if (prev_state != PFM_CTX_ZOMBIE)
4493 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4494
4495 /*
4496 * disconnect context from task
4497 */
4498 task->thread.pfm_context = NULL;
4499 /*
4500 * disconnect task from context
4501 */
4502 ctx->ctx_task = NULL;
4503
4504 /*
4505 * There is nothing more to cleanup here.
4506 */
4507 return 0;
4508 }
4509
4510 /*
4511 * per-task mode
4512 */
4513 tregs = task == current ? regs : task_pt_regs(task);
4514
4515 if (task == current) {
4516 /*
4517 * cancel user level control
4518 */
4519 ia64_psr(regs)->sp = 1;
4520
4521 DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4522 }
4523 /*
4524 * save PMDs to context
4525 * release ownership
4526 */
4527 pfm_flush_pmds(task, ctx);
4528
4529 /*
4530 * at this point we are done with the PMU
4531 * so we can unreserve the resource.
4532 *
4533 * when state was ZOMBIE, we have already unreserved.
4534 */
4535 if (prev_state != PFM_CTX_ZOMBIE)
4536 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4537
4538 /*
4539 * reset activation counter and psr
4540 */
4541 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4542 SET_LAST_CPU(ctx, -1);
4543
4544 /*
4545 * PMU state will not be restored
4546 */
4547 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4548
4549 /*
4550 * break links between context and task
4551 */
4552 task->thread.pfm_context = NULL;
4553 ctx->ctx_task = NULL;
4554
4555 PFM_SET_WORK_PENDING(task, 0);
4556
4557 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4558 ctx->ctx_fl_can_restart = 0;
4559 ctx->ctx_fl_going_zombie = 0;
4560
4561 DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4562
4563 return 0;
4564 }
4565
4566
4567 /*
4568 * called only from exit_thread(): task == current
4569 * we come here only if current has a context attached (loaded or masked)
4570 */
4571 void
4572 pfm_exit_thread(struct task_struct *task)
4573 {
4574 pfm_context_t *ctx;
4575 unsigned long flags;
4576 struct pt_regs *regs = task_pt_regs(task);
4577 int ret, state;
4578 int free_ok = 0;
4579
4580 ctx = PFM_GET_CTX(task);
4581
4582 PROTECT_CTX(ctx, flags);
4583
4584 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4585
4586 state = ctx->ctx_state;
4587 switch(state) {
4588 case PFM_CTX_UNLOADED:
4589 /*
4590 * only comes to this function if pfm_context is not NULL, i.e., cannot
4591 * be in unloaded state
4592 */
4593 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4594 break;
4595 case PFM_CTX_LOADED:
4596 case PFM_CTX_MASKED:
4597 ret = pfm_context_unload(ctx, NULL, 0, regs);
4598 if (ret) {
4599 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4600 }
4601 DPRINT(("ctx unloaded for current state was %d\n", state));
4602
4603 pfm_end_notify_user(ctx);
4604 break;
4605 case PFM_CTX_ZOMBIE:
4606 ret = pfm_context_unload(ctx, NULL, 0, regs);
4607 if (ret) {
4608 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4609 }
4610 free_ok = 1;
4611 break;
4612 default:
4613 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4614 break;
4615 }
4616 UNPROTECT_CTX(ctx, flags);
4617
4618 { u64 psr = pfm_get_psr();
4619 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4620 BUG_ON(GET_PMU_OWNER());
4621 BUG_ON(ia64_psr(regs)->up);
4622 BUG_ON(ia64_psr(regs)->pp);
4623 }
4624
4625 /*
4626 * All memory free operations (especially for vmalloc'ed memory)
4627 * MUST be done with interrupts ENABLED.
4628 */
4629 if (free_ok) pfm_context_free(ctx);
4630 }
4631
4632 /*
4633 * functions MUST be listed in the increasing order of their index (see permfon.h)
4634 */
4635 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4636 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4637 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4638 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4639 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4640
4641 static pfm_cmd_desc_t pfm_cmd_tab[]={
4642 /* 0 */PFM_CMD_NONE,
4643 /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4644 /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4645 /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4646 /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4647 /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4648 /* 6 */PFM_CMD_NONE,
4649 /* 7 */PFM_CMD_NONE,
4650 /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4651 /* 9 */PFM_CMD_NONE,
4652 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4653 /* 11 */PFM_CMD_NONE,
4654 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4655 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4656 /* 14 */PFM_CMD_NONE,
4657 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4658 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4659 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4660 /* 18 */PFM_CMD_NONE,
4661 /* 19 */PFM_CMD_NONE,
4662 /* 20 */PFM_CMD_NONE,
4663 /* 21 */PFM_CMD_NONE,
4664 /* 22 */PFM_CMD_NONE,
4665 /* 23 */PFM_CMD_NONE,
4666 /* 24 */PFM_CMD_NONE,
4667 /* 25 */PFM_CMD_NONE,
4668 /* 26 */PFM_CMD_NONE,
4669 /* 27 */PFM_CMD_NONE,
4670 /* 28 */PFM_CMD_NONE,
4671 /* 29 */PFM_CMD_NONE,
4672 /* 30 */PFM_CMD_NONE,
4673 /* 31 */PFM_CMD_NONE,
4674 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4675 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4676 };
4677 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4678
4679 static int
4680 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4681 {
4682 struct task_struct *task;
4683 int state, old_state;
4684
4685 recheck:
4686 state = ctx->ctx_state;
4687 task = ctx->ctx_task;
4688
4689 if (task == NULL) {
4690 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4691 return 0;
4692 }
4693
4694 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4695 ctx->ctx_fd,
4696 state,
4697 task_pid_nr(task),
4698 task->state, PFM_CMD_STOPPED(cmd)));
4699
4700 /*
4701 * self-monitoring always ok.
4702 *
4703 * for system-wide the caller can either be the creator of the
4704 * context (to one to which the context is attached to) OR
4705 * a task running on the same CPU as the session.
4706 */
4707 if (task == current || ctx->ctx_fl_system) return 0;
4708
4709 /*
4710 * we are monitoring another thread
4711 */
4712 switch(state) {
4713 case PFM_CTX_UNLOADED:
4714 /*
4715 * if context is UNLOADED we are safe to go
4716 */
4717 return 0;
4718 case PFM_CTX_ZOMBIE:
4719 /*
4720 * no command can operate on a zombie context
4721 */
4722 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4723 return -EINVAL;
4724 case PFM_CTX_MASKED:
4725 /*
4726 * PMU state has been saved to software even though
4727 * the thread may still be running.
4728 */
4729 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4730 }
4731
4732 /*
4733 * context is LOADED or MASKED. Some commands may need to have
4734 * the task stopped.
4735 *
4736 * We could lift this restriction for UP but it would mean that
4737 * the user has no guarantee the task would not run between
4738 * two successive calls to perfmonctl(). That's probably OK.
4739 * If this user wants to ensure the task does not run, then
4740 * the task must be stopped.
4741 */
4742 if (PFM_CMD_STOPPED(cmd)) {
4743 if (!task_is_stopped_or_traced(task)) {
4744 DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4745 return -EBUSY;
4746 }
4747 /*
4748 * task is now stopped, wait for ctxsw out
4749 *
4750 * This is an interesting point in the code.
4751 * We need to unprotect the context because
4752 * the pfm_save_regs() routines needs to grab
4753 * the same lock. There are danger in doing
4754 * this because it leaves a window open for
4755 * another task to get access to the context
4756 * and possibly change its state. The one thing
4757 * that is not possible is for the context to disappear
4758 * because we are protected by the VFS layer, i.e.,
4759 * get_fd()/put_fd().
4760 */
4761 old_state = state;
4762
4763 UNPROTECT_CTX(ctx, flags);
4764
4765 wait_task_inactive(task, 0);
4766
4767 PROTECT_CTX(ctx, flags);
4768
4769 /*
4770 * we must recheck to verify if state has changed
4771 */
4772 if (ctx->ctx_state != old_state) {
4773 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4774 goto recheck;
4775 }
4776 }
4777 return 0;
4778 }
4779
4780 /*
4781 * system-call entry point (must return long)
4782 */
4783 asmlinkage long
4784 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4785 {
4786 struct file *file = NULL;
4787 pfm_context_t *ctx = NULL;
4788 unsigned long flags = 0UL;
4789 void *args_k = NULL;
4790 long ret; /* will expand int return types */
4791 size_t base_sz, sz, xtra_sz = 0;
4792 int narg, completed_args = 0, call_made = 0, cmd_flags;
4793 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4794 int (*getsize)(void *arg, size_t *sz);
4795 #define PFM_MAX_ARGSIZE 4096
4796
4797 /*
4798 * reject any call if perfmon was disabled at initialization
4799 */
4800 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4801
4802 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4803 DPRINT(("invalid cmd=%d\n", cmd));
4804 return -EINVAL;
4805 }
4806
4807 func = pfm_cmd_tab[cmd].cmd_func;
4808 narg = pfm_cmd_tab[cmd].cmd_narg;
4809 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4810 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4811 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4812
4813 if (unlikely(func == NULL)) {
4814 DPRINT(("invalid cmd=%d\n", cmd));
4815 return -EINVAL;
4816 }
4817
4818 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4819 PFM_CMD_NAME(cmd),
4820 cmd,
4821 narg,
4822 base_sz,
4823 count));
4824
4825 /*
4826 * check if number of arguments matches what the command expects
4827 */
4828 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4829 return -EINVAL;
4830
4831 restart_args:
4832 sz = xtra_sz + base_sz*count;
4833 /*
4834 * limit abuse to min page size
4835 */
4836 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4837 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4838 return -E2BIG;
4839 }
4840
4841 /*
4842 * allocate default-sized argument buffer
4843 */
4844 if (likely(count && args_k == NULL)) {
4845 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4846 if (args_k == NULL) return -ENOMEM;
4847 }
4848
4849 ret = -EFAULT;
4850
4851 /*
4852 * copy arguments
4853 *
4854 * assume sz = 0 for command without parameters
4855 */
4856 if (sz && copy_from_user(args_k, arg, sz)) {
4857 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4858 goto error_args;
4859 }
4860
4861 /*
4862 * check if command supports extra parameters
4863 */
4864 if (completed_args == 0 && getsize) {
4865 /*
4866 * get extra parameters size (based on main argument)
4867 */
4868 ret = (*getsize)(args_k, &xtra_sz);
4869 if (ret) goto error_args;
4870
4871 completed_args = 1;
4872
4873 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4874
4875 /* retry if necessary */
4876 if (likely(xtra_sz)) goto restart_args;
4877 }
4878
4879 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4880
4881 ret = -EBADF;
4882
4883 file = fget(fd);
4884 if (unlikely(file == NULL)) {
4885 DPRINT(("invalid fd %d\n", fd));
4886 goto error_args;
4887 }
4888 if (unlikely(PFM_IS_FILE(file) == 0)) {
4889 DPRINT(("fd %d not related to perfmon\n", fd));
4890 goto error_args;
4891 }
4892
4893 ctx = file->private_data;
4894 if (unlikely(ctx == NULL)) {
4895 DPRINT(("no context for fd %d\n", fd));
4896 goto error_args;
4897 }
4898 prefetch(&ctx->ctx_state);
4899
4900 PROTECT_CTX(ctx, flags);
4901
4902 /*
4903 * check task is stopped
4904 */
4905 ret = pfm_check_task_state(ctx, cmd, flags);
4906 if (unlikely(ret)) goto abort_locked;
4907
4908 skip_fd:
4909 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4910
4911 call_made = 1;
4912
4913 abort_locked:
4914 if (likely(ctx)) {
4915 DPRINT(("context unlocked\n"));
4916 UNPROTECT_CTX(ctx, flags);
4917 }
4918
4919 /* copy argument back to user, if needed */
4920 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4921
4922 error_args:
4923 if (file)
4924 fput(file);
4925
4926 kfree(args_k);
4927
4928 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4929
4930 return ret;
4931 }
4932
4933 static void
4934 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4935 {
4936 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4937 pfm_ovfl_ctrl_t rst_ctrl;
4938 int state;
4939 int ret = 0;
4940
4941 state = ctx->ctx_state;
4942 /*
4943 * Unlock sampling buffer and reset index atomically
4944 * XXX: not really needed when blocking
4945 */
4946 if (CTX_HAS_SMPL(ctx)) {
4947
4948 rst_ctrl.bits.mask_monitoring = 0;
4949 rst_ctrl.bits.reset_ovfl_pmds = 0;
4950
4951 if (state == PFM_CTX_LOADED)
4952 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4953 else
4954 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4955 } else {
4956 rst_ctrl.bits.mask_monitoring = 0;
4957 rst_ctrl.bits.reset_ovfl_pmds = 1;
4958 }
4959
4960 if (ret == 0) {
4961 if (rst_ctrl.bits.reset_ovfl_pmds) {
4962 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4963 }
4964 if (rst_ctrl.bits.mask_monitoring == 0) {
4965 DPRINT(("resuming monitoring\n"));
4966 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4967 } else {
4968 DPRINT(("stopping monitoring\n"));
4969 //pfm_stop_monitoring(current, regs);
4970 }
4971 ctx->ctx_state = PFM_CTX_LOADED;
4972 }
4973 }
4974
4975 /*
4976 * context MUST BE LOCKED when calling
4977 * can only be called for current
4978 */
4979 static void
4980 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4981 {
4982 int ret;
4983
4984 DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4985
4986 ret = pfm_context_unload(ctx, NULL, 0, regs);
4987 if (ret) {
4988 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4989 }
4990
4991 /*
4992 * and wakeup controlling task, indicating we are now disconnected
4993 */
4994 wake_up_interruptible(&ctx->ctx_zombieq);
4995
4996 /*
4997 * given that context is still locked, the controlling
4998 * task will only get access when we return from
4999 * pfm_handle_work().
5000 */
5001 }
5002
5003 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
5004
5005 /*
5006 * pfm_handle_work() can be called with interrupts enabled
5007 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5008 * call may sleep, therefore we must re-enable interrupts
5009 * to avoid deadlocks. It is safe to do so because this function
5010 * is called ONLY when returning to user level (pUStk=1), in which case
5011 * there is no risk of kernel stack overflow due to deep
5012 * interrupt nesting.
5013 */
5014 void
5015 pfm_handle_work(void)
5016 {
5017 pfm_context_t *ctx;
5018 struct pt_regs *regs;
5019 unsigned long flags, dummy_flags;
5020 unsigned long ovfl_regs;
5021 unsigned int reason;
5022 int ret;
5023
5024 ctx = PFM_GET_CTX(current);
5025 if (ctx == NULL) {
5026 printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5027 task_pid_nr(current));
5028 return;
5029 }
5030
5031 PROTECT_CTX(ctx, flags);
5032
5033 PFM_SET_WORK_PENDING(current, 0);
5034
5035 regs = task_pt_regs(current);
5036
5037 /*
5038 * extract reason for being here and clear
5039 */
5040 reason = ctx->ctx_fl_trap_reason;
5041 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5042 ovfl_regs = ctx->ctx_ovfl_regs[0];
5043
5044 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5045
5046 /*
5047 * must be done before we check for simple-reset mode
5048 */
5049 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5050 goto do_zombie;
5051
5052 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5053 if (reason == PFM_TRAP_REASON_RESET)
5054 goto skip_blocking;
5055
5056 /*
5057 * restore interrupt mask to what it was on entry.
5058 * Could be enabled/diasbled.
5059 */
5060 UNPROTECT_CTX(ctx, flags);
5061
5062 /*
5063 * force interrupt enable because of down_interruptible()
5064 */
5065 local_irq_enable();
5066
5067 DPRINT(("before block sleeping\n"));
5068
5069 /*
5070 * may go through without blocking on SMP systems
5071 * if restart has been received already by the time we call down()
5072 */
5073 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5074
5075 DPRINT(("after block sleeping ret=%d\n", ret));
5076
5077 /*
5078 * lock context and mask interrupts again
5079 * We save flags into a dummy because we may have
5080 * altered interrupts mask compared to entry in this
5081 * function.
5082 */
5083 PROTECT_CTX(ctx, dummy_flags);
5084
5085 /*
5086 * we need to read the ovfl_regs only after wake-up
5087 * because we may have had pfm_write_pmds() in between
5088 * and that can changed PMD values and therefore
5089 * ovfl_regs is reset for these new PMD values.
5090 */
5091 ovfl_regs = ctx->ctx_ovfl_regs[0];
5092
5093 if (ctx->ctx_fl_going_zombie) {
5094 do_zombie:
5095 DPRINT(("context is zombie, bailing out\n"));
5096 pfm_context_force_terminate(ctx, regs);
5097 goto nothing_to_do;
5098 }
5099 /*
5100 * in case of interruption of down() we don't restart anything
5101 */
5102 if (ret < 0)
5103 goto nothing_to_do;
5104
5105 skip_blocking:
5106 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5107 ctx->ctx_ovfl_regs[0] = 0UL;
5108
5109 nothing_to_do:
5110 /*
5111 * restore flags as they were upon entry
5112 */
5113 UNPROTECT_CTX(ctx, flags);
5114 }
5115
5116 static int
5117 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5118 {
5119 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5120 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5121 return 0;
5122 }
5123
5124 DPRINT(("waking up somebody\n"));
5125
5126 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5127
5128 /*
5129 * safe, we are not in intr handler, nor in ctxsw when
5130 * we come here
5131 */
5132 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5133
5134 return 0;
5135 }
5136
5137 static int
5138 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5139 {
5140 pfm_msg_t *msg = NULL;
5141
5142 if (ctx->ctx_fl_no_msg == 0) {
5143 msg = pfm_get_new_msg(ctx);
5144 if (msg == NULL) {
5145 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5146 return -1;
5147 }
5148
5149 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5150 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5151 msg->pfm_ovfl_msg.msg_active_set = 0;
5152 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5153 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5154 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5155 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5156 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5157 }
5158
5159 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5160 msg,
5161 ctx->ctx_fl_no_msg,
5162 ctx->ctx_fd,
5163 ovfl_pmds));
5164
5165 return pfm_notify_user(ctx, msg);
5166 }
5167
5168 static int
5169 pfm_end_notify_user(pfm_context_t *ctx)
5170 {
5171 pfm_msg_t *msg;
5172
5173 msg = pfm_get_new_msg(ctx);
5174 if (msg == NULL) {
5175 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5176 return -1;
5177 }
5178 /* no leak */
5179 memset(msg, 0, sizeof(*msg));
5180
5181 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5182 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5183 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5184
5185 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5186 msg,
5187 ctx->ctx_fl_no_msg,
5188 ctx->ctx_fd));
5189
5190 return pfm_notify_user(ctx, msg);
5191 }
5192
5193 /*
5194 * main overflow processing routine.
5195 * it can be called from the interrupt path or explicitly during the context switch code
5196 */
5197 static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5198 unsigned long pmc0, struct pt_regs *regs)
5199 {
5200 pfm_ovfl_arg_t *ovfl_arg;
5201 unsigned long mask;
5202 unsigned long old_val, ovfl_val, new_val;
5203 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5204 unsigned long tstamp;
5205 pfm_ovfl_ctrl_t ovfl_ctrl;
5206 unsigned int i, has_smpl;
5207 int must_notify = 0;
5208
5209 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5210
5211 /*
5212 * sanity test. Should never happen
5213 */
5214 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5215
5216 tstamp = ia64_get_itc();
5217 mask = pmc0 >> PMU_FIRST_COUNTER;
5218 ovfl_val = pmu_conf->ovfl_val;
5219 has_smpl = CTX_HAS_SMPL(ctx);
5220
5221 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5222 "used_pmds=0x%lx\n",
5223 pmc0,
5224 task ? task_pid_nr(task): -1,
5225 (regs ? regs->cr_iip : 0),
5226 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5227 ctx->ctx_used_pmds[0]));
5228
5229
5230 /*
5231 * first we update the virtual counters
5232 * assume there was a prior ia64_srlz_d() issued
5233 */
5234 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5235
5236 /* skip pmd which did not overflow */
5237 if ((mask & 0x1) == 0) continue;
5238
5239 /*
5240 * Note that the pmd is not necessarily 0 at this point as qualified events
5241 * may have happened before the PMU was frozen. The residual count is not
5242 * taken into consideration here but will be with any read of the pmd via
5243 * pfm_read_pmds().
5244 */
5245 old_val = new_val = ctx->ctx_pmds[i].val;
5246 new_val += 1 + ovfl_val;
5247 ctx->ctx_pmds[i].val = new_val;
5248
5249 /*
5250 * check for overflow condition
5251 */
5252 if (likely(old_val > new_val)) {
5253 ovfl_pmds |= 1UL << i;
5254 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5255 }
5256
5257 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5258 i,
5259 new_val,
5260 old_val,
5261 ia64_get_pmd(i) & ovfl_val,
5262 ovfl_pmds,
5263 ovfl_notify));
5264 }
5265
5266 /*
5267 * there was no 64-bit overflow, nothing else to do
5268 */
5269 if (ovfl_pmds == 0UL) return;
5270
5271 /*
5272 * reset all control bits
5273 */
5274 ovfl_ctrl.val = 0;
5275 reset_pmds = 0UL;
5276
5277 /*
5278 * if a sampling format module exists, then we "cache" the overflow by
5279 * calling the module's handler() routine.
5280 */
5281 if (has_smpl) {
5282 unsigned long start_cycles, end_cycles;
5283 unsigned long pmd_mask;
5284 int j, k, ret = 0;
5285 int this_cpu = smp_processor_id();
5286
5287 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5288 ovfl_arg = &ctx->ctx_ovfl_arg;
5289
5290 prefetch(ctx->ctx_smpl_hdr);
5291
5292 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5293
5294 mask = 1UL << i;
5295
5296 if ((pmd_mask & 0x1) == 0) continue;
5297
5298 ovfl_arg->ovfl_pmd = (unsigned char )i;
5299 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5300 ovfl_arg->active_set = 0;
5301 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5302 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5303
5304 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5305 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5306 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5307
5308 /*
5309 * copy values of pmds of interest. Sampling format may copy them
5310 * into sampling buffer.
5311 */
5312 if (smpl_pmds) {
5313 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5314 if ((smpl_pmds & 0x1) == 0) continue;
5315 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5316 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5317 }
5318 }
5319
5320 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5321
5322 start_cycles = ia64_get_itc();
5323
5324 /*
5325 * call custom buffer format record (handler) routine
5326 */
5327 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5328
5329 end_cycles = ia64_get_itc();
5330
5331 /*
5332 * For those controls, we take the union because they have
5333 * an all or nothing behavior.
5334 */
5335 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5336 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5337 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5338 /*
5339 * build the bitmask of pmds to reset now
5340 */
5341 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5342
5343 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5344 }
5345 /*
5346 * when the module cannot handle the rest of the overflows, we abort right here
5347 */
5348 if (ret && pmd_mask) {
5349 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5350 pmd_mask<<PMU_FIRST_COUNTER));
5351 }
5352 /*
5353 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5354 */
5355 ovfl_pmds &= ~reset_pmds;
5356 } else {
5357 /*
5358 * when no sampling module is used, then the default
5359 * is to notify on overflow if requested by user
5360 */
5361 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5362 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5363 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5364 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5365 /*
5366 * if needed, we reset all overflowed pmds
5367 */
5368 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5369 }
5370
5371 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5372
5373 /*
5374 * reset the requested PMD registers using the short reset values
5375 */
5376 if (reset_pmds) {
5377 unsigned long bm = reset_pmds;
5378 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5379 }
5380
5381 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5382 /*
5383 * keep track of what to reset when unblocking
5384 */
5385 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5386
5387 /*
5388 * check for blocking context
5389 */
5390 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5391
5392 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5393
5394 /*
5395 * set the perfmon specific checking pending work for the task
5396 */
5397 PFM_SET_WORK_PENDING(task, 1);
5398
5399 /*
5400 * when coming from ctxsw, current still points to the
5401 * previous task, therefore we must work with task and not current.
5402 */
5403 set_notify_resume(task);
5404 }
5405 /*
5406 * defer until state is changed (shorten spin window). the context is locked
5407 * anyway, so the signal receiver would come spin for nothing.
5408 */
5409 must_notify = 1;
5410 }
5411
5412 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5413 GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5414 PFM_GET_WORK_PENDING(task),
5415 ctx->ctx_fl_trap_reason,
5416 ovfl_pmds,
5417 ovfl_notify,
5418 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5419 /*
5420 * in case monitoring must be stopped, we toggle the psr bits
5421 */
5422 if (ovfl_ctrl.bits.mask_monitoring) {
5423 pfm_mask_monitoring(task);
5424 ctx->ctx_state = PFM_CTX_MASKED;
5425 ctx->ctx_fl_can_restart = 1;
5426 }
5427
5428 /*
5429 * send notification now
5430 */
5431 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5432
5433 return;
5434
5435 sanity_check:
5436 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5437 smp_processor_id(),
5438 task ? task_pid_nr(task) : -1,
5439 pmc0);
5440 return;
5441
5442 stop_monitoring:
5443 /*
5444 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5445 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5446 * come here as zombie only if the task is the current task. In which case, we
5447 * can access the PMU hardware directly.
5448 *
5449 * Note that zombies do have PM_VALID set. So here we do the minimal.
5450 *
5451 * In case the context was zombified it could not be reclaimed at the time
5452 * the monitoring program exited. At this point, the PMU reservation has been
5453 * returned, the sampiing buffer has been freed. We must convert this call
5454 * into a spurious interrupt. However, we must also avoid infinite overflows
5455 * by stopping monitoring for this task. We can only come here for a per-task
5456 * context. All we need to do is to stop monitoring using the psr bits which
5457 * are always task private. By re-enabling secure montioring, we ensure that
5458 * the monitored task will not be able to re-activate monitoring.
5459 * The task will eventually be context switched out, at which point the context
5460 * will be reclaimed (that includes releasing ownership of the PMU).
5461 *
5462 * So there might be a window of time where the number of per-task session is zero
5463 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5464 * context. This is safe because if a per-task session comes in, it will push this one
5465 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5466 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5467 * also push our zombie context out.
5468 *
5469 * Overall pretty hairy stuff....
5470 */
5471 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5472 pfm_clear_psr_up();
5473 ia64_psr(regs)->up = 0;
5474 ia64_psr(regs)->sp = 1;
5475 return;
5476 }
5477
5478 static int
5479 pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5480 {
5481 struct task_struct *task;
5482 pfm_context_t *ctx;
5483 unsigned long flags;
5484 u64 pmc0;
5485 int this_cpu = smp_processor_id();
5486 int retval = 0;
5487
5488 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5489
5490 /*
5491 * srlz.d done before arriving here
5492 */
5493 pmc0 = ia64_get_pmc(0);
5494
5495 task = GET_PMU_OWNER();
5496 ctx = GET_PMU_CTX();
5497
5498 /*
5499 * if we have some pending bits set
5500 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5501 */
5502 if (PMC0_HAS_OVFL(pmc0) && task) {
5503 /*
5504 * we assume that pmc0.fr is always set here
5505 */
5506
5507 /* sanity check */
5508 if (!ctx) goto report_spurious1;
5509
5510 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5511 goto report_spurious2;
5512
5513 PROTECT_CTX_NOPRINT(ctx, flags);
5514
5515 pfm_overflow_handler(task, ctx, pmc0, regs);
5516
5517 UNPROTECT_CTX_NOPRINT(ctx, flags);
5518
5519 } else {
5520 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5521 retval = -1;
5522 }
5523 /*
5524 * keep it unfrozen at all times
5525 */
5526 pfm_unfreeze_pmu();
5527
5528 return retval;
5529
5530 report_spurious1:
5531 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5532 this_cpu, task_pid_nr(task));
5533 pfm_unfreeze_pmu();
5534 return -1;
5535 report_spurious2:
5536 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5537 this_cpu,
5538 task_pid_nr(task));
5539 pfm_unfreeze_pmu();
5540 return -1;
5541 }
5542
5543 static irqreturn_t
5544 pfm_interrupt_handler(int irq, void *arg)
5545 {
5546 unsigned long start_cycles, total_cycles;
5547 unsigned long min, max;
5548 int this_cpu;
5549 int ret;
5550 struct pt_regs *regs = get_irq_regs();
5551
5552 this_cpu = get_cpu();
5553 if (likely(!pfm_alt_intr_handler)) {
5554 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5555 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5556
5557 start_cycles = ia64_get_itc();
5558
5559 ret = pfm_do_interrupt_handler(arg, regs);
5560
5561 total_cycles = ia64_get_itc();
5562
5563 /*
5564 * don't measure spurious interrupts
5565 */
5566 if (likely(ret == 0)) {
5567 total_cycles -= start_cycles;
5568
5569 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5570 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5571
5572 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5573 }
5574 }
5575 else {
5576 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5577 }
5578
5579 put_cpu();
5580 return IRQ_HANDLED;
5581 }
5582
5583 /*
5584 * /proc/perfmon interface, for debug only
5585 */
5586
5587 #define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1)
5588
5589 static void *
5590 pfm_proc_start(struct seq_file *m, loff_t *pos)
5591 {
5592 if (*pos == 0) {
5593 return PFM_PROC_SHOW_HEADER;
5594 }
5595
5596 while (*pos <= nr_cpu_ids) {
5597 if (cpu_online(*pos - 1)) {
5598 return (void *)*pos;
5599 }
5600 ++*pos;
5601 }
5602 return NULL;
5603 }
5604
5605 static void *
5606 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5607 {
5608 ++*pos;
5609 return pfm_proc_start(m, pos);
5610 }
5611
5612 static void
5613 pfm_proc_stop(struct seq_file *m, void *v)
5614 {
5615 }
5616
5617 static void
5618 pfm_proc_show_header(struct seq_file *m)
5619 {
5620 struct list_head * pos;
5621 pfm_buffer_fmt_t * entry;
5622 unsigned long flags;
5623
5624 seq_printf(m,
5625 "perfmon version : %u.%u\n"
5626 "model : %s\n"
5627 "fastctxsw : %s\n"
5628 "expert mode : %s\n"
5629 "ovfl_mask : 0x%lx\n"
5630 "PMU flags : 0x%x\n",
5631 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5632 pmu_conf->pmu_name,
5633 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5634 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5635 pmu_conf->ovfl_val,
5636 pmu_conf->flags);
5637
5638 LOCK_PFS(flags);
5639
5640 seq_printf(m,
5641 "proc_sessions : %u\n"
5642 "sys_sessions : %u\n"
5643 "sys_use_dbregs : %u\n"
5644 "ptrace_use_dbregs : %u\n",
5645 pfm_sessions.pfs_task_sessions,
5646 pfm_sessions.pfs_sys_sessions,
5647 pfm_sessions.pfs_sys_use_dbregs,
5648 pfm_sessions.pfs_ptrace_use_dbregs);
5649
5650 UNLOCK_PFS(flags);
5651
5652 spin_lock(&pfm_buffer_fmt_lock);
5653
5654 list_for_each(pos, &pfm_buffer_fmt_list) {
5655 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5656 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5657 entry->fmt_uuid[0],
5658 entry->fmt_uuid[1],
5659 entry->fmt_uuid[2],
5660 entry->fmt_uuid[3],
5661 entry->fmt_uuid[4],
5662 entry->fmt_uuid[5],
5663 entry->fmt_uuid[6],
5664 entry->fmt_uuid[7],
5665 entry->fmt_uuid[8],
5666 entry->fmt_uuid[9],
5667 entry->fmt_uuid[10],
5668 entry->fmt_uuid[11],
5669 entry->fmt_uuid[12],
5670 entry->fmt_uuid[13],
5671 entry->fmt_uuid[14],
5672 entry->fmt_uuid[15],
5673 entry->fmt_name);
5674 }
5675 spin_unlock(&pfm_buffer_fmt_lock);
5676
5677 }
5678
5679 static int
5680 pfm_proc_show(struct seq_file *m, void *v)
5681 {
5682 unsigned long psr;
5683 unsigned int i;
5684 int cpu;
5685
5686 if (v == PFM_PROC_SHOW_HEADER) {
5687 pfm_proc_show_header(m);
5688 return 0;
5689 }
5690
5691 /* show info for CPU (v - 1) */
5692
5693 cpu = (long)v - 1;
5694 seq_printf(m,
5695 "CPU%-2d overflow intrs : %lu\n"
5696 "CPU%-2d overflow cycles : %lu\n"
5697 "CPU%-2d overflow min : %lu\n"
5698 "CPU%-2d overflow max : %lu\n"
5699 "CPU%-2d smpl handler calls : %lu\n"
5700 "CPU%-2d smpl handler cycles : %lu\n"
5701 "CPU%-2d spurious intrs : %lu\n"
5702 "CPU%-2d replay intrs : %lu\n"
5703 "CPU%-2d syst_wide : %d\n"
5704 "CPU%-2d dcr_pp : %d\n"
5705 "CPU%-2d exclude idle : %d\n"
5706 "CPU%-2d owner : %d\n"
5707 "CPU%-2d context : %p\n"
5708 "CPU%-2d activations : %lu\n",
5709 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5710 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5711 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5712 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5713 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5714 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5715 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5716 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5717 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5718 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5719 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5720 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5721 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5722 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5723
5724 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5725
5726 psr = pfm_get_psr();
5727
5728 ia64_srlz_d();
5729
5730 seq_printf(m,
5731 "CPU%-2d psr : 0x%lx\n"
5732 "CPU%-2d pmc0 : 0x%lx\n",
5733 cpu, psr,
5734 cpu, ia64_get_pmc(0));
5735
5736 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5737 if (PMC_IS_COUNTING(i) == 0) continue;
5738 seq_printf(m,
5739 "CPU%-2d pmc%u : 0x%lx\n"
5740 "CPU%-2d pmd%u : 0x%lx\n",
5741 cpu, i, ia64_get_pmc(i),
5742 cpu, i, ia64_get_pmd(i));
5743 }
5744 }
5745 return 0;
5746 }
5747
5748 const struct seq_operations pfm_seq_ops = {
5749 .start = pfm_proc_start,
5750 .next = pfm_proc_next,
5751 .stop = pfm_proc_stop,
5752 .show = pfm_proc_show
5753 };
5754
5755 static int
5756 pfm_proc_open(struct inode *inode, struct file *file)
5757 {
5758 return seq_open(file, &pfm_seq_ops);
5759 }
5760
5761
5762 /*
5763 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5764 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5765 * is active or inactive based on mode. We must rely on the value in
5766 * local_cpu_data->pfm_syst_info
5767 */
5768 void
5769 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5770 {
5771 struct pt_regs *regs;
5772 unsigned long dcr;
5773 unsigned long dcr_pp;
5774
5775 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5776
5777 /*
5778 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5779 * on every CPU, so we can rely on the pid to identify the idle task.
5780 */
5781 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5782 regs = task_pt_regs(task);
5783 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5784 return;
5785 }
5786 /*
5787 * if monitoring has started
5788 */
5789 if (dcr_pp) {
5790 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5791 /*
5792 * context switching in?
5793 */
5794 if (is_ctxswin) {
5795 /* mask monitoring for the idle task */
5796 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5797 pfm_clear_psr_pp();
5798 ia64_srlz_i();
5799 return;
5800 }
5801 /*
5802 * context switching out
5803 * restore monitoring for next task
5804 *
5805 * Due to inlining this odd if-then-else construction generates
5806 * better code.
5807 */
5808 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5809 pfm_set_psr_pp();
5810 ia64_srlz_i();
5811 }
5812 }
5813
5814 #ifdef CONFIG_SMP
5815
5816 static void
5817 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5818 {
5819 struct task_struct *task = ctx->ctx_task;
5820
5821 ia64_psr(regs)->up = 0;
5822 ia64_psr(regs)->sp = 1;
5823
5824 if (GET_PMU_OWNER() == task) {
5825 DPRINT(("cleared ownership for [%d]\n",
5826 task_pid_nr(ctx->ctx_task)));
5827 SET_PMU_OWNER(NULL, NULL);
5828 }
5829
5830 /*
5831 * disconnect the task from the context and vice-versa
5832 */
5833 PFM_SET_WORK_PENDING(task, 0);
5834
5835 task->thread.pfm_context = NULL;
5836 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5837
5838 DPRINT(("force cleanup for [%d]\n", task_pid_nr(task)));
5839 }
5840
5841
5842 /*
5843 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5844 */
5845 void
5846 pfm_save_regs(struct task_struct *task)
5847 {
5848 pfm_context_t *ctx;
5849 unsigned long flags;
5850 u64 psr;
5851
5852
5853 ctx = PFM_GET_CTX(task);
5854 if (ctx == NULL) return;
5855
5856 /*
5857 * we always come here with interrupts ALREADY disabled by
5858 * the scheduler. So we simply need to protect against concurrent
5859 * access, not CPU concurrency.
5860 */
5861 flags = pfm_protect_ctx_ctxsw(ctx);
5862
5863 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5864 struct pt_regs *regs = task_pt_regs(task);
5865
5866 pfm_clear_psr_up();
5867
5868 pfm_force_cleanup(ctx, regs);
5869
5870 BUG_ON(ctx->ctx_smpl_hdr);
5871
5872 pfm_unprotect_ctx_ctxsw(ctx, flags);
5873
5874 pfm_context_free(ctx);
5875 return;
5876 }
5877
5878 /*
5879 * save current PSR: needed because we modify it
5880 */
5881 ia64_srlz_d();
5882 psr = pfm_get_psr();
5883
5884 BUG_ON(psr & (IA64_PSR_I));
5885
5886 /*
5887 * stop monitoring:
5888 * This is the last instruction which may generate an overflow
5889 *
5890 * We do not need to set psr.sp because, it is irrelevant in kernel.
5891 * It will be restored from ipsr when going back to user level
5892 */
5893 pfm_clear_psr_up();
5894
5895 /*
5896 * keep a copy of psr.up (for reload)
5897 */
5898 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5899
5900 /*
5901 * release ownership of this PMU.
5902 * PM interrupts are masked, so nothing
5903 * can happen.
5904 */
5905 SET_PMU_OWNER(NULL, NULL);
5906
5907 /*
5908 * we systematically save the PMD as we have no
5909 * guarantee we will be schedule at that same
5910 * CPU again.
5911 */
5912 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5913
5914 /*
5915 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5916 * we will need it on the restore path to check
5917 * for pending overflow.
5918 */
5919 ctx->th_pmcs[0] = ia64_get_pmc(0);
5920
5921 /*
5922 * unfreeze PMU if had pending overflows
5923 */
5924 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5925
5926 /*
5927 * finally, allow context access.
5928 * interrupts will still be masked after this call.
5929 */
5930 pfm_unprotect_ctx_ctxsw(ctx, flags);
5931 }
5932
5933 #else /* !CONFIG_SMP */
5934 void
5935 pfm_save_regs(struct task_struct *task)
5936 {
5937 pfm_context_t *ctx;
5938 u64 psr;
5939
5940 ctx = PFM_GET_CTX(task);
5941 if (ctx == NULL) return;
5942
5943 /*
5944 * save current PSR: needed because we modify it
5945 */
5946 psr = pfm_get_psr();
5947
5948 BUG_ON(psr & (IA64_PSR_I));
5949
5950 /*
5951 * stop monitoring:
5952 * This is the last instruction which may generate an overflow
5953 *
5954 * We do not need to set psr.sp because, it is irrelevant in kernel.
5955 * It will be restored from ipsr when going back to user level
5956 */
5957 pfm_clear_psr_up();
5958
5959 /*
5960 * keep a copy of psr.up (for reload)
5961 */
5962 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5963 }
5964
5965 static void
5966 pfm_lazy_save_regs (struct task_struct *task)
5967 {
5968 pfm_context_t *ctx;
5969 unsigned long flags;
5970
5971 { u64 psr = pfm_get_psr();
5972 BUG_ON(psr & IA64_PSR_UP);
5973 }
5974
5975 ctx = PFM_GET_CTX(task);
5976
5977 /*
5978 * we need to mask PMU overflow here to
5979 * make sure that we maintain pmc0 until
5980 * we save it. overflow interrupts are
5981 * treated as spurious if there is no
5982 * owner.
5983 *
5984 * XXX: I don't think this is necessary
5985 */
5986 PROTECT_CTX(ctx,flags);
5987
5988 /*
5989 * release ownership of this PMU.
5990 * must be done before we save the registers.
5991 *
5992 * after this call any PMU interrupt is treated
5993 * as spurious.
5994 */
5995 SET_PMU_OWNER(NULL, NULL);
5996
5997 /*
5998 * save all the pmds we use
5999 */
6000 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
6001
6002 /*
6003 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6004 * it is needed to check for pended overflow
6005 * on the restore path
6006 */
6007 ctx->th_pmcs[0] = ia64_get_pmc(0);
6008
6009 /*
6010 * unfreeze PMU if had pending overflows
6011 */
6012 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6013
6014 /*
6015 * now get can unmask PMU interrupts, they will
6016 * be treated as purely spurious and we will not
6017 * lose any information
6018 */
6019 UNPROTECT_CTX(ctx,flags);
6020 }
6021 #endif /* CONFIG_SMP */
6022
6023 #ifdef CONFIG_SMP
6024 /*
6025 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6026 */
6027 void
6028 pfm_load_regs (struct task_struct *task)
6029 {
6030 pfm_context_t *ctx;
6031 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6032 unsigned long flags;
6033 u64 psr, psr_up;
6034 int need_irq_resend;
6035
6036 ctx = PFM_GET_CTX(task);
6037 if (unlikely(ctx == NULL)) return;
6038
6039 BUG_ON(GET_PMU_OWNER());
6040
6041 /*
6042 * possible on unload
6043 */
6044 if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6045
6046 /*
6047 * we always come here with interrupts ALREADY disabled by
6048 * the scheduler. So we simply need to protect against concurrent
6049 * access, not CPU concurrency.
6050 */
6051 flags = pfm_protect_ctx_ctxsw(ctx);
6052 psr = pfm_get_psr();
6053
6054 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6055
6056 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6057 BUG_ON(psr & IA64_PSR_I);
6058
6059 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6060 struct pt_regs *regs = task_pt_regs(task);
6061
6062 BUG_ON(ctx->ctx_smpl_hdr);
6063
6064 pfm_force_cleanup(ctx, regs);
6065
6066 pfm_unprotect_ctx_ctxsw(ctx, flags);
6067
6068 /*
6069 * this one (kmalloc'ed) is fine with interrupts disabled
6070 */
6071 pfm_context_free(ctx);
6072
6073 return;
6074 }
6075
6076 /*
6077 * we restore ALL the debug registers to avoid picking up
6078 * stale state.
6079 */
6080 if (ctx->ctx_fl_using_dbreg) {
6081 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6082 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6083 }
6084 /*
6085 * retrieve saved psr.up
6086 */
6087 psr_up = ctx->ctx_saved_psr_up;
6088
6089 /*
6090 * if we were the last user of the PMU on that CPU,
6091 * then nothing to do except restore psr
6092 */
6093 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6094
6095 /*
6096 * retrieve partial reload masks (due to user modifications)
6097 */
6098 pmc_mask = ctx->ctx_reload_pmcs[0];
6099 pmd_mask = ctx->ctx_reload_pmds[0];
6100
6101 } else {
6102 /*
6103 * To avoid leaking information to the user level when psr.sp=0,
6104 * we must reload ALL implemented pmds (even the ones we don't use).
6105 * In the kernel we only allow PFM_READ_PMDS on registers which
6106 * we initialized or requested (sampling) so there is no risk there.
6107 */
6108 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6109
6110 /*
6111 * ALL accessible PMCs are systematically reloaded, unused registers
6112 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6113 * up stale configuration.
6114 *
6115 * PMC0 is never in the mask. It is always restored separately.
6116 */
6117 pmc_mask = ctx->ctx_all_pmcs[0];
6118 }
6119 /*
6120 * when context is MASKED, we will restore PMC with plm=0
6121 * and PMD with stale information, but that's ok, nothing
6122 * will be captured.
6123 *
6124 * XXX: optimize here
6125 */
6126 if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6127 if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6128
6129 /*
6130 * check for pending overflow at the time the state
6131 * was saved.
6132 */
6133 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6134 /*
6135 * reload pmc0 with the overflow information
6136 * On McKinley PMU, this will trigger a PMU interrupt
6137 */
6138 ia64_set_pmc(0, ctx->th_pmcs[0]);
6139 ia64_srlz_d();
6140 ctx->th_pmcs[0] = 0UL;
6141
6142 /*
6143 * will replay the PMU interrupt
6144 */
6145 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6146
6147 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6148 }
6149
6150 /*
6151 * we just did a reload, so we reset the partial reload fields
6152 */
6153 ctx->ctx_reload_pmcs[0] = 0UL;
6154 ctx->ctx_reload_pmds[0] = 0UL;
6155
6156 SET_LAST_CPU(ctx, smp_processor_id());
6157
6158 /*
6159 * dump activation value for this PMU
6160 */
6161 INC_ACTIVATION();
6162 /*
6163 * record current activation for this context
6164 */
6165 SET_ACTIVATION(ctx);
6166
6167 /*
6168 * establish new ownership.
6169 */
6170 SET_PMU_OWNER(task, ctx);
6171
6172 /*
6173 * restore the psr.up bit. measurement
6174 * is active again.
6175 * no PMU interrupt can happen at this point
6176 * because we still have interrupts disabled.
6177 */
6178 if (likely(psr_up)) pfm_set_psr_up();
6179
6180 /*
6181 * allow concurrent access to context
6182 */
6183 pfm_unprotect_ctx_ctxsw(ctx, flags);
6184 }
6185 #else /* !CONFIG_SMP */
6186 /*
6187 * reload PMU state for UP kernels
6188 * in 2.5 we come here with interrupts disabled
6189 */
6190 void
6191 pfm_load_regs (struct task_struct *task)
6192 {
6193 pfm_context_t *ctx;
6194 struct task_struct *owner;
6195 unsigned long pmd_mask, pmc_mask;
6196 u64 psr, psr_up;
6197 int need_irq_resend;
6198
6199 owner = GET_PMU_OWNER();
6200 ctx = PFM_GET_CTX(task);
6201 psr = pfm_get_psr();
6202
6203 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6204 BUG_ON(psr & IA64_PSR_I);
6205
6206 /*
6207 * we restore ALL the debug registers to avoid picking up
6208 * stale state.
6209 *
6210 * This must be done even when the task is still the owner
6211 * as the registers may have been modified via ptrace()
6212 * (not perfmon) by the previous task.
6213 */
6214 if (ctx->ctx_fl_using_dbreg) {
6215 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6216 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6217 }
6218
6219 /*
6220 * retrieved saved psr.up
6221 */
6222 psr_up = ctx->ctx_saved_psr_up;
6223 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6224
6225 /*
6226 * short path, our state is still there, just
6227 * need to restore psr and we go
6228 *
6229 * we do not touch either PMC nor PMD. the psr is not touched
6230 * by the overflow_handler. So we are safe w.r.t. to interrupt
6231 * concurrency even without interrupt masking.
6232 */
6233 if (likely(owner == task)) {
6234 if (likely(psr_up)) pfm_set_psr_up();
6235 return;
6236 }
6237
6238 /*
6239 * someone else is still using the PMU, first push it out and
6240 * then we'll be able to install our stuff !
6241 *
6242 * Upon return, there will be no owner for the current PMU
6243 */
6244 if (owner) pfm_lazy_save_regs(owner);
6245
6246 /*
6247 * To avoid leaking information to the user level when psr.sp=0,
6248 * we must reload ALL implemented pmds (even the ones we don't use).
6249 * In the kernel we only allow PFM_READ_PMDS on registers which
6250 * we initialized or requested (sampling) so there is no risk there.
6251 */
6252 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6253
6254 /*
6255 * ALL accessible PMCs are systematically reloaded, unused registers
6256 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6257 * up stale configuration.
6258 *
6259 * PMC0 is never in the mask. It is always restored separately
6260 */
6261 pmc_mask = ctx->ctx_all_pmcs[0];
6262
6263 pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6264 pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6265
6266 /*
6267 * check for pending overflow at the time the state
6268 * was saved.
6269 */
6270 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6271 /*
6272 * reload pmc0 with the overflow information
6273 * On McKinley PMU, this will trigger a PMU interrupt
6274 */
6275 ia64_set_pmc(0, ctx->th_pmcs[0]);
6276 ia64_srlz_d();
6277
6278 ctx->th_pmcs[0] = 0UL;
6279
6280 /*
6281 * will replay the PMU interrupt
6282 */
6283 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6284
6285 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6286 }
6287
6288 /*
6289 * establish new ownership.
6290 */
6291 SET_PMU_OWNER(task, ctx);
6292
6293 /*
6294 * restore the psr.up bit. measurement
6295 * is active again.
6296 * no PMU interrupt can happen at this point
6297 * because we still have interrupts disabled.
6298 */
6299 if (likely(psr_up)) pfm_set_psr_up();
6300 }
6301 #endif /* CONFIG_SMP */
6302
6303 /*
6304 * this function assumes monitoring is stopped
6305 */
6306 static void
6307 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6308 {
6309 u64 pmc0;
6310 unsigned long mask2, val, pmd_val, ovfl_val;
6311 int i, can_access_pmu = 0;
6312 int is_self;
6313
6314 /*
6315 * is the caller the task being monitored (or which initiated the
6316 * session for system wide measurements)
6317 */
6318 is_self = ctx->ctx_task == task ? 1 : 0;
6319
6320 /*
6321 * can access PMU is task is the owner of the PMU state on the current CPU
6322 * or if we are running on the CPU bound to the context in system-wide mode
6323 * (that is not necessarily the task the context is attached to in this mode).
6324 * In system-wide we always have can_access_pmu true because a task running on an
6325 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6326 */
6327 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6328 if (can_access_pmu) {
6329 /*
6330 * Mark the PMU as not owned
6331 * This will cause the interrupt handler to do nothing in case an overflow
6332 * interrupt was in-flight
6333 * This also guarantees that pmc0 will contain the final state
6334 * It virtually gives us full control on overflow processing from that point
6335 * on.
6336 */
6337 SET_PMU_OWNER(NULL, NULL);
6338 DPRINT(("releasing ownership\n"));
6339
6340 /*
6341 * read current overflow status:
6342 *
6343 * we are guaranteed to read the final stable state
6344 */
6345 ia64_srlz_d();
6346 pmc0 = ia64_get_pmc(0); /* slow */
6347
6348 /*
6349 * reset freeze bit, overflow status information destroyed
6350 */
6351 pfm_unfreeze_pmu();
6352 } else {
6353 pmc0 = ctx->th_pmcs[0];
6354 /*
6355 * clear whatever overflow status bits there were
6356 */
6357 ctx->th_pmcs[0] = 0;
6358 }
6359 ovfl_val = pmu_conf->ovfl_val;
6360 /*
6361 * we save all the used pmds
6362 * we take care of overflows for counting PMDs
6363 *
6364 * XXX: sampling situation is not taken into account here
6365 */
6366 mask2 = ctx->ctx_used_pmds[0];
6367
6368 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6369
6370 for (i = 0; mask2; i++, mask2>>=1) {
6371
6372 /* skip non used pmds */
6373 if ((mask2 & 0x1) == 0) continue;
6374
6375 /*
6376 * can access PMU always true in system wide mode
6377 */
6378 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6379
6380 if (PMD_IS_COUNTING(i)) {
6381 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6382 task_pid_nr(task),
6383 i,
6384 ctx->ctx_pmds[i].val,
6385 val & ovfl_val));
6386
6387 /*
6388 * we rebuild the full 64 bit value of the counter
6389 */
6390 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6391
6392 /*
6393 * now everything is in ctx_pmds[] and we need
6394 * to clear the saved context from save_regs() such that
6395 * pfm_read_pmds() gets the correct value
6396 */
6397 pmd_val = 0UL;
6398
6399 /*
6400 * take care of overflow inline
6401 */
6402 if (pmc0 & (1UL << i)) {
6403 val += 1 + ovfl_val;
6404 DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6405 }
6406 }
6407
6408 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6409
6410 if (is_self) ctx->th_pmds[i] = pmd_val;
6411
6412 ctx->ctx_pmds[i].val = val;
6413 }
6414 }
6415
6416 static struct irqaction perfmon_irqaction = {
6417 .handler = pfm_interrupt_handler,
6418 .flags = IRQF_DISABLED,
6419 .name = "perfmon"
6420 };
6421
6422 static void
6423 pfm_alt_save_pmu_state(void *data)
6424 {
6425 struct pt_regs *regs;
6426
6427 regs = task_pt_regs(current);
6428
6429 DPRINT(("called\n"));
6430
6431 /*
6432 * should not be necessary but
6433 * let's take not risk
6434 */
6435 pfm_clear_psr_up();
6436 pfm_clear_psr_pp();
6437 ia64_psr(regs)->pp = 0;
6438
6439 /*
6440 * This call is required
6441 * May cause a spurious interrupt on some processors
6442 */
6443 pfm_freeze_pmu();
6444
6445 ia64_srlz_d();
6446 }
6447
6448 void
6449 pfm_alt_restore_pmu_state(void *data)
6450 {
6451 struct pt_regs *regs;
6452
6453 regs = task_pt_regs(current);
6454
6455 DPRINT(("called\n"));
6456
6457 /*
6458 * put PMU back in state expected
6459 * by perfmon
6460 */
6461 pfm_clear_psr_up();
6462 pfm_clear_psr_pp();
6463 ia64_psr(regs)->pp = 0;
6464
6465 /*
6466 * perfmon runs with PMU unfrozen at all times
6467 */
6468 pfm_unfreeze_pmu();
6469
6470 ia64_srlz_d();
6471 }
6472
6473 int
6474 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6475 {
6476 int ret, i;
6477 int reserve_cpu;
6478
6479 /* some sanity checks */
6480 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6481
6482 /* do the easy test first */
6483 if (pfm_alt_intr_handler) return -EBUSY;
6484
6485 /* one at a time in the install or remove, just fail the others */
6486 if (!spin_trylock(&pfm_alt_install_check)) {
6487 return -EBUSY;
6488 }
6489
6490 /* reserve our session */
6491 for_each_online_cpu(reserve_cpu) {
6492 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6493 if (ret) goto cleanup_reserve;
6494 }
6495
6496 /* save the current system wide pmu states */
6497 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6498 if (ret) {
6499 DPRINT(("on_each_cpu() failed: %d\n", ret));
6500 goto cleanup_reserve;
6501 }
6502
6503 /* officially change to the alternate interrupt handler */
6504 pfm_alt_intr_handler = hdl;
6505
6506 spin_unlock(&pfm_alt_install_check);
6507
6508 return 0;
6509
6510 cleanup_reserve:
6511 for_each_online_cpu(i) {
6512 /* don't unreserve more than we reserved */
6513 if (i >= reserve_cpu) break;
6514
6515 pfm_unreserve_session(NULL, 1, i);
6516 }
6517
6518 spin_unlock(&pfm_alt_install_check);
6519
6520 return ret;
6521 }
6522 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6523
6524 int
6525 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6526 {
6527 int i;
6528 int ret;
6529
6530 if (hdl == NULL) return -EINVAL;
6531
6532 /* cannot remove someone else's handler! */
6533 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6534
6535 /* one at a time in the install or remove, just fail the others */
6536 if (!spin_trylock(&pfm_alt_install_check)) {
6537 return -EBUSY;
6538 }
6539
6540 pfm_alt_intr_handler = NULL;
6541
6542 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6543 if (ret) {
6544 DPRINT(("on_each_cpu() failed: %d\n", ret));
6545 }
6546
6547 for_each_online_cpu(i) {
6548 pfm_unreserve_session(NULL, 1, i);
6549 }
6550
6551 spin_unlock(&pfm_alt_install_check);
6552
6553 return 0;
6554 }
6555 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6556
6557 /*
6558 * perfmon initialization routine, called from the initcall() table
6559 */
6560 static int init_pfm_fs(void);
6561
6562 static int __init
6563 pfm_probe_pmu(void)
6564 {
6565 pmu_config_t **p;
6566 int family;
6567
6568 family = local_cpu_data->family;
6569 p = pmu_confs;
6570
6571 while(*p) {
6572 if ((*p)->probe) {
6573 if ((*p)->probe() == 0) goto found;
6574 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6575 goto found;
6576 }
6577 p++;
6578 }
6579 return -1;
6580 found:
6581 pmu_conf = *p;
6582 return 0;
6583 }
6584
6585 static const struct file_operations pfm_proc_fops = {
6586 .open = pfm_proc_open,
6587 .read = seq_read,
6588 .llseek = seq_lseek,
6589 .release = seq_release,
6590 };
6591
6592 int __init
6593 pfm_init(void)
6594 {
6595 unsigned int n, n_counters, i;
6596
6597 printk("perfmon: version %u.%u IRQ %u\n",
6598 PFM_VERSION_MAJ,
6599 PFM_VERSION_MIN,
6600 IA64_PERFMON_VECTOR);
6601
6602 if (pfm_probe_pmu()) {
6603 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6604 local_cpu_data->family);
6605 return -ENODEV;
6606 }
6607
6608 /*
6609 * compute the number of implemented PMD/PMC from the
6610 * description tables
6611 */
6612 n = 0;
6613 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6614 if (PMC_IS_IMPL(i) == 0) continue;
6615 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6616 n++;
6617 }
6618 pmu_conf->num_pmcs = n;
6619
6620 n = 0; n_counters = 0;
6621 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6622 if (PMD_IS_IMPL(i) == 0) continue;
6623 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6624 n++;
6625 if (PMD_IS_COUNTING(i)) n_counters++;
6626 }
6627 pmu_conf->num_pmds = n;
6628 pmu_conf->num_counters = n_counters;
6629
6630 /*
6631 * sanity checks on the number of debug registers
6632 */
6633 if (pmu_conf->use_rr_dbregs) {
6634 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6635 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6636 pmu_conf = NULL;
6637 return -1;
6638 }
6639 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6640 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6641 pmu_conf = NULL;
6642 return -1;
6643 }
6644 }
6645
6646 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6647 pmu_conf->pmu_name,
6648 pmu_conf->num_pmcs,
6649 pmu_conf->num_pmds,
6650 pmu_conf->num_counters,
6651 ffz(pmu_conf->ovfl_val));
6652
6653 /* sanity check */
6654 if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6655 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6656 pmu_conf = NULL;
6657 return -1;
6658 }
6659
6660 /*
6661 * create /proc/perfmon (mostly for debugging purposes)
6662 */
6663 perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6664 if (perfmon_dir == NULL) {
6665 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6666 pmu_conf = NULL;
6667 return -1;
6668 }
6669
6670 /*
6671 * create /proc/sys/kernel/perfmon (for debugging purposes)
6672 */
6673 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6674
6675 /*
6676 * initialize all our spinlocks
6677 */
6678 spin_lock_init(&pfm_sessions.pfs_lock);
6679 spin_lock_init(&pfm_buffer_fmt_lock);
6680
6681 init_pfm_fs();
6682
6683 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6684
6685 return 0;
6686 }
6687
6688 __initcall(pfm_init);
6689
6690 /*
6691 * this function is called before pfm_init()
6692 */
6693 void
6694 pfm_init_percpu (void)
6695 {
6696 static int first_time=1;
6697 /*
6698 * make sure no measurement is active
6699 * (may inherit programmed PMCs from EFI).
6700 */
6701 pfm_clear_psr_pp();
6702 pfm_clear_psr_up();
6703
6704 /*
6705 * we run with the PMU not frozen at all times
6706 */
6707 pfm_unfreeze_pmu();
6708
6709 if (first_time) {
6710 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6711 first_time=0;
6712 }
6713
6714 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6715 ia64_srlz_d();
6716 }
6717
6718 /*
6719 * used for debug purposes only
6720 */
6721 void
6722 dump_pmu_state(const char *from)
6723 {
6724 struct task_struct *task;
6725 struct pt_regs *regs;
6726 pfm_context_t *ctx;
6727 unsigned long psr, dcr, info, flags;
6728 int i, this_cpu;
6729
6730 local_irq_save(flags);
6731
6732 this_cpu = smp_processor_id();
6733 regs = task_pt_regs(current);
6734 info = PFM_CPUINFO_GET();
6735 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6736
6737 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6738 local_irq_restore(flags);
6739 return;
6740 }
6741
6742 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6743 this_cpu,
6744 from,
6745 task_pid_nr(current),
6746 regs->cr_iip,
6747 current->comm);
6748
6749 task = GET_PMU_OWNER();
6750 ctx = GET_PMU_CTX();
6751
6752 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6753
6754 psr = pfm_get_psr();
6755
6756 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6757 this_cpu,
6758 ia64_get_pmc(0),
6759 psr & IA64_PSR_PP ? 1 : 0,
6760 psr & IA64_PSR_UP ? 1 : 0,
6761 dcr & IA64_DCR_PP ? 1 : 0,
6762 info,
6763 ia64_psr(regs)->up,
6764 ia64_psr(regs)->pp);
6765
6766 ia64_psr(regs)->up = 0;
6767 ia64_psr(regs)->pp = 0;
6768
6769 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6770 if (PMC_IS_IMPL(i) == 0) continue;
6771 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6772 }
6773
6774 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6775 if (PMD_IS_IMPL(i) == 0) continue;
6776 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6777 }
6778
6779 if (ctx) {
6780 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6781 this_cpu,
6782 ctx->ctx_state,
6783 ctx->ctx_smpl_vaddr,
6784 ctx->ctx_smpl_hdr,
6785 ctx->ctx_msgq_head,
6786 ctx->ctx_msgq_tail,
6787 ctx->ctx_saved_psr_up);
6788 }
6789 local_irq_restore(flags);
6790 }
6791
6792 /*
6793 * called from process.c:copy_thread(). task is new child.
6794 */
6795 void
6796 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6797 {
6798 struct thread_struct *thread;
6799
6800 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6801
6802 thread = &task->thread;
6803
6804 /*
6805 * cut links inherited from parent (current)
6806 */
6807 thread->pfm_context = NULL;
6808
6809 PFM_SET_WORK_PENDING(task, 0);
6810
6811 /*
6812 * the psr bits are already set properly in copy_threads()
6813 */
6814 }
6815 #else /* !CONFIG_PERFMON */
6816 asmlinkage long
6817 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6818 {
6819 return -ENOSYS;
6820 }
6821 #endif /* CONFIG_PERFMON */
This page took 0.171162 seconds and 6 git commands to generate.